Configuring the Microsoft Visual Studio IDE
to build Custom Modules

Copyright © 2012, Microstar Laboratories, Inc.

If you typically use the Microsoft Visual Studio® environment to build applications, you might prefer
to build DAPL custom modules in that same environment. The environment is designed to make it easy
to build applications that run in the Windows® system, and it does a remarkable job of providing all of
the settings you would normally need for this. However, since downloadable binary modules for the
DAPL system do not run in the Windows host system environment, you will need to make many
adjustments.

Preparing your system

First, install your compiler tools. Verify that the compiler system works, and you can configure and
build the examples that come with the compiler.

Second, run the DAPtools Professional software installer and select the “DAPL Command
Development” item. This installation process will look in your system, identify the compiler version
that you are using, and set up a compatible set of library and configuration options. It will also set up a
copy of several custom command examples. Even if you don't plan to use the Windows command line
environment, you should run the test that follows.

To test the command line environment, go to the main Windows menu and select

Microstar Laboratories | DTD | MSL DTD command window

Use the CD command to locate the folder with your copy of the example files. The exact location of
these files in the “user documents area” will depend on the version of the Windows system that you are
using.

CD "\Users\<username>\Documents\Microstar Laboratories\DTD\Examples"

Then type in the following command line.
NMAKE -f MODMAKEM.MAK

This test verifies that your DTD interface code is correctly installed where your compiler system can
find it. A downloadable module file should be successfully built for each of the example C++ files. If
this test fails, there is very little chance that you will get useful results from the graphical IDE
environment.

Running the "New Project” Setup wizard

From the Visual Studio main menu select File | New | Project... and pick the Project type
Win32. Click to select the Win32 Project installed template. Specify a name and location for your
project files.

- - r_\. N
Hew Project L
e Templates: HET Framewark 35 | [(E
= Wisual S+ Visual Studio installed templates

ATL

CLR l?
General g _J
MFC Win32 Corsole W32 Project
'_T_qft Applicaton

Instalishield Express
+ Cther Project Tvpes
+ Tesk Projects

My Termplates

Search Orline
Templates...

- A projact For creating a Win32z application, console application, DLL, or skatic bbrary

Hame: =Enter_name:

Loxation: CaADeIFD, 200 DepTestBed? v
] [create drectory for soiution

[add ba Saures Carkral

Lo J[cacel]

Click OK and continue to the next screen. Specify that you are building a DLL starting from an empty
project.

Win32 Application Wizard - DLM B =]

o ea Application Settings
Ts, _{ -
%
R Applicaton type: Add comman header files for:
Applc stion Settings i) Windows application :
{1 Console applcation
@
() Stafic lbrary
Additonal optons:

Fraty prject

= Fravious [Finigh H Cancel]

When the wizard is finished, you need to set up an initial C++ code file. Go to the main menu and pick

File | New | File. SelectVisual C++ language, and the Visual Studio C++ File
template.

ed B3
Categories: Templates: HE F
General Visual Studio installed templates
Web
E C++ File (.cpp) |E| Header File (.h)
Script -] Midl File (idl) |44 Bitmap File (.bmp)
MCursnr File (.cur) J Tcon File (Lica)

F'.esc:urn:e Template File {rct)

Creates a file containing C++ source code

Open *I Cancel

You will get an empty code page. Insert the following "generic" code in that page.

#include "DTDMOD.H"
#include "DTD.H"

#define COMMAND "cCC"
#define ENTRY CC_entry

int stdcall ENTRY (PIB **plib)
{

return O;

}

extern "C" declspec(dllexport) int stdcall ModulelInstall (void *hModule)

{
return (CommandInstall (hModule, COMMAND, ENTRY, NULL)) ;

}

For the “CC” items appearing in the code above, substitute the name of the custom command as you
want it to appear in your DAPL configuration scripts later. The command name must not be the same
as the name of the project, which will determine the name assigned to the final DLM file. If the names
were the same, the DAPL system could not distinguish the module file from the command inside of it.

Save this file in your project folder.

Now add this file to the Solution Explorer by right-clicking in the Solution Explorer window (usually at
the left margin of the display) and picking Add | New item. The file name will then appear in the
Solution Explorer pane. Double click on the file name to open it.

General project settings

Open the project. Select the Project | Properties dialogs from the main menu. Click on
Configuration Properties and General. The first screen will verify the general project
properties that you entered in the wizard when first setting up the new project.

Configuration: I.ﬁ.cﬁvel:Release) ﬂ Platform: IAcﬁuEI:\"J'inﬂ]l j Configuration Manager... |

Commaon Properties B General
Configuration Properties Qutput Directory s({SolutionDir)$ConfigurationName)
General Intermediate Directory s(Configurationame) ;I
Debugging Extensions to Delete on Clean = obj;®.ilk;* tb;* i;*. th;*.tmp; *.rsp;*.pgc; *.pgd; *. meta;
Clc++ Build Log File $(IntDir) \BuildLog.htm
Linker Inherited Project Property Sheets
I'~.1.anife5t Toal Enable Managed Incremental Build Yes
XML Document Gfanerab:nr E Project Defaults
EE’;;::;:EWEHDH Configuration Type Dynamic Library (.dll)
Custom Buid Step Use of MFC Use Standard Windows Libraries
Use of ATL Mot Using ATL
Character Set Mot Set
Common Language Runtime support Mo Common Language Funtime support
Whole Program Optimization Mo Whole Program Optimization
Intermediate Directory

Spedifies a relative path to the intermediate file directory; can indude environment variables.

Verify the DLL output file format. The DAPL system uses 8-bit characters, so you will most likely
prefer to avoid multi-character or UTF8 character coding.

There is no Windows debugging for downloadable modules.

Click the Configuration Manager button in the upper right corner. In the drop-down dialog, click the
Edit. .. option.

Configuration Manager 2| x|

Active solution configuration: Active solution platform:

<Edit...> x| win3z |
Debug d)

Release eploy):

<Mew...= Platform Build |

| win32 Rd 7]

Close

In the dialog that follows, disable the delbug configuration option — this does not apply to code that
runs in the embedded DAPL environment.

Compiler settings

Select Project | Properties from the main application menu. In the pane at the left, select the

Configuration Properties andthen C/C++ - General.

Configuration: IAcﬁve[ReIeasej j Platform: I.ﬁcﬁve(‘n"ﬁnﬂ) j Configuration Manager... |
Common Properties Additional Indude Directories "C:\Program Files (x86)\Microstar Laboratories\ DT
[= Configuration Properties Resolve #using References

General Debug Information Format Disabled
Debugging Suppress Startup Banner Yes {fnologa)
= CfC++ Warning Level Level 3 (fW3)
) Detect 684-bit Portability Issues No
Optimization Treat Warnings As Errors Mo
Preprocessor Use UNICODE Response Files No
Code Generation
Language
Precompiled Headers
Cutput Files
Browse Information
Advanced
Command Line
Linker
Manifest Tool
XML Document Generator
Browse Information
Build Events
Custam Build Step
Additional Include Directories
Sp{?qug:;:]:?e or more directories to add to the indude path; use semi-colon delimited list if more than one.

* Warning level 3 is optional, but most downloadable files can compile free of warning messages at
this rigorous level. Since debugging can become difficult for software downloaded to an embedded
environment, you will probably want as many early warnings as possible.

¢ Do not use 64-bit Windows detection.

Click the Additional Include Directories item and then the button that appears at the
right. Click the "open folder" icon to add a new line, then click the button that appears on the right to
locate the directory. Uncheck the Inherit from parent or project defaults box atthe
lower left. Unless you have changed the default install location of the DAPL software, your will add a
new line that specifies the location

C:\Program Files\Microstar Laboratories\DTD\INCLUDE

as in the following illustration.

file:///C:/Program

=R RAEY

C:\Program Files (x86) \Microstar Laboratories\DTDVMCLUDE ZI
-
“| | r

Inherited values:

| =)

[

[™ Inherit from parent or project defaults Macros>>=

QK Cancel

When you click OK here, the line you added will be inserted into the C++ general configuration dialog.

Next, click on the Optimization iteminthe Configuration properties column.

Configuration: IACﬁVE{REIEﬁSE} j Platform: IAcﬁve{'ﬂu‘inEZ} j Configuration Manager. ..
Commaon Properties Optimization Maximize Speed (/02)
= Configuration Properties Inline Function Expansion Default

General Enable Intrinsic Functions No
Debugging Favor Size or Speed Meither
B CfC++ Omit Frame Pointers Mo
General . Enable Fiber-safe Optimizations Mo
e Whole Program Optimization Mo
Preprocessor
Code Generation
Language
Precompiled Headers
Cutput Files
Browse Information
Advanced
Command Line
Lirker
Manifest Tool
XML Document Generator
Browse Information
Build Events
Custom Build Step
Optimization
?SIE}Ct option for code optimization; choose Custom to use spedific optimization options. (fOd, jO1, jO2,
X

* The Maximize Speed option is suggested, but other optimization choices may also work fine.
* There are generally no problems with inline function expansion.

* Do not allow "intrinsic functions". These will conflict with "standard" math library functions.

Click on the Preprocessor item in the Configuration properties column. Click on the Processor
Definitions item and then on the button that appears on the right.

Configuration: IActiu'e (Release) j Platform: IActi\re (Win32) j Configuration Manager...
Common Properties Preprocessor Definitions WIN32;NDEBUG; WINDOWS;
[= Configuration Properties Ignore Standard Indude Path Mo
General Generate Preprocessed File Mo
Debugging Keep Comments Mo
E CfC++
General
Optimization

Preprocessor
Code Generation
Language
Precompiled Headers
Cutput Files
Browse Information
Advanced
Command Line
Linker
Manifest Toal
XML Document Generatar
Browse Information
Build Events
Custom Build Step

HFHEBEE

Preprocessor Definitions
Specifies one or more preprocessor defines. (fD[macro])

Click the Preprocessor Definitions item, and then the button that appears at the right.

Preprocessor Definitions d A

_CRT_SECURE_MO_DEPRECATE ;I

" o

Inherited values:
_WINDLL -]

[Inherit from parent or project defaults Mados=>=

QK Cancel

* (Clear the check box Inherit from parent or project defaults in the lower left
corner.

¢ Click in the text window and type in the preprocessor macro CRT SECURE _NO_ DEPRECATE as
shown. Though not absolutely required, this macro is strongly recommended. The purpose is to turn
off stack intrusion checks. This hazard does not exist unless an attacker has already overtaken your
host system. Under healthy operation, the usual unrestricted stack diagnostics can by themselves

produce processor overload hazards.

Click on the Code Generation item in the Configuration properties column.

Configuration: IAcﬁvel:Releasej j Platform: IAcﬁve[‘nﬁiinﬂ) j Configuration Manager...

[=] Common Properties Enable String Pooling Mo
Framework and References Enable Minimal R.ebuild Mo
[Configuration Properties Enzble C++ Exceptions No
General Smaller Type Check Mo
Debugging Basic Runtime Checks Default
B C/C++ Runtime Library Multi-threaded (/MT) =l
Gen.er.al] Struct Member Alignment Default
Optimization Buffer Security Check Yes
Preprocessor . Enable Function-Level Linking Mo
Code Generation -
Language Enable Enhanced Instruction Set Mot Set
Precompiled Headers Floating Point Model Strict (/fp:strict)
Output Files Enable Floating Paint Exceptions Mo
Browse Information
Advanced
Command Line
Linker
Manifest Tool

XML Document Generator
Browse Information
Build Events

FFHEEEHE

Custom Build Step

Runtime Library
Specify runtime library for linking. {MT, MTd, MD, MDd)

* Disable exceptions. The exception handling library functions are Windows system dependent.

e Usethe /MT - Multi-Threaded Application library option. This might seem peculiar
using an "application library" to produce "DLL code" but DLL features that the Windows system
uses are not appropriate for the embedded DAPL system. The DTD installation instructions might
tell you to avoid multi-threaded libraries, but that advice applies only to some earlier compiler
versions.

» Buffer security check. This is the equivalent of the /GS option, and it is allowable.

* Other floating point model options should also work.

Click on the Language item in the Configuration properties column.

Configuration: IAcﬁ\relfRelease) j Platform: IAcﬁueﬂﬂa’inﬂ) j Configuration Manager...

Common Properties Disable Language Extensions Mo
=l Configuration Properties Default Char Unsigned Mo
General Treat wchar_t as Built-in Type Yes
Debugging Force Conformance In For Loop Scope Yes
= Cjc++ Enable Run-Time Type Info No (/GR-)
General OpenMP Support Mo
Optimization
Preprocessor
Code Generation
Precompiled Headers
Qutput Files
Browse Information
Advanced
Command Line
Linker
Manifest Tool
¥ML Document Generator
Browse Information
Build Events
Custom Build Step

¥

Disable Language Extensions
Suppresses or enables language extensions, {fZa)

Disable the Runtime Type Info feature. This calls library functions that are Windows system
dependent.

Next, some optional diagnostic listings are available under the Output Files item in the
Configuration Properties column.

Configuration: IAcﬁuel:Release} j Platform: Iﬁcﬁue[*ﬁinﬂ} j Configuration Manager. .. |

Comman Properties Expand Attributed Source Mo
Configuration Properties Assembler Output Assembly With Source Code (/FAs) ;I
General ASM List Location S{IntDir)
Debugging Object File Mame S(IntDir)Y,
ClC++ Program Database File Mame &(IntDir)yweao.pdb
General Generate XML Documentation Files Mo

Optimization ¥ML Documentation File Mame §(IntDir)
Preprocessor

Code Generation
Language
Precompiled Headers
COutput Files
Browse Information
Advanced
Command Line
Linker
Manifest Tool
XML Document Generator
Browse Information
Build Events
Custom Build Step

Assembler Qutput
Specifies the contents of assembly language output file. (jFA, FAc, FAs, [FAcs)

The optional Assembly with Source Code (/FAs) option produces a listing that is
sometimes useful for finding the cause of unexpected external function calls.

Click on the Advanced item in the Configuration properties column.

Configuration: IAcﬁvelfRelease) j Platform: IAcﬁveﬁ"'ﬁnﬂ}l j Configuration Manager. ..

Common Properties Calling Convention __cdecl (f/Gd)
=l Configuration Properties Compile As Compile as C++ Code {fTP)
General Disable Spedfic Warnings
Debuagging Force Indudes
= Cfc++ Force #using
General Show Indudes Mo
Optimization Undefine Preprocessor Definitions
Preprocessor) Undefine All Preprocessor Definitions Mo
f::;ugzzeraton |Use Full Paths Mo
Precompiled Headers Omit Default Library Names Yes ([ZI)
Output Files Error Reporting Prompt Immediately (ferrorReport:prompt)
Browse Information
Command Line
Linker
Manifest Toal

XML Document Generator
Browse Information

Build Events

Custom Build Step

[EEHEE

Calling Convention

Select the default calling convention for your application (can be overridden by function). (/Gd, /Gr,
Gz}

* The Developer’s Toolkit for DAPL functions use cdecl calling conventions. For other calling
conventions, you can use the stdcall declarations in the code files where needed.

* Compile as C++ (/TP option). If you prefer C, code as if using the C compiler and you will rarely
notice any difference. The Developer's Toolkit functions use no special C++ notations (no classes, no
function overloading, etc.)

* Omit embedded library names using the /Z1 option. Ordinarily, compiled code will contain a long
list of library files, most of which can do nothing but cause trouble for your module

Linker properties

Next, you will need to configure the linker properties. In the Configuration Properties
column, select Linker and then General.

Configuration: IAcﬁuel:Release} j Platform: IAEﬁuE[WinSZ} j Configuration Manager. ..

Configuration Properties :I Qutput File &({OutDir)\%(Projectilame).dlm
General Show Progress Mot Set
Debugging Yersion
Cfc++ Enable Incremental Linking Mo (fINCREMENTAL:NO)
General Suppress Startup Banner Yes {jMOLOGO)
Optimization Ignore Import Library No
Preprocessar) Register Output Mo
Code Generation Per-user Redirection Mo
Languagfa Additional Library Directories "C:\Program Files (x86)\Microstar Laboratories\DT
Precompiled Headers —— .
Output Files Link Library Dependencies Yes
Browse Information Use Library Dependency Inputs Mo
Advanced LUse UNICODE Response Files Mo ;I
Command Line
Linker
General
Input
Manifest File
Debugging
System b
Optimization
Embedded IDL
Advanced Use UNICODE Response Files

property to "fes” when files in the project have UNICODE paths.

Command Line - Instructs the project system to generate IUMICODE response files when spawning the linker. Set this
|]

* Modify the name of the output file type to d1m ("downloadable module") rather than the usual
dll.

* Incremental linking will typically be suppressed anyway because of other options — disabling it will
avoid warning messages.

While still in the Linker - General section, click the Additional Library Directory
item and then click the button that appears to the right. In the dialog box, click on the "new folder"
icon and then on the button that appears to the right. Locate the folder where the special Developer's
Toolkit for DAPL library files are located. If you installed in the default location, your added line will
look like the following.

i x| ¢ +]

C:\Program Files (x36)\Microstar Laboratories\DTDLIBYMC :l

w
1| | b

Inherited values:

[

[T Inherit from parent or project defaults Macross=

Ok Cancel

* Click to disable the check box at the lower left to Inherit from parent or project defaults

* Click the "new folder" icon at the top and navigate to the location shown. The location might be
different if you did not install in the default location.

Select the Tnput item under Linker. Here you will make some very important adjustments. The
linker must check the special Developer's Toolkit for DAPL libraries first, before trying to resolve
function calls with any other libraries. If any library functions carry additional links to features of the
Windows environment, your module will not link and you will be faced with some very mysterious
messages reporting unresolved references.

Configuration: IActi\-'El[Release}

j Platform: IAcﬁve{Winﬂ}

j Configuration Manager. ..

Comman Properties
= Configuration Properties

Additional Dependencies
Ignore All Default Libraries

DAPL.LIE MODCRTO.LIB $({NOINHERIT)

No

General Ignore Specific Library
Debugging Module Definition File
CfC++ Add Module to Assembly

&=l Linker Embed Managed Resource File
General Force Symbaol References
Ir||:nt] Delay Loaded DLLs
Manifest File -

) Assembly Link Resource
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool

XML Document Generator
Browse Information

Build Events

Custom Build Step

HH HHHFE

Additional Dependencies
Specifies additional items to add to the link line {(ex: kernel32.1ib); configuration specific.

Click on the Additional Libraries item. Click on the button that appears at the right. This

dialog tells the Linker about the existence of the two special Developer's Toolkit for DAPL libraries,
and forces these libraries to be scanned before any other library files.

Additional Dependencies d |
DAPL.LIE N

MODCRTO.LIB

" o

Inherited values:

kernel32.lib -
user32.lib
gdi32.lib

winspoal.lib
comdlg32.lib

™ Inherit from parent or project defaults Macros=>

QK Cancel

* Very important, click to uncheck the ITnherit from parent or project defaults
box. Any of the libraries you see listed in the central display pane can cause unresolvable link errors.

* Enter the two special library names as shown. The name MODCRTO contains the letter O and ends
with numerical digit O.

* The compiler is allowed to resolve function calls by searching its run-time library, but be aware that
depending on what is called, this could result in unresolvable and seemingly unrelated link problems.

The linker debugging is not interactive, and produces log files. These options are safe to use. Select the
Input item under Linker.

Configuration: IAcﬁvel:Releasej j Platform: IAcﬁveMinﬂ) j Configuration Manager. .. |
Common Properties Generate Debug Info No
[l Configuration Properties Generate Program Database File
General Strip Private Symbols
Debugging Generate Map File Yes (/MAP)
ClC++ Map File Name
=l Linker Map Exports Mo
General Debuggable Assembly Mo Debugagable attribute emitted
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool

XML Document Generator
Browse Information

Build Events

Custam Build Step

FHFEEE

Generate Debug Info
Enables generation of debug information. ({DEBUG)

* The optional linker MAP file is sometimes useful to identify how library function calls were
resolved when the module was built.

Inthe Configuration Properties column, select Advanced. You can verify that the code is
generated for the MachineX86 architecture. It would be a good idea to disable the Manifest
inclusion, since this is not used, and wastes memory.

Finishing and Compiling

After completing your project configuration, save your project. Now you can use the Solution
Explorer to begin your normal code development work, starting from the initial code page that you set
up, and adding any additional code files that you need. When your code is ready, use the main Build
menu to build your project code and produce the downloadable command module.

