Developer’s Toolkit for DAPL Manual

Command module developer’s
toolkit for DAPL 2000
operating system

Version 5.00

Microstar Laboratories, Inc.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this manual may be photocopied, reproduced, or
trandated to another language without prior written consent of Microstar Laboratories,
Inc.

Copyright © 1985-2001

Microstar Laboratories, Inc.
2265 116 Avenue N.E.
Bellevue, WA 98004

Tel: (425) 453-2345
Fax: (425) 453-3199

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAP, DAPL, and
DAPview are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any
Microstar Laboratories products are to be used in or with systems, devices, or
applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark
of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation. Novell and NetWare are registered trademarks of
Novell, Inc. Other brand and product names are trademarks or registered trademarks of their respective
holders.

Part Number MSDTDM500-0104

Contents

R o1 oo [0 Tt o 1
SUPPOITEA SYSLEIMS ...ttt ettt sttt ae et e e e e e e e e e aeebesbeseesseneeneeneeseanens 2

2. INSEAIBLION 1. bbbt
Adjusting Project Files........cccoovevieveeviicienne
Compiling Using the Command Line.......
Compiling with Microsoft NMAKE.....
Compiling with Borland MAKE.................
Compiling with the Borland Builder IDE
Compiling With the MiCroSoft IDE...........cccooiviiiiiseseieicese e

S OVEINVIBIW ..ottt r et e Rt R et e et e R n e
Organization of Custom Command Code
An Example Custom COMMENGcc.eoeeereeeiieieseseeseesee e see e see e ssesesessessessessesseseenes

4. Compiling and Loading MOUUIES...........ccccoiieieiciciece et 17
Preparing Files and ENVIrONMENTS.ccciiiiriieiisieseseecee et nes 17
Command Ling ENVIFONIMENEcceirieirieirinieisieesiee st 17
Microsoft IDE Environment
Borland IDE ENVIFONIMENTcciueiiiiriiieririeesieie et see e
Compiling From the Command LiN€..........cceiiiiiiiiisieieieeei et
Simplified Command Line with Batch File
Compiling froM thEIDE ..ottt re b
Compiling from the Borland IDE..........cccccoiiiiiiireieecccese e
Compiling from the Microsoft IDE....
Adjusting Compiler OptimizZations.........cc.coveiiiiiieiieiereieeee e e
Downloading the Compiled MOUIES...........ccceiiiiiriirieieieecese e

I 1 g T [0 To (= =SSR 25
The DTDMOD.H Fl@ ..ottt 25
TheDTD.H File

Supplementary Header FileS...... ..ot 25

6. Using Developer’s TOOIKit FUNCLIONS.........ccciiiiieieicece e 27
HEAAEN FIIES.....cectiee ettt 27
Registering COMMEANGS.......cc.cveiiieieie ettt sa e seenesresbe e e ne s 27
Task Parameters
ACCESSING ParaMELErS......cvcueeeicieitisiesie ettt b e beste st e e e s ens
AUXITAY FUNCHONS. ...ttt sttt b e st b et n s
Advanced Parameter Checking

Pipe Read and Write Routines

Application EXampleS USING PIPES........cccciiiiiiiineiicieeeesi et 42
TEXE TTANSFEN .ttt b bbb 47
BlOCKED Pip OPEratioNS.......cveuiiiieiesiesiesiesieeeeete ettt sttt s b et be st a e eseenesrens 48

Contents iii

Other PipE FUNCLIONS.....c..iitiieeeee ettt st sbe b e sae e neene 56

Task Control

DireCt OULPUL FUNCHIONS.eiieieeeieieeie sttt st e e e e nesne e 57

RE8l TIME ClOCK. ...ttt et eeas 58
7. SOftwar @ Triggering SUPPOTTccvvuiieieeeieestiseste sttt e be st e e e sresbesreae s e e eneerens

Establishing the Connection
Using the Trigger Functions
SPECiAl TrIQUEr MOUEScviveieeeietee ettt b et a e neeresbe e e

Triggering Command EXAMPIES.......cooiiiiiiiiieseeeese s 65

8. F10ating POINT SUPPOIT ...ttt sttt sr e st s e e ene e 73
Floating Point Library FUNCHIONScooiiiiiiieeeeeee e 73
Floating Point Example
Floating Point Error HaNAliNg........ccooceeriieeee et 77

9. Digital Signal ProCessing SUPPOITcveveieieiisiesiesieseeeeeste e sesaessesee e ssessessessessessesessessens 81
Building CUStOM WaVEfOrMS..........ocveieiciicesie et nas 81
Performing FFT TransformMS.........ccceieiiiieii et enas 83

FFT Initialization
[IS (0] o L= USRS PRSRN
FFT WindOW OPErationScccceiviiiiriesiesieieeetesie e sie e sie e e sse s ste st s sseseesssseens 86
FFT Precision Options
FFT DireCtion OPtiONS......c.cveeeieiieisesiesiesiesieeee et a e re st st ste s s e e eneese e 88
Post-FFT Processing OPLiONScccoceierieieieiee e ste e ste s ese s sre s 90
Other Options
TYPICA FFT OPLIONS....c.oiieiciiciecti ettt neenas
Deferred POSt-FFT PrOCESSINGcveveeeriirisiesiesieieieseeststestestessesseeessssessestessessessessssessesss
FFT Processing With More Than One Buffer
EXample FFT APPIICALIONcceiiiicieicectc ettt benan
Using Finite Impulse Response Digital Filters.........cccooviiiviieiecisi e 98
FIR Filter Initiaization
FIR Filter COMPULBLiON.eiveiieieieeiceste st ste sttt reeneeras 101
Additional FIR OPErations..........cccuieiuirierieeeisiesesesesaesseseeeee e sessessessesassesessesss 102
A Data Smoothing APPliCaLiONccceiiiiiieieeecee e 103

Multitasking
Strategies for Improving Real-Time Response....
Latency When Using Floating Point
SINGle TasKiNng.....c.coeeererereriesiereeeeeae
Monitoring Application Example...
Customized PID Controllers..........
Structures for PID Control
The Control Loop.......ccccceeereeruenee.
Low-latency PID Response.................
Efficient Control of Multiple Loops......

11. Tipsand TechniqueS........cccceeveieiivesienienns .
Names: Module, DAPL and CHceciiieicccicesie st ste et enens

iv Contents

Debugging Custom COMMENGSccceeeerererierieseseereeseeesesrese e seeseeseeseseesesaessesaesees 128

Examining Task SChEAUIINGco.eieieeeeieeeeeee et e 129
Using Assembly Language in Custom COmMMBaNdS..........cccceeeerereeriereereeneneeesesieseeseas 130
Building Modules with Multiple Commandscoeoererireniieneseeeeeeee e 132
12. Data Acquisition RUNTIME LIDIraryccccuccveeeiiese et 133
SEIVICE OVEIVIBW.....ooeiiiit ettt et b ettt ettt ettt 133
PiPE OPEIaLiONS.... ..ottt st re s r e re s 133
Pipe Buffer (PBUF) OPErationS........cccoueieeiiiiesiesieeeeeesre e siesseseeeee s see e ssesenis 133
DAIA ACCESS. ...ttt ettt b et b et b bttt b et st b ettt ne et
[V 2= o] £ ST S O TP
Task Control...........
Text Formatting
Asynchronous DEVICE OULPUL...........cceieierieieeeieeee et sre st s sae e 134
B[00 = £ SRS SRSRS 135
[OSSPSR RTTTSRPTRPRPRTO 135
Digital FIITEIS .ottt sttt ns 135
PID Feedback CONEIOl.........cociuiiiiirieirieereeieseee ettt 135
GENEFAl MBEN....c.eiiiiiic e 136
Requests to Command INEEMPrEErcccovvieiiiinericeeeee s 136
Compiler RUNEIME FUNCHIONS..........ccouiiieieicieese et 136
BEOF <ttt 138
(0= o 01U | SRS 139
(o [To 1= [N o LU | TSP 140
Aigital_SEt DIt .o 141
digital_tOggIe DIt ..c.eceeeeeeiiiicece e 142
Lo F OSSOSO TSSOSO SPRTROTRRN 143
FILCANGOUL ... e 144
FEE M. s 145
L1 00 (o] SRS 149
L LA (=0 [0 (== SRS 151
LT o - = TSRS 152
LT 4 7= 010 =SS 154
L L ST 156
L =0 U1 SRS 158
L) 3L« TSRS 159
L= 160
TCOSINME ottt b e et b ettt e et nan 161
TCOSWAVE. ...ttt ekt b ettt b et b et e et nen 162
TCPIXWEVE ...ttt sttt b te s b s b et et e e eneeseabestestenaans 164
1S L= T PP SS TR PPT ORISR 166
TISINBWAVE. ...ttt ettt b et a ettt enen 167
TS o [PSPPSR 169
1007 1 Lo o3OS 170
L= =T T = 0] SO OSSR TSP 171
PArAIM_EITON _IMS...eteeueiiteeseesieetessesseesiesssessesseesseessessesseessesseessesseessesssessessesssesenssenns 172
PBIBIM_PIOCESS.eeretenertesertesesteseseetessese st te e ebe e b et e bt e e b e seebe s e et e s e b e e s b e ne st et saeseneenin 174
02z 1 TN TSRS 176

Contents

Vi

[0 010 o = OSSR 177

POUF_GEE CNE .ttt e s 179
[o]o10 o = aio = c= U 1 (OSSR 180
POUF_GEE MEX_ Ottt s ne 181
POUF_GEE MIN_CNE ..t 182
o] 010 o= o PSS 183
0] 010 o | PSS 185
POUF_ UL SBE G-t s e e ene 186
POUF_SEE Nttt s nee e 187
[0S Ao = = o1 (TSRS 188
POUF_SEE MEX_ G ...ttt st e e eene 189
POUF_SEE MIN_CNE. et 190
PIO_COMPULE ...ttt ettt st e e e e e e e e nesbeebeseeseesaeseenennnans 191
1Ko I 0] o= o SO 192
[TTo I 0] (ST SO 193
[0 TTo I = = 1 o L ST 195
7o I (00T OSSR 196
81T oL o< F TSP TP URTPPRPRPROPN 199
[TT oS 0100 OSSPSR 200
PIPE_NUM_COMPIELE.......ceeieiiti ettt sttt e e s sbe e seesaeseeeennens 202
[T oI o= OSSPSR 203
[T oL o 0o USSR 204
[0 TT oS oL | USSP 205
[T 0TS (= 1 SRS 206
PIPE VAIUE GBL ...ttt sttt e et se b b seesaesee e nnene 207
PIPE VAIUE UL, st e e e e e e e s eaeeneseesaeseeneenans 208
PIPE WAL ...ttt st 209
1L S 210
TBIIOC .t e 211
(1= 1 o o3OS 212
L= TSP 214
LS o 1011 OSSPSR 215
SSCANT ...ttt ne e 216
SYS _EXEC_COMMMIBNG.eeueeeeeieueeicetc et see e seeee e seeaeseesbeseesee s e e eneeneeneeaeseesaeseeneannenean 217
SYS GBL INFO .ttt ettt neeeae s 218
SN I o= A U] 0TRSO 221
Y SR o= L= £ o] o PSSR USSR 222
€2 G 07 1 TSRS 224
L6215 QS Y1 (o 1O USRS 225
g o= o = USRS 226
trigger_get iMMEAIBEEcceeeeeeieieee et 227
trIQOEr gL OPIMOUE ... ettt et sttt eeaeeae s 229
gl o (= o= Al o 0] o = £ YRR 230
gl o T= o = A = U LTSRS 232
LT o 7= 000 SRS 233
g T=: o o= o OSSR SURR SRR 234
LT o 1= o | SO 235

Contents

g0 Tc S A = 0L SRS 236
trigger_updt_put
trIQOEr_UPOL SEALUS.eieieieeee ettt sttt seesae e 240
LU0 T=: 7) ST

vector_|length
VKON _SEBIT ...ttt bttt bbbt
VECEOT LY.ttt sttt bbbttt bbbttt
AV o (o) SR 11/ Yo |1 PSS

13. Appendix A. Compatibility with DTD VErSION 4.......cccoovevievieeeicesesieieeee e 247
Hardware Compatibility
Binary Code ComPatibilityccueveieiiiiiiirieeeees e 247
Compatibility with Previous DTD VEISIONS.......ccccciiiieiierieieecisiesiesieseeseee e se e seesaens 247

USEOF | NI datatype......eeeeeeeeeeeee e
32-Dit Variahl@ ACCESS......coveiiiieiisie et
Multitasking Controlcccceeevevievienenne
PID GaiN...ccoooeiiiieieiciecese e
Pipe PBUF Get and Put............ccccvennee.
Dynamic Allocations..........cccovevveveeieneceesinneen
A New sys_get_version Function
CH+ ENVITONMENT ...ttt ettt bttt

Contents vii

1. Introduction

The Developer's Toolkit for DAPL contains the software tools required for creating
custom command modules for Microstar Laboratories Data Acquisition Processors.
Custom command modules are downloadable binary modules that contain custom
commands. Custom commands are user-defined processing commands that extend the
DAPL 2000 operating system. Most applications require only the data processing
functions available as predefined DAPL commands, so the Developer's Toolkit for
DAPL isintended primarily for advanced users.

Custom commands are written in C or C++, compiled and stored in the host PC, and
downloaded from the PC to a Data Acquisition Processor. Once custom command
modules are downloaded, the new commands are used in DAPL processing
procedures in the same manner as predefined DAPL commands.

Processing procedure definitions within a DAPL configuration script refer to
predefined or custom commands by name. Modules containing custom commands are
loaded into the DAPL system before sending the DAPL configuration script. Each
reference to a command is called a “task definition” because it results in creation of a
processing task when the configuration runs. A task definition specifies a list of
parameters, identifying the data sources and data destinations to be used by the task.

When the Data Acquisition Processor receives a START command for a processing
procedure containing a task definition, the Data Acquisition Processor activates the
task, executing the command code. The command first extracts the parameter
information provided by the Data Acquisition Processor, checking that the parameters
are valid. The command then executes its initialization code. After initialization, the
task executes an endless processing loop. This|loop reads data from pipes or variables,
processes the data, and writes the results to pipes or variables. The task processes data
indefinitely until the Data Acquisition Processor is stopped.

Pipes provide the connections for data to move between tasks. The pipes specified in a
command parameter list may be communication pipes, input channel pipes, user-
defined pipes, or other types. It makes no difference within the command; all pipes are
treated uniformly.

This manual explains how to create and use custom command modules. The reader
should be familiar with the operation of Data Acquisition Processors and DAPL
system, as described in the introductory sections of the DAPL manual.

Introduction 1

Supported Systems

The Developer's Toolkit for DAPL version 5 supports DAPL 2000 versions 2.0 and
above. Some older DAP models are not supported under the DAPL 2000 version 2
system. The Developer's Toolkit for DAPL version 4, the DAPL 2000 system version
1 or the DAPL version 4 system, and a 16-bit compiler are required for these older
Data Acquisition Processors.

16-bit custom commands developed using the Developer's Toolkit for DAPL version
4 will till download and run under the DAPL 2000 version 2 system, but these cannot
take advantage of new features of the operating system, and they are subject to certain
congtraints imposed by the 16-bit programming model. The Developer's Toolkit for
DAPL version 5 does not support development of 16-bit custom commands, but
ordinarily thereis no reason to use a 16-bit environment.

The Developer's Toolkit for DAPL supports the following compilers:
* Microsoft Visual C++ 6.0
* Borland C++ Builder 5.0 or Borland C++ 5.5 command line compiler

The Developer's Toolkit for DAPL provides startup, module registration, and run time
service functions. Support is provided for floating point operation, with replacements
for non-portable Standard C floating point library functions. Floating point emulation
is provided for Data Acquisition Processor models that do not have hardware-
supported floating point operations. All features are built into each downloadable
module automatically.

2 Introduction

2. Installation

The Developer's Toolkit for DAPL is delivered as part of the DAPtools Professional
package on CD-ROM. To install, place the CD-ROM into your CD-ROM reader. The
Microstar Laboratories Setup Launcher (SETUP.EXE at the root of the CD) will run
automatically. Select the Developer's Toolkit for DAPL link. You also can use
Explorer or Run to browse for the DTD folder. Find the SETUP.EXE program in this
folder and runiit.

The installer program will place the Developer's Toolkit for DAPL software into the
folder

C:\Program Files\Microstar Laboratories\DTD32

by default. If you select an alternative location, note the path that you select. Y ou will
need this information to modify some of the configuration files. This manual will
usually presume that you have installed in the default location and will refer to this
folder as DTD32. Keep in mind that this location may be assigned a different name on
your system.

After the installation has been completed, you might wish to review the information in
the README.TXT file. This file will be found in the base directory DTD32 of the
installation. Use any text editor, file viewer or word processor to view thisfile. It will
provide notices of changes or recent corrections not covered by this manual.

The FILES.TXT file, which is aso found in the base DTD32 folder, contains
descriptions of all of the filesin the install ation.
Adjusting Project Files

If the Developer's Toolkit for DAPL or compiler systems are instaled in locations
other than the suggested defaults, some of the example files must be modified to
reflect the actual folder locations. The adjustments will depend on the software
configuration specified when the software was installed. The adjustments can be made
using any text editor, such as the Windows system NOTEPAD program.

Compiling Using the Command Line

The DAPCC.BAT can be used to make compiling command modules alittle easier from
the command line. There are three set commands near the end of this file that might

Installation 3

need adjustment depending on which compiler you select and where it is installed.
The adjustments can be omitted if you never use the command line for compiling
custom command proj ects.

The NMPATH macro must point to the folder where the compiler’'s make utility is
located. If the compiler is not installed in the default location, this path information
must be modified to match your installation.

The NMMAKE macro indicates which make utility to run. For Microsoft compilers, you
can use the NMAKE program, and for Borland compilers you can use the MAKE
program. It is possible to use either make utility with either compiler, but usualy it is
easiest to use each utility with its associated compiler.

The NMTYPE macro indicates which makefile to invoke. Specify M with the Microsoft
NMAKE, or specify B with the Borland MAKE. The batch file uses this designation to
pick which makefile to invoke.

Examples are provided within the DAPCC . BAT file comments, showing configurations
appropriate for each compiler.

Compiling with Microsoft NMAKE

If you want to invoke the Microsoft compiler from the command line, and if the
compiler or the Developer's Toolkit for DAPL is not installed in the default directory
location, the makefile must be modified. At the top of the MODMAKEM.MAK file used
with the Microsoft compiler, there are two macro lines:

VC6PATH
DTDPATH

These paths point to the base directory locations for the compiler system and the
Developer's Toolkit for DAPL respectively. If your software is installed at different
locations than the defaults, modify these two lines to the correct paths for your system
configuration.

Compiling with Borland MAKE

If you want to invoke the Borland compiler from the command line, and if the
compiler or the Developer's Toolkit for DAPL is not installed in the default directory
location, the makefile must be modified. At the top of the MODMAKEB . MAK file used
with the Borland compiler, there are two macro lines:

4 Installation

BCCPATH
DTDPATH

These paths point to the base directory locations for the compiler system and the
Developer's Toolkit for DAPL respectively. If your software is installed at different
locations than the defaults, modify these two lines to the correct paths for your system
configuration.

Compiling with the Borland Builder IDE

It is possible to override the project group specifications of the Borland IDE to use a
makefile other than the ones automatically generated by the IDE, but this is awkward
in a number of ways. If the makefile and IDE configuration are inconsistent, the IDE
has a way of eliminating the problem by eliminating the inconsistent files. This can
lead to... let’ s just say some non-productive use of your time.

The Developer's Toolkit for DAPL provides some “prototype” project files where all
inconsistencies are eliminated and all special configurations are added. However,
these files contain compiler and linker options very different from the ones that the
compiler would choose. For compiling an existing command quickly, the command
line is probably easier, but for a more complex application, setting up the IDE
development environment is perhaps worthwhile.

If the compiler or the Developer's Toolkit for DAPL is not installed in the default
directory location, the prototype project file must be modified. Thisfileis called

MODULE .BPR
and it islocated in the Developer's Toolkit for DAPL folder
DTD32\LIB\BC

Thisfile can be modified using any text editor, but be careful to make only the desired
changes. Use the editor search and replace feature, looking for the text string

C:\Program Files\Microstar Laboratories\DTD32

and replacing this text with the actual path to your Developer's Toolkit for DAPL base
folder. This appears severa times; replace each one. Be careful not to remove any
termination characters such as slashes or quotes. Be careful not to insert any
extraneous blank or other characters. Save your modified file, and as a precaution, set
its file attributes to Read Only to make it more difficult to lose your changes.

Installation 5

This makes the project configuration available to use, but not ready to use. There are
more steps required to prepare for each new project. These are covered in the next
chapter.

Compiling with the Microsoft IDE

Fans of the Microsoft IDE who think the hacking of Borland configuration files is
funny, now you have a chance to exercise some real humor. Microsoft project
configurations are in various binary formats. Each projects is supposed to be set up
individually through the IDE, and for the special custom command configurations this
is not an easy process. All of the paths and names are compiled-in, and can't be
changed. There is no possibility of generating a new project in an automatic fashion.

One thing that the Microsoft environment can do, however, is run Microsoft-format
makefiles. A side effect of this is that most of the automatic configuration features of
the IDE are disabled, and the system configuration is controlled entirely through the
makefile. You can leave the project in one place and move custom command files in
and out of the project to avoid most reconfiguration. Judge for yourself whether thisis
better than building from the command line.

The following steps will set up one project environment with a makefile that can be
used to compile any custom command module.

1. Find alocation where you want to do al of your custom command devel opment.
If you do not have such a place, set up anew folder.

2. If you installed either the Developer's Toolkit for DAPL or the compiler in
folders other than the defaults, use a text editor such as NOTEPAD to edit the
MODMAKEM . MAK file in your DTD32\L 1B\MC folder. Adjust the VC6PATH and the
DTDPATH macros as needed to point to the actual installed locations of the
software.

3. IntheVisua CIDE, select File | New.

4. Inthe New dialog box, select the Workspaces tab. The box at the left will show
“Blank Workspace.”

5. Inthe Location text box on the right side, select the location where you want to
do your custom module builds.

6. In the Workspace Name text box just above that, enter a generic name for the
module development project. The name MODULE will work and is used for this
description.

7. Click the Okay button. An empty workspace with name MODULE will appear in
the object viewer window in the box at the lft.

6 Installation

8. Use Explorer or other means to copy the makefile MODMAKEM - MAK from folder
DTD32\L 1B\MC to the just-created MODULE folder.

9. Back in the IDE, select from the main menu Project | Insert Project into
Workspace, or equivalently, right click on the empty project name in the viewer
box.

10. In the Insert Project into Workspace dialog, go to the Files of Type text box at
the bottom. Click the down arrow at the right and select Makefiles (.mak).

11. Y ou should see the MODMAKEM - MAK file copy in the file list box above. Click on
the file name to select it, and then click the Okay button.

12. The environment will complain that the makefile was not built by Visua Studio.
Click the Y es button to continue.

13. A small Platforms dialog will appear with the Win32 environment selected.
Click Okay.

14. A Save As dialog box will appear, showing a file name MODMAKEM1 for the
IDE’s compiled makefile wrapper. Click Save.

15. The new project wrapper file will appear in the object viewer pane on the left.
Right click on the new MODMAKEM1 name.

16. In the pop-up menu, select Settings.

17. A Project Setting dialog window will appear, with the General tab active. On this
sheet, two changes are required. In the command line text box, insert some text
after the NMAKE and before the - flag.

MODULE=modname

Leave blanks before and after this text, no blanks inside.

18. In the same dialog, go down to the Output File Name text box and replace the
name MODMAKE - EXE with a generic module name.

modname.dlIm

19. Click the Okay button. The modmakem.mak file will now be recorded in the
project workspace.

20. From the main menu, select File | Save All.

Thisisal you have to do -- in your wildest dreams. The rest is covered in the chapter
Compiling and Loading Modules.

Installation 7

3. Overview

The Developer's Toolkit for DAPL provides a programming interface supporting data
acquisition and real time applications. The services provided by the DAPL 2000
operating system include:

* task control

* memory management

* text formatting and messages

* pipes and buffers

» asynchronous output

* software triggers

* FFT, FIR filters, PID control

* math functions

These functions are sometimes called system functions because the services are
actually performed by the DAPL 2000 operating system, using exactly the same
methods that the operating system uses internally. A system of include or header files
defines the interface between C custom commands and the resources of the Data
Acquisition Processor.

This chapter discusses the structure of a custom command code module, illustrating
how system functions are used to build one particular custom command. While the
processing in this example is relatively trivial, the structure can be generalized to a
broad range of applications. More information about using the system functions is
found in the chapter Using the Data Acquisition Runtime Library. Complete
information about each function is found in the chapter Data Acquisition Runtime
Library.

Organization of Custom Command Code

A custom command program can be organized into a sequence of sections:
* get access through the DTD . H interface
* identify the module elements
» define the required local data elements
* obtain accessto run-time parameters
* initialize structures
* begin continuous run-time processing

Overview 9

An Example Custom Command

The following is atypical example. It can serve as a starting place for developing new
custom commands.

This command is called ZTRUNC. It defines a task that reads data values from one
pipe, limits values to a specified lower limit, and sends the modified data to another
pipe. All of the details about the system functions used in this example are covered in
later chapters.

To obtain access to the Developer's Toolkit for DAPL interface, include the header
file DTD.H. Every source code file will include this. This source code module also
defines the module name and entry point, so the DTDMOD . H file is also included.

#include ""DTDMOD.H"
#include ""DTD.H"

The command code must specify to the DAPL system the name of the command and
the run-time code to be executed when this command runs. These things are done by
setting up some macros at the beginning of the program code file.

#define COMMAND "ZTRUNC"
#define ENTRY ZTRUNC_entry

The next few lines implement the module identification sequence. Unless you are
doing some advanced modul e development, these lines never change.

int _ stdcall ENTRY (PIB **plib);

extern "C" _ declspec(dllexport) int _ stdcall
Modulelnstall(void *hModule)

{ return (CommandInstall(hModule, COMMAND, ENTRY, NULL)); }

Now the main body of command code must be defined. A custom task begins
execution at the place indicated by the ENTRY macro.

The first section of the run-time code defines local variables needed at run-time. The
ZTRUNC command needs the following:
* two variables for accessing the task parameter list
void **argv;

int argc;
» three variables for saving the handles obtained from that list

10 Overview

PIPE * in_pipe;
PIPE * out_pipe;
VAR * limit;
* two additional variables for run-time processing

GENERIC_SCALAR pipe_value;
short int current_limit;

When task execution begins, the param_process function obtains access to the list
of task parameters. The handles for the three parameters are assigned to the variables
reserved for this purpose. The pipe parameters are defined using the PIPES command
in the DAPL configuration scrip. The variable parameter is defined using a VARIABLE
command in the DAPL configuration script

argv = param_process (plib, &argc, 3, 3,
T PIPE_W, T_VAR W, T_PIPE_W);

in_pipe = (PIPE *) argv[1];

limit = (VAR *) argv[2];

out_pipe= (PIPE *) argv[3];

The next code section initializes the task for runtime. Each pipe must be identified to
the DAPL system to synchronize data sources and consumers. No special initializer is
required to use the shared variable parameter.

pipe_open (in_pipe, P_READ);
pipe_open (out_pipe, P_WRITE);

The last section defines the continuous run-time processing. Data is fetched from the
source data pipe. A computation is applied to determine the output value. The
resulting output value is placed into the output data pipe. This sequence is very
general. Different commands expect different kinds of data, apply different kinds of
computations, and send their results to different locations, but the overall pattern is the
same.

For the special case of the ZTRUNC command, each data value is compared to a lower

limit, and values below the limit are adjusted. The following is the run-time loop of
the ZTRUNC command.

Overview 11

while (1)

{
pipe_value_get(in_pipe,&pipe_value);
current_limit = *limit;
if (pipe_value. 116 < current_limit)
pipe_value._i16 = current_limit;
pipe_value_put(out_pipe, &pipe_value);
}

For reference, a complete listing of the ZTRUNC command code is provided. The
source code is aso available in the DTD32\EXAMPLES folder.

12 Overview

// ZTRUNCM.CPP - Module for ZTRUNC command
#define COMMAND "ZTRUNC"
#define ENTRY ZTRUNC_entry

#include "'DTDMOD.H"
#include "DTD.H"

int _ stdcall ENTRY (PIB **plib);

extern "C" __ declspec(dllexport)
int _ stdcall Modulelnstall(void *hModule)
{ return (Commandlnstall(hModule, COMMAND, ENTRY, NULL)); }

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;
PIPE * in_pipe;
PIPE * out_pipe;
VAR * limit;

// Storage for processing
GENERIC_SCALAR pipe_value;
short int current_limit;

// Access parameters
argv = param_process (plib, &argc, 3, 3,
T _PIPE_W, T_VAR_W, T_PIPE_W);
in_pipe = (PIPE *) argv[1l];
limit = (VAR *) argv[2?];
out_pipe= (PIPE *) argv[3];

// Perform initializations
pipe_open (in_pipe, P_READ);
pipe_open (out_pipe, P_WRITE);

// Begin continuous processing
while (1)
{
pipe_value_get(in_pipe,&pipe_value);
current_limit = *limit;
if (pipe_value. 116 < current_limit)
pipe_value._i16 = current_limit;

Overview

13

pipe_value_put(out_pipe, &pipe_value);

}

In the ZTRUNC example, these identifiers are used: PIB, T _PIPE_W, T VAR W,
P_READ, P_WRITE, param_process, pipe_open, pipe_get, and pipe_put.
These terms are defined in the header files included by DTD . H. See the chapter Using
the Data Acquisition Runtime Library to learn more about these functions. See the
chapter on Include Files for more information about the organization of the header file
system.

To run the ZTRUNC custom command, the custom command code must be compiled,
linked, and downloaded from the PC to the Data Acquisition Processor. That process
is explained in the next chapter, Compiling and Downloading.

After downloading the ztruncm.dIm module, the ZTRUNC command can be used in
any processing procedure, asin the following example:

; Script to run the ZTRUNC custom command
RESET

PIPES P1
VARIABLE VLIM = 0O

IDEFINE A 1
SET IPIPEO SO
TIME 10000
END

PDEFINE B
ZTRUNC (IPIPEO, VLIM, P1)
FORMAT (P1)

END

This configuration uses only one ZTRUNC task. Samples are obtained from a single
data stream. The ZTRUNC processing is applied, and the results are formatted in text
form for display.

The ZTRUNC command could be used to define more than one task in more than one
processing procedure. Each ZTRUNC task executes independently.

Many other kinds of processing tasks can be based on the structure of the ZTRUNC
custom command. The ZTRUNC command is an example of a genera filter, a
command that produces one output value for each value input. Change the rule for

14 Overview

how the output value is generated from the input value and you have a new kind of
filter command.

Overview 15

4. Compiling and Loading Modules

This chapter provides information about how to compile custom command modules
and download them to your PC system.

After a custom command source code is written according to the instructions provided
in this manual, the code must be compiled, and the object code generated by the
compiler must be linked to form a single code image. Make sure that you have
completed all of the installation steps described in the Installation chapter.

Preparing Files and Environments

This section describes the setup operations that you must apply to prepare each
custom command project. (The chapter Installation describes setup operations that are
applied only one time when the software isfirst installed.)

Command Line Environment

For either compiler, locate the folder where all of the required source code modules
are located. In the command window, make the drive where the source files are
located the default drive. For example,

C:

Use the CD command to make the folder containing the source modules the active
directory, for example,

CD \Projects\MyFiles\mymodule

Make sure that the DTD32\L 1B folder is on the execution path if you will be using the
DAPCC.BAT file. Make sure that the make utility is on your execution path if you
invoke the make utility directly. The execution path can be set up in your
AUTOEXEC.BAT file if you wish, so that it is automatically set up each time your
computer is restarted.

If your custom command project uses more than one source module, modify the
appropriate makefile, MODMAKEM.MAK or MODMAKEB.MAK, to include rules for
compiling additional sourcefiles.

Compiling and Loading Modules 17

Microsoft IDE Environment

There are two choices.

1. Move all source files that you need to compile to the project directory set up for
building custom commands at install time.

2. Repeat the steps describe in the Installation chapter for setting up a project
wrapper to compile your source code in its current location.

If your custom command project uses more than one source module, modify the
MODMAKEM . MAK makefile to include rules for compiling for the additional source files.

Run the IDE and use the main menu File | Open Workspace to open the project file.
Select from the main menu Project | Settings. In the Project Settings Dialog, the
General page will be active. In the Build Command Line text box, replace the name
module with the actual name of the command module that you are going to build. In
the Output File Name text box, replace the name module with the same name that you
entered in the Build Command Line box, except retain the .dim extension.

Borland IDE Environment

Copy the Module.* project files that are you set up when the Devel oper's Toolkit for
DAPL was installed, placing the copies in the folder with the source code modules
you wish to compile. Rename these project files, changing the name from Module to
the name of the module that you wish to build, retaining the original file extensions.
For example, if the new module name is mymod,

Module.bpr
would become
mymod . bpr

With a text editor such as NOTEPAD, edit each of the three renamed project files,
replacing the text “Module” with the new name wherever found.

If you have a PERL interpreter, the changes can be made without using a text editor.
Specify a PERL command line of the form

perl -e s"Module"mymod®"g,print -i -n projfilename

Substitute your desired project name for mymod. Apply this command line three
times, replacing projfilename with Module.bpf, Module.bpg, and Module.bpr
respectively.

18 Compiling and Loading Modules

Compiling From the Command Line

The custom command module is built using a makefile utility. The Borland and
Microsoft makefiles have slightly different formats, so separate files are provided in
the DTD32\LIB\BC and the DTD32\L IB\MC directories respectively. These makefiles
must be configured when the Developer's Toolkit for DAPL isinstalled.

The makefiles can be run directly from the command line. Specify as the target of the
make operation the name of the command module (not the command name!). For the
Borland compiler, the command line has the form

MAKE MODULE=modulename - CMDMAKEB.MAK
and for the Microsoft compiler the command line has the form
NMAKE MODULE=modulename - CMDMAKEM.MAK

Replace modulename with the actual hame of your source code module, except leave
off the three-letter extension. For example,

NMAKE MODULE=ztruncm -f CMDMAKEM.MAK

This will compile the ztruncm.cpp module to produce the ztruncm.dIm
downloadable binary module, using the Microsoft NMAKE utility and compiler.

Simplified Command Line with Batch File

If you configured the DAPCC.BAT file in the DTD\LIB folder when the Developer's
Toolkit for DAPL software was installed, this shortcut can be used for compiling with
either compiler.

The command lineis
DAPCC mymodule

substituting the actual module name for mymodule, and leaving off the file type
extension. Thisis easier to type and remember, but inside it is really no different than
the MAKE or NMAKE command lines shown above.

Compiling and Loading Modules 19

Compiling from the IDE

Compiling from the Borland IDE

If you use the Borland IDE to develop your custom command projects, you can use
the custom command workspace that you set up. Select Project | Make project, where
the menu system will show your actual configured project name in place of project.
The compiler will invoke the linker automatically and generate a module that is ready
to download.

Y ou cannot use the Run menu or any of itstrace and debug options. Unfortunately, the
IDE is unaware of the DAPL system, so the code cannot execute in the IDE
environment.

Compiling from the Microsoft IDE

If you use the Microsoft I DE to configure your custom command proj ects, you can use
the custom command workspace that you set up. Select Build | Build module.dim,
where the menu system will show your actual configured project name in place of
module. The compiler will invoke the linker automatically and generate a module that
isready to download.

Y ou cannot use the Run menu or any of its trace and debug options. Unfortunately, the
IDE is unaware of the DAPL system, so the code cannot execute in the IDE
environment.

Adjusting Compiler Optimizations

Code optimization options for either compiler can be adjusted if necessary, but
unfortunately, not through the IDE environments.

For the Microsoft compiler, compiler optimizations are specified in the makefile and
not controlled by the IDE environment. The options can be adjusted using a text
editor. Find the CCFLAGS macro in the MODMAKEM.MAK makefile, and select -O
options as described in the compiler user’s guide.

If the Borland compiler is invoked from the command line, its optimizations can be
adjusted in a similar manner. Just edit the -0 command line options in the CCFLAGS
macro in the MODMAKEB - MAK makefile.

The Borland IDE can adjust compiler optimizations, but it should not be used to do
this. When the Builder IDE updates compiler options, it rewrites the entire CFLAG1

20 Compiling and Loading Modules

value field in its project file. However, in doing so, it changes the special settings
required by custom command modules, replacing them with generic settings for
building PC applications. It is possible, however, to use a text editor to modify -0
command line optionsin the CFLAG1 value field of the project._bpr file.

Downloading the Compiled Modules

Compiled modules can be configured to install when your DAPL system starts. To do
this, do the following.

1. Use the Windows system Start button, select Setting | Control Panel | Data
Acquisition Processors to activate the server configuration application.

2. Click the Module tab. The page will show the Installed Modules Display
Window.

3. Click the Add button.

4. In the text box Select Target DAPs and Options, enter the path to the
downloadable module. Or, click the Browse button and navigate the selection
tree to find the file; click on the file name to highlight it, and then click the Open
button.

5. The full path to the downloadable module will now be in the text box. The
options Copy, Load and Replace are checked by default. Deselect the Copy
option to use the commands under test from their origina location. (After
development is completed, the module can be reinstalled using the Copy option
if you wish.)

6. Click the Okay button. The Installed Modules Display Window should now
show the new downloadable command in the list.

7. Click the Close button to end this server configuration session.

The control panel application will remember the path to the module and automatically
fetch the downloadable module each time the DAPL system isrestarted.

During development of a new command, you will probably need to make revisions
and replace the previous version of the installed module with an updated one. To do
this, do the following:

1. Use the Windows system Start button, select Setting | Control Panel | Data
Acquisition Processors to activate the server configuration application.

2. Click the Module tab. The page will show the Installed Modules Display
Window.

Compiling and Loading Modules 21

3. In the Installed Modules Display Window, find the module name and click on
the module name to select it.

4, Click the Reload button.

5. A reload dialog will show an option box with some options for reloading. Select
the Replace option so that the DAPL system knows that it is okay to load the
module even though a module with this same name was loaded previoudy.
Select the Force option to make sure that the downloading of the fresh module
takes place even if the old version is running currently.

6. The Reload dialog will aso show a DAP box displaying al of the Data
Acquisition Processors available to the server. If the module should be loaded
only to certain selected Data Acquisition Processors, deselect ones that should
not receive the downloaded copy.

7. Click the Okay button. The server control panel application will perform the
download sequence.

8. Click the Close button to end this server configuration session.

If you need to do many experimental runs that involve module loading, especialy if
you are working with the command line, you might not want to go through the steps
above each time. An aternative isto use acommand line utility MODLOAD. MODLOAD is
released as a DAP1032 programming example with source code. Look for it in the
DTD32\DapDev\Examples\C\Modload folder. If you do not find this folder on your
system, run the main SETUP program on your DAPtools Professional CD-ROM, and
on the splash screen click DAP Development. Make sure that the
DTD32\DapDev\Examples\C\Modload folder is specified on your execution path.
Type MODLOAD on the command line without specifying a parameter to see a brief
display of command line options. Information about how the MODLOAD command
worksisavailable in the DAPIO32 Manual.

To run MODLOAD, first make sure that the Data Acquisition Processor system is started.
Select the drive containing your module as the default drive, and usethe CD command
to navigate to the folder containing the module to download. Then enter the command
line

MODLOAD module.dIm
substituting your actual module name for module.dim .

If you want to specify a Data Acquisition Processor other than the default one at
location \\.\Dap0, you can specify a network path in UNC format. For example,

MODLOAD module._dIm \\Station4\Dapl

22 Compiling and Loading Modules

If it is possible that a previous version of the module under development is already
running, the processing can be forced to stop, to allow the download, by specifying an
additional command line flag

MODLOAD /force module.dIm

Compiling and Loading Modules 23

5. Include Files

A system of function prototypes, structure definitions, data types and macros becomes
available when the DTD.H and DTDMOD.H files are included into a source code
module. The files discussed in this chapter are found in the DTD32\ INCLUDE folder.

The DTDMOD.H File

The DTDMOD.H must be included in one custom command source code module, the
one that defines the command identity and entry points. For the most part, this file
concerns things that happen automatically. Some special cases are covered in the
chapter on Advanced Applications. Most developers will just include this file and not
worry about what it contains.

The DTD.H File

The file DTD.H is included with each source code module. It specifies a list of
additional include files and some function prototypes. All custom command
developers will need to use at least afew of these elements.

Besides including these supplementary files, the DTD.H file defines some functions
required to support the C++ environment. These functions include;

operator new
operator new []
delete

delete []

Supplementary Header Files

The DTD.H file includes a set of additional header files. Developers who are
developing specialized applications might find the detailed information in these files
useful.

#include "GENTYPES.H"

This file defines some representation-specific and representation-independent data
types for use within custom command programs. The data types BYTE, WORD and
DWORD are used to refer to data elements of 8-, 16- and 32-hit length respectively. The

Include Files 25

union datatypes gen_ptr and gen_scalar define e ements that can accept values of
any scalar type.

#include "DTDTYPES.H"

This file defines some special data types used in the DAPL system environment. The
types VAR and LVAR are used to access shared variable parameters, while the types
CONSTANT and LCONSTANT are used to access shared constant parameters. The
structure type P IDCOEF is used by the PID control functions for control |oop tuning.

#include ""DTDHNDLS.H"

This file defines some special data types that are used by the DAPL system for
accessing internal data management structures. These data types have no direct
meaning outside of the DAPL operating system, but they are useful for identifying a
particular internal structure within a custom command. These data types include:

* PBUF - Handle for pipe buffer control structure

* PIPE - Handlefor data pipe control structure

* TRIGGER - Handlefor trigger control structure

* VECTOR - Handle for shared vector control structure

* PIB - Handlefor task parameter accesslist structure

* PID - Handlefor PID state structure

* FFTB - Handlefor FFT control structure

* FIRB - Handlefor FIR filter control structure

#include ""DTDFUNCS.H"

This file provides function prototypes for al functions available in the Developer's
Toolkit for DAPL, as described in the Data Acquisition Runtime Library chapter.

26 Include Files

6. Using Developer’s Toolkit Functions

This chapter shows how to use the system functions provided by the Developer's
Toolkit for DAPL. Several useful programming techniques to facilitate devel opment
of command modules are described.

Header Files

Every source code module for a custom command module will need to include the
DTD.H file. This file provides access to the macros, data types and system functions
that are needed for building custom modules.

#include “DTD.H”

One of the source code modules identifies command entry points, as discussed in the
next section. This source module must also include the DTDMOD . H file.

#include “DTDMOD.H”

Registering Commands

Each command module must tell the DAPL system about the commands available in
the module. This process is done at the time that the command module is loaded into
the DAPL system.

Two functions support this processing. One is provided by the Developer's Toolkit for
DAPL, and the other must be coded by the developer.

The first function is Modulelnstall. This function is coded by the command
developer. The DAPL system will expect this function to be present, otherwise the
command module cannot be loaded. Function Modulelnstall must accept one
parameter. When the DAPL system calls this function, it will provide a handle that
identifies the module, to make sure that commands are associated with the correct
module.

Modulelnstall(hModule);

Inside the implementation of the Modulelnstall function, the module developer
must use the function CommandInstal I to identify commands to the DAPL system.

Using Developer’s Toolkit Functions 27

CommandInstall(hModule, pCmdName, pEntry, pProperties);

The function CommandInstall is provided by the Developer's Toolkit for DAPL
and must be specified once for each command in the module. The arguments for the
CommandInstall function cal are:

1. hModule

The handle passed by the DAPL system.

pCmdName

A text string, enclosed in double-quotes, defining the name that the DAPL
system will use to identify the command in processing configurations. Most of
the command examples provide with the Developer's Toolkit for DAPL use a
macro to represent this string.

pEntry

The address of a function to be called for run-time processing of a command.
Just copy the name of the function to be called. In previous versions of the
Developer's Toolkit for DAPL this entry point was always called main. But
clearly that doesn’t work when there are multiple commands in the module,
because each entry point must have a distinct name.

pProperties

A pointer to a command information structure, usually set to NULL. For projects
with unusual requirements for storage and stack management, look in the
Advanced Programming Techniques chapter for more information about setting
up a customized command information structure.

The following example is taken from the ZTRUNCM.CPP command module code. In
this example, the developer has coded a Modulelnstall function that calls the
function CommandInstall function one time to register the processing command
caled ZTRUNC, selecting the ZTRUNC_entry function to perform the runtime
processing.

#define COMMAND “ZTRUNC”
#define ENTRY ZTRUNC_entry
int _ stdcall ENTRY(pib **plib);

extern “C” _ declspec(dllexport) int _ stdcall
Modulelnstall(void *hModule)
{ return (Commandlnstall(hModule, COMMAND, ENTRY, NULL)); }

When the COMMAND and ENTRY macros are specified in this manner, the coding
of the registration function is especially easy: it never changes! Simply cut and paste

28

Using Developer’s Toolkit Functions

from any coding example. Adjust the COMMAND and ENTRY macros
appropriately, and leave the rest. If the function prototype is coded manually, be sure
to preserve the _ declspec(dllexport) and _ stdcall qualifiers as shown, or
the compiler will not generate correct linkages.

Task Parameters

When the DAPL system begins to execute a processing command from a command
module, the DAPL system will dispatch to the specified entry point. Asthe task begins
to run, it must first obtain access to the parameter information specified in the DAPL
processing configuration. The parameter information identifies the data sources and
destinations.

The entry function is called by the DAPL system with a single parameter, caled a
parameter information block, or PIB. If the DAPL system invokes multiple instances
of this command for different processing tasks, each instance will receive a different
PIB and will therefore operate on different data elements.

Unfortunately, the PIB is a handle that is not directly meaningful either to the task
dispatcher or to the command code. To obtain access to the parameters, a special
system function must be called. This function is param_process .

param_process isillustrated in the following example:

int XCMD_entry (PIB **plib)
{

void **argv;

int argc;

argv = param_process (plib, &argc, 2, 2,
T PIPE_W, T_VAR W);

i ;

For this command called XCMD, the first parameter to param_process isplib, the
P1B provided by the DAPL system. The param_process function sets the value of
the second parameter variable, an integer argc, to the number of parameters in the
actual parameter list for the task. The next two parameters respectively specify the
minimum and maximum numbers of parameters that the custom task accepts. If the
two numbers are the same, the number of parametersis fixed. If the second number is
larger, the number of parameters can vary within a range. The remaining parameters
are flags that specify the acceptable types for each of the task’ s parameters.

Using Developer’s Toolkit Functions 29

The pointer list returned by function param_process is accessible to the task code.
The pointer list is similar to the argv parameter of a Standard C main function,
except that here the pointers point to various data types, not just text strings. Pointers
to data elements such as PIPE and VARIABLE can beinthelist.

argv[0] pointer to name of command

argv[1] pointer to parameter 1

argv[2] pointer to parameter 2
etc.

While preparing the parameter access list, the param_process function verifies the
parameter types. The XCMD example above specifies the data type flags T_PIPE_W
and T_VAR_W, so the corresponding pointers would be a pointer to a PIPE and a
pointer to a VARIABLE respectively.

If the parameter list is invalid, the DAPL system issues a diagnostic message and
suspends the task at this point. For example, suppose that a DAPL configuration
incorrectly specifies two XCMD tasks. The XCMD command expects a P1PE parameter
and a VARIABLE parameter. Instead, it receives a single pipe parameter in one case,
two variables in the other.

PIPES P2
VARIABLE V1,V2
PDEF A
XCMD (P1)
XCMD (V1,V2)
END

When the param_process is caled for the improperly configured tasks, it generates
the following error messages:

*** ERROR 1215: XCMD - too few parameters
*** ERROR 1214: XCMD - parameter 1 -
V1" should not be a word variable

Each error message identifies the command detecting the error, and provides
additional information for diagnosing the problem. The task is terminated
automatically after issuing the diagnostic message.

Accessing Parameters

Various techniques that can be used to extract the pointers from task parameter list
and associate them with data types. One way is to declare auto variables of the

30 Using Developer’s Toolkit Functions

appropriate type, extract each pointer from the list, and apply the appropriate type
casts to assign the pointer or associated value. Another way isto cast the list pointer to
the Standard C Library type va_list and use the C va_arg macro to extract pointer
values and apply the appropriate type casts. A third way is to specify the items from
the pointer list as parameters to an auxiliary function, which then interprets these as
pointers of the appropriate type.

The following table lists the DAPL elements, the C data types which correspond to the
DAPL elements, and the type flags used by param_process.

DAPL Type C Parameter Type Type Flag
byte pipe PIPE * T _PIPE_B
word pipe PIPE * T_PIPE_W
long pipe PIPE * T _PIPE_L
float pipe PIPE * T _PIPE_F
double pipe PIPE * T_PIPE_D
trigger TRIGGER * T_TRIGGER
word vector VECTOR * T_VECTOR_W
long vector VECTOR * T _VECTOR_L
float vector VECTOR * T_VECTOR_F
double vector VECTOR * T _VECTOR_D
word constant short int const * T_CONST_W
long constant long int const * T_CONST_L
float constant float const * T_CONST_F
doubl e constant double const * T_CONST_D
word variable short int volatile * T_VAR_W
long variable long int volatile * T_VAR_L
float variable float volatile * T_VAR_F
double variable double volatile * T_VAR_ D
region flag int const * T_RFLAG
string char const * T_STR

PIPE, TRIGGER, and VECTOR types are defined when the file DTD.H is included.
These are handle types, not directly meaningful to the command code, but system
functions can use them to locate and access the desired information.

A region flag is a special enumeration that can take one of two values, R_INSIDE or
R_OUTSIDE. These constants are defined when the file DTD.H is included. A region
flag is always followed by two scalar values, either variables or constants, which
define the lower and upper limits of an interval.

Using Developer’s Toolkit Functions 31

A DAPL dtring is a pointer to a character array. The character array has the same
organization as C strings, terminating with a NUL character. DAPL strings are defined
using the DAPL system STRING command. The contents of DAPL strings must not be
modified by custom commands.

Assuming that the argv variable has been assigned a value by the param_process
function as previously described, code sequences such as the following can be used to
obtain access to the parameter data.

// Pipe data types
PIPE * pPipe = (PIPE *) argv[1l];

// Constant data types.
short int const iConst = *(short int const *) argv[2];
double const dDouble = *(double const *) argv[3];

// Variable data types
long int volatile *plvar = (long int volatile *) argv[4];
float volatile *pfvar = (float volatile *) argv[5];

// Triggers
TRIGGER *pTrig = (TRIGGER *) argv[6];

// Vectors
VECTOR *pVect = (VECTOR *) argv[7];

// Region
short int const eRegion = *(short int const *) argv[8];

// String
char const * pText = (char const *) argv[9];

It is important always to use the const or volatile quadifiers shown in the
preceding table and examples, otherwise compiler code optimizers may make invalid
assumptions that result in improper behaviors. For example, suppose that a variable is
accessed by means of a pointer. If the volatile keyword is omitted, the compiler
might observe that the value of the variable is read multiple times but never written;
consequently, it might fetch the value of the variable one time, put that value in a
register, and then never go back to the variable again. The value of the variable could
be changed by another task, but that change would never be observed.

Sometimes a DAPL variable is used to establish initial values when a task starts. In
this casg, it is convenient to fetch the value of the DAPL variable once, assigning it to
a local work variable. In other cases, when it is important to detect changes in the

32 Using Developer’s Toolkit Functions

variable value, it is essential to retain the pointer value and access the shared value
through the pointer at each access. For example, suppose that vl imit isapointer to a
DAPL variable, and limit isalocal integer variable:

limit = *vlimit;
while (1) {

if (1imit>10) {

... /* value of limit never changes */
by
if (vlimit>10) {

... /* value of *vlimit may change */
s
} /7* end while */

Integer data types are used so often that they have special typedef declarations that
combine the data types with the const or volatile quadlifiers.

typedef const short int CONSTANT;
typedef const long int LCONSTANT;
typedef volatile short int VAR;
typedef volatile long int LVAR;

Auxiliary Functions

An unusual but sometimes useful technique for structuring a custom command and
organizing parameters is calling an auxiliary function. The types of parameters are
defined in the auxiliary function prototype. The argument list for calling the auxiliary
function is used to assign a type to each of the extracted task parameters, rather than
storing the parameters in declared auto variables. The effect is roughly the same. This
technique is particularly useful for simpler custom commands having a minimum of
parameter checking requirements.

The example command function below calls the auxiliary function pval after
checking parameters.

Using Developer’s Toolkit Functions 33

void pval (PIPE *p, VAR *Vv);

void main (PIB **plib)
{
void **argv;
int argc;
argv = param_process (plib, &argc, 2, 2,
T _PIPE_W, T_VAR_W);
pval ((PIPE *) argv[1], (VAR *) argv[2]):

}

void pval (PIPE *p, VAR *v)

{

/* perform processing here ... */
}

Advanced Parameter Checking

Some commands permit optional parameters or several different combinations of
parameter types. An example of this is the COPY command provided by the DAPL
system. The COPY command will take data from a pipe and copy that datainto alist of
pipes. Up to thirty two pipes can receive the copies, hence the parameter list can range
from two to thirty-three total parameters. The function param_process alows the
specification of a minimum and a maximum number of allowed parameters.

The param_process function can alow more than one parameter type to appear in
any given position. The data type codes for all data types that could possibly be valid
are combined using the C bitwise “or” operation. The COPY can accept any type of
data from its input pipe, so the combined code for its input source pipeis:

T PIPEW | T PIPE_L | T_PIPE_F | T_PIPE_D

As a more interesting example, consider the parameter list for atask called XCOM that
has both a variable number of parameters and a mix of data types, subject to the
following requirements.

* accept from two to four parameters

* the first parameter must be a vector

* the next parameter can be aword or long integer variable

* the next parameter can be atrigger or aword constant

* the last parameter in the list must always be a float pipe

34 Using Developer’s Toolkit Functions

Consequently, the floating point pipe can appear in the second position, or the third,
or the fourth, depending on the length of the task’s parameter list. The task parameters
can be checked as follows:

argv = param_process (plib, &argc, 2, 4,
T_VECTOR,
T VAR_W | T_VAR_L | T_PIPE_F,
T_TRIGGER | T_CONST_W | T_PIPE_F,
T_PIPE_F);

After parameter processing, a command can perform additional checks. In the above
example, suppose that the actual parameter list has three parameters. In this case, the
second parameter must be a variable and the third parameter (the last) must be a float
pipe. However, param_process would not detect the problem if it found a word
constant in the third position.

The param_type function is useful for analyzing these situations, and the function
param_error_msg is useful for diagnosing them.

The param_type function needs to access the DAPL system’'s parameter type
information, so it uses the plib parameter, similar in this respect to the
param_process function. It reports the specific type code for the task parameter as a
return value. For the example above, the problem is to determine whether the last
parameter is afloating point pipe.

it (param_type(plib,argc)!= T_PIPE_F)
param_error_msg(pe_Typelnconsistent,argc);

The param_error_msg function generates a message in the following form, and then
terminates the task.

*** ERROR 1236: XCOM - parameter 3 - type inconsistent

There are several error message codes available, and these will cover amost al
situations. (If they do not, use other message-formatting functions to build your own
error message texts.) The error codes are listed in the DTDCNSTS.H file and are
included automatically by the DTD.H file.

enum ParamErrors {
pe_GeneralError,pe_Lengthlnconsistent,pe_Sizelnconsistent,
pe_Typelnconsistent,pe_Valuelnconsistent,pe_ValueOutOfRange,
pe_ValueNotAl lowed, pe_OptionNotAllowed,pe_ParamMissing,
pe_ExtraParam, pe_ParamType };

Using Developer’s Toolkit Functions 35

Functions param_process, param_error, and param_error_msg are sensitive to
the setting of the ERRORQ option in DAPL. If ERRORQ is on and an error is detected,
both functions suppress error message printing and set the value of ERRORQ to a
nonzero error code.

Tasks often use constant integer parameter values in their parameter lists. There is a
hazard to avoid if the values are large. The DAPL system doesn’t know what data type
were intended when it sees a numeric constant value. It is clear enough that the data
type should be along value if the value is too large to represent as a 16-bit word, but
what data type should it assume if the value can be represented as a 16-bit word? The
DAPL system chooses to call it a WORD type. Consequently, an explicit numeric
parameter value could be a word constant or a long constant, depending on its value.
The following code uses the function param_type to determine how to fetch the
value, and then assigns the value to along integer variable val.

if (param_type(plib,i) == T_CONST_W)
val = *(short int *) argv[i];
else
val = *(long int *) argv[i];

Vectors

Vectors defined by the DAPL command VECTOR can contain data of type short
int, long int, float, or double. A vector defined by DAPL is structured
data, and the DAPL system provides special means for determining the properties of
the data and accessing the data array.

A task parameter for a vector structure has type VECTOR. A vector parameter is
generic in the same manner that a parameter for a PIPE structure is generic. The
properties of the VECTOR structure can be tested during parameter processing by the
param_process function to verify that the correct data type is present, using type
codes T_VECTOR_W, T_VECTOR_L, T_VECTOR_F or T_VECTOR D. Parameter
information can be extracted from a task parameter list and assigned to a VECTOR
variable.

The following code checks a task parameter list for a vector containing double
precision values, and extracts the vector parameter to alocal variable:

VECTOR * vect;
argv = param_process(plib, &argc, 1, 1, T_VECTOR_D);
vect (VECTOR *) argv[1];

36 Using Developer’s Toolkit Functions

Once the parameter has been extracted from the parameter list, special functions can
be used to determine properties of the vector data. The functions for evaluating vector
properties are:

vector_length determine the number of itemsin the vector
vector_width determine the storage size for each vector item
vector_type determine the data type code for the stored items
vector_start obtain a pointer to the first item

Length and storage location information are available only using these specia
functions. The data width (sizeof one element) and vector type can be derived from
task parameter information, but sometimes the special functions are more convenient.

For example, suppose that a custom command can accept a vector with either short
or long int data. The following code example defers the test of vector type to a
later part of the program:

VECTOR * vect;

int vect_len;

argv = param_process(plib, &argc, 1, 1, T_VECTOR_W |
T_VECTOR_L);

vect = (VECTOR *) argv[1];

vect_len = vector_length(vect);
if (vector_type(vect) == T_VECTOR_W)
process vect_len items as short int ;
else
process vect_len items as long int ;

Continuing this same example, the amount of storage required to contain the vector
data can be computed as follows:

int vect_size;
vect_size = vector_length(vect) * vector_width(vect) ;

Contents of a VECTOR as defined in the DAPL configuration are available to multiple
tasks, and should not be altered. One way to protect against accidentally changing
vector data is to qualify the contents as const so that the compiler will complain if
there is any inadvertent attempt to alter the values. Continuing the example, a pointer
tothe array of long int datavalues might be constructed using the following code:

LCONSTANT * vect_data;
vect_data = (LCONSTANT *) vector_start(vect);

Using Developer’s Toolkit Functions 37

Initializations and Allocations

Initializations must be performed after a custom command has extracted and checked
its parameters. Most of these initializations are straightforward. All of them are
important.

The most important initializations are for PIPE, TRIGGER and PBUF structures. More
information will be provided about these structures later. For now, the essential point
is making sure that every data structure is initialized before performing the rea time
processing.

Each initialization function returns a value. Typically, this is a pointer or a handle.
The handle or pointer must be stored so that it can be used during later operations.

Each pipe must be opened before performing pipe I/O. The function pipe_open
opens a pipe. This function accepts a pipe pointer and a flag indicating whether the
pipe will be read or written. The flag P_READ specifies input, and the flag P_WRITE
specifies output. Almost all custom commands use the pipe_open function.

The following example shows an initialization of a pipe for reading items individually:
PIPE *p;
pl ;-)e_open (p, P_READ);

A custom command that operates on blocks of data rather than individual values needs
an additiona data management structure for each pipe. First, the pipe_open
operation described above must be performed. Then, a structure called a pipe buffer
control block or PBUF must be allocated and initialized. This second step is performed
using the function pbuf_open, which returns a handle for a PBUF structure. Each
PBUF structure is uniquely associated with the one task that alocates it. The PBUF
structure contains information about the number of data values currently available, the
location of the storage buffer for these data, the minimum number of values to be
placed into the buffer, and the maximum number of values to be placed into the
buffer. pbuf_open supplies some default values, which will be satisfactory in most
Cases.

38 Using Developer’s Toolkit Functions

The following shows a typical initialization for reading blocks of up to 200 items.
First, the pipe is opened for reading data, and then the PBUF is set up for reading the
datain blocks.

#define BUF_SIZE 200
PIPE *p1l;
PBUF *inbuf;

pipe_open (pl, P_READ);
inbuf = pbuf_open (pl, BUF_SIZE);

Tasks that issue or receive software trigger assertions must initialize TRIGGER
structures using the specia function trigger_open. This function is the same as
pipe_open, except that it requires a trigger parameter rather than a pipe parameter.
See Chapter 7 for more information about software trigger initialization.

Sometimes a task requires relatively large blocks of data storage. Such atask can use
the function ralloc to allocate a working memory area from the Data Acquisition
Processor bulk memory. The function ral loc accepts the number of bytes of memory
to alocate, and returns a pointer to the allocated memory. If insufficient memory is
available, an error message is printed and the task halts. (This rarely occurs in
practice, because there usually is not any data stored in the Data Acquisition Processor
before tasks are started.)

Specialized initializations are required for some specialized processing, such as PID
control or DSP computations. These are discussed in detail in the chapters covering
these specialty areas.

Pipe Read and Write Routines

Once atask beginsits real time processing loop, it typically receives data from pipes,
and places its results into pipes, repeating this cycle.

Some custom commands operate on small amounts of data. They get the data, perform
their operations quickly, then quietly wait for the next data to arrive. Other data
acquisition tasks need to process large amounts of data efficiently. The pipe
operations described in this section apply primarily to the case of small data volumes.
However, the principles discussed in this section apply to both cases. Be sure to have
a good understanding of this section before covering the section on blocked pipe
operations later in this chapter.

Using Developer’s Toolkit Functions 39

The system functions for accessing pipes ae pipe_value_get and
pipe_value_put. The function pipe_value_get reads one data value from a
DAPL pipe. If this task has no remaining data to read when pipe_value_get is
called, the calling task goes to sleep until the pipe contains data. To place avalue into
a pipe, the pipe_value_put function is used. If the pipe is full and cannot accept
more data, the task goes to sleep until pipe capacity becomes available. Some control
over pipe behavior is possible using the DAPL system P1PE command when the pipe
is defined.

A simple copy operation can use a get and a put operation in sequence.

GENERIC_SCALAR value;
pipe_value_get(pipeil,&value);
pipe_value_put(pipei2,&value);

This example introduces a new data type called a GENERIC_SCALAR. To cope with
the variety of data types and sizes in the DAPL system, the pipe_value_put and
pipe_value_get functions use a GENERIC_SCALAR as an intermediate storage
element that can contain data of arbitrary type. To extract the data and interpret it as
the appropriate data type, qualify the generic scalar name:

value._word
value._long
value._116
value._132
value._float
value._double

In some ways the GENERIC_SCALAR is very convenient because it works regardl ess of
data type. In some waysit is dangerous, because if you fetch data of one type, but then
extract it from the GENERIC_SCALAR as data of another type, no logical type
conversions are performed. You must supply the cast. For example, if the command
copies data but converts the representation to float first,

GENERIC_SCALAR value;
pipe_value_get(pipei,&value);

value._ float = (float)(value._i16);
pipe_value_put(pipef,&value);

The functions pipe_value_put and pipe_value_get will alwayswork, but for the
special cases of fixed-point data, the older style pipe_get and pipe_put functions
can be substituted. These functions operate upon long integer types, but they are
aware of pipe data type and will automatically sign-extend short integer values as

40 Using Developer’s Toolkit Functions

necessary. The compiler might complain about “loss of precision” even though the
operation is actually safe.

awordval = pipe_get(awordpipe);
pipe_put(apipe,awordval);

We now have enough information to build a complete processing command. This
command PVAL monitors a data stream and makes sure that a shared variable v is
updated to the most current value. The module registration portion of the code is
omitted here, but you can see the complete source in PVALM.CPP. This code is
found in your DTD32\Examp I es folder.

// PVAL (p,Vv)
// - keeps variable "v" updated to the most recent
// value in pipe "p*

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;
PIPE * in_pipe;
VAR * shared;

// Storage for processing
GENERIC_SCALAR pipe_value;

// Access parameters
argv = param_process (plib, &argc, 2, 2,
T PIPE_W, T_VAR W);
in_pipe (PIPE *) argv[1];
shared (VAR *) argv[2];

// Perform initializations
pipe_open (in_pipe, P_READ);

// Begin continuous processing
while (1)
{
pipe_value_get(in_pipe,&pipe_value);
*shared = pipe_value._il6;
b

return O;

Using Developer’s Toolkit Functions 41

Many custom commands can be implemented using only the four system routines:
param_process, pipe_open, pipe_value_put and pipe_value_get. However,
more efficient processing is usually possible using the blocked pipe operations
described later in this chapter.

Application Examples Using Pipes

This section shows a few more examples of processing commands, along with some
additional tips and tricks.

The COPY2M module implements a simplified version of the COPY command
provided by the DAPL system. It reads integer data from an input pipe and puts copies
of the datainto two output pipes. It illustrates the “auxiliary function” style.

42 Using Developer’s Toolkit Functions

// COPY2 (pl, p2, p3)

// - places copies of data from pipe "pl” into
// pipes "p2" and "p3*
//

// Define an auxilliary function for task parameters
void copy2 (PIPE *pl, PIPE *p2, PIPE *p3);

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;

// Access parameters
argv = param_process (plib, &argc, 3, 3,
T_PIPE_W, T_PIPE_W, T_PIPE_W);
copy2 ((PIPE *) argv[1l], (PIPE *) argv[2],
(PIPE *) argv[3]):
return O;

}

// Auxilliary function never returns.

void copy2 (PIPE *pl, PIPE *p2, PIPE *p3)
{
// Storage for processing
long int d;

// Perform initializations
pipe_open (pl, P_READ);
pipe_open (p2, P_WRITE);
pipe_open (p3, P_WRITE);

// Begin continuous processing
while (1) {
d = pipe_get (pl);
pipe_put (p2, d);
pipe_put (p3, d);

Using Developer’s Toolkit Functions 43

After compiling and downloading the file as described in the Compiling and
Downloading chapter, the DAPL system DISPLAY command can be used to verify
that COPY2 command is available.

#display symbols
COPY2 type=command
COPY2M type=module

#
#display commands

COPY2 stacksize=4096
#

Note: A RESET command does not erase command modules. RESET can be used
between DAPL applications without requiring reloading of custom command
modules. The ERASE command can erase a module provided that none of the
commands that it defines are referenced in any existing processing configuration.
The DAP server application is preferred for unloading command modul es, otherwise
the changes resulting from ERASE can be reversed the next time the DAP is started.

A useful way of testing commands in custom modules is to define a processing
procedure that uses the command, then present the task with test data using the DAPL
system FILL command. To test COPY2 using Microstar Laboratories DAPview
program, enter the following DAPL commands in the interactive DAP window:

#pipes pl,p2,p3

#pdef a
>copy2 (pl,p2,p3)
>format (p2,p3)
>end

#start a

#Fill pl 456 7

The FILL command places data into pipe P1. If the custom command is working
correctly, the custom command places copies of the data into pipes P2 and P3, which
causes FORMAT to print:

~No o b
~N o o b

The next example computes a running average over a stream of data values. In
addition to the pipe initialization, input, and output functions, this command uses the
function ral loc to obtain a region of temporary storage for data that has been read.

44 Using Developer’s Toolkit Functions

The running average is defined as the sum of the last n data values divided by n. The
memory array is used as a circular buffer to store the last n data values.

Using Developer’s Toolkit Functions 45

46

// RAVE (pl, n, p2)

// - compute the running average of "n" points
// from pipe "pl-

// - put results into pipe "p2°

//

int _ _stdcall ENTRY (PIB **plib)

{

// Storage for parameters
void **argv;
int argc;
PIPE * in_pipe;
PIPE * out_pipe;
short int N;

// Storage for processing
int i;
short int *data, *start_data;
long int sum;

// Access parameters
argv = param_process (plib, &argc, 3, 3,
T_PIPE_W, T_CONST_W, T_PIPE_W);
in_pipe (PIPE *) (argv[1]);
N = *(short int const *)(argv[2]);
out_pipe= (PIPE *) (argv[3]):

// Perform initializations
pipe_open (in_pipe, P_READ);
pipe_open (out_pipe, P_WRITE);
data = start_data = (short int *)

ralloc(N * sizeof(short int));

// Special first pass: initialize sum, save data in buffer

sum = OL;
for (i=0; i<N; i++)
{

*data = (short int) pipe_get(in_pipe);
sum += *data;
data++;

}
pipe_put(out_pipe, sum/N);

// Begin continuous processing

Using Developer’s Toolkit Functions

while (1)

{
data = start_data;
for (i=N; i--; /*NIL*/)
{
sum -= *data;
*data = (short int) pipe_get(in_pipe);
sum += *data;
++data;
pipe_put(out_pipe, sum/N);
by
by
return O;

Text Transfer

Several system routines provide text string formatting functions. The function printf
formats and prints a series of characters and values. The output of printf is sent to
the output pipe $SYSOUT. The function fprintf provides the same formeatting
capabilities as printf except that the resulting string is sent to a specified byte output
pipe. The function sprintf performs similar formatting, storing the result in a string
rather than writing to a pipe. The format conversions are compatible with the Standard
C Library. For more information about format conversions, see the descriptions of
function printf in the compiler runtime library manual and Chapter 12 in this
manual.

The PRT command reads data from aword pipe and prints the data val ues with text:

Using Developer’s Toolkit Functions a7

// PRT (pl)

// - reads data from pipe "pl*

// - formats data into a string, adding text
// - sends the string to the PC

// - output data to pipe "p2~

int _ _stdcall ENTRY (PIB **plib)

{

// Storage for parameters
void **argv;
int argc;
PIPE * in_pipe;

// Access parameters
argv = param_process (plib, &argc, 1, 1, T_PIPE_W);
in_pipe = (PIPE *)(argv[1D);

// Perform initializations
pipe_open(in_pipe, P_READ);

// Begin continuous processing
while (1)
{

}

return O;

printf ("'Data = %d \n", pipe_get(in_pipe));

}

Numbers can be extracted from a message text using the function sscanf. This
function can be dangerous, so verify that the conversion codes and the data pointersin
the parameter list match exactly.

Blocked Pipe Operations

Each pipe ‘get’ or ‘put’ operation cause some operating system overhead. This
overhead limits the maximum rate at which data values can be transferred into and out
of pipes. Blocked pipe operations increase the pipe input/output rate by operating on
blocks of data. The overhead is still there, but it is relatively small compared to the
processing required for an entire block.

A blocked get operation reads a number of data values from a pipe into a memory
array. A blocked put operation writes data from a memory array into a pipe. Blocked
operations using large blocks are typically ten to twenty times faster than non-blocked
operations. In most cases, the most efficient processing strategy is to fetch whatever

48 Using Developer’s Toolkit Functions

data are available, up to some maximum amount, process that block, and then repeat
for the next block of data. The tradeoff for this efficiency is delay. It takes some time
to collect the samples that make up the data block, so the latency increases roughly in
proportion to the block length.

As discussed in the section on command initialization, the pipe to be accessed using a
blocked operation must use the function pipe_open to initialize the pipe, and then
function pbuf_open to alocate and initialize a PBUF structure for the opened pipe.
The function pbuf_open can also alocate a storage array of the desired size,
automatically, and install it in the PBUF structure.

When real-time processing begins, the function pbuf_get reads data from the
associated pipe into the storage array of the task’s pipe buffer, as in the following
example:

PIPE *p1l;
PBUF *inbuf;

pipe_open (pl, P_READ);
inbuf = pbuf_open (pl, BUF_SIZE);

pbuf_get (inbuf);
/* process data array values here... */

In the default configuration, the function pbuf_get reads as much data asit can, up
to the maximum capacity of the PBUF memory. To determine how many samples were
obtained, use the function pbuf_get_cnt.

The function pbuf_put writes data from a task’s pipe buffer into the associated
output pipe. The command code must first place the data to be written into the storage
array, and call the function pbuf_set_cnt to specify how many items are present.
The following C code writes ablock of datato a pipe:

Using Developer’s Toolkit Functions 49

PIPE *p2;
PBUF *outbuf;
int item_count;

pipe_open (p2, P_WRITE);
outbuf = pbuf_open (p2, BUF_SIZE);

/* process data array values here ... */
pbuf_set_cnt(outbuf, item_count);
pbuf_put (outbuf);

The operations of getting data and then finding out how many, and setting the number
and then sending that many, typically occur in these combinations. These operations
can be combined for convenience and simplicity in the following manner.

/* process data array values here ... */
item_count = pbuf_get(inbuf);

pbuf_put_set_cnt(outbuf, item_count);

The inbuf and outbuf variables are handles that are used by only one task, so that
task is free to reconfigure it at any time. To do this, the Developer's Toolkit for DAPL
provides a set of access functions. We have already seen two of these operations.

* The function pbuf_get_cnt reports the number of data values present in the pipe
buffer storage array. This function is sometimes useful after data has been fetched
into the storage array by the function pbuf_get. It is usually more convenient to
use the count that function pbuf_get returns.

* Thefunction pbuf_set_cnt specifies the number of data values that have been
placed into the storage array. Thisis function is used before calling the function
pbuf_put. It is usually more convenient to use function pbuf_put_set_cnt.

The storage area used for the pipe operations can be switched.
 Thefunction pbuf_get_data_ptr returns a pointer to the data array assigned to
the PBUF structure.
» Thefunction pbuf_set_data_ptr assigns adata array to a PBUF structure.

Minimum and maximum numbers can be established. These values are most useful
when reguesting a number of samplesto be read from a pipe.
* Thefunction pbuf_get_max_cnt reports the maximum number of values that the
function pbuf_get is allowed to fetch from a pipe.

50 Using Developer’s Toolkit Functions

* Thefunction pbuf_set_max_cnt establishes the maximum number of values
that the function pbuf_get is allowed to fetch from a pipe. This function is used
mostly for initialization.

* The function pbuf_get_min_cnt reports the minimum number of values that
must be read into pipe buffer storage before the pbuf_get function returnsto the
caller.

* The function pbuf_set_min_cnt establishes the minimum number of values that
must be read into pipe buffer storage before the pbuf_get function returnsto the
caler. This function is used mostly for initialization.

The data minimum and maximum count bounds determine how many values should be
read into the data array when the function pbuf_get is called. If the input pipe
contains less than the minimum number of data values, the function pbuf_get
suspends the task and does not return until sufficient data values are available from the
input pipe. The function pbuf_get will not transfer more than the specified
maximum number of values from the input pipe to the PBUF data storage array. After
completing the transfer, the function pbuf_get records the current number of
samples stored in the storage array and also reports this number to the caller. To
request an exact number of samples, specify the same block size when calling
pbuf_set_max_cnt and pbuf_set_min_cnt. The specified number of samples
must not be negative and must not be greater than the size of the buffer storage area.

The pbuf_put operation takes from the PBUF structure data array the number of
values specified by the current data count, placing the values into the associated pipe.
The maximum and minimum sample counts are ignored. After copying the values
from the PBUF storage buffer into the pipe, the pbuf_put operation sets the PBUF
data count to zero. The pbuf_put_set_cnt function is the same, except that the
current data count is set first before performing the pbuf_put operation.

Both the minimum and the maximum data count fields are initialized by pbuf_open,
but may be reprogrammed after pbuf_open is called. The default values are a
minimum of 1 sample, and a maximum equal to the total storage length specified.

The following C code illustrates reading a block of data values using a pbuf_get
operation, and referencing individual data values in the PBUF storage area. A pointer
to this storage is obtained using the pbuf_get_data_ptr function:

Using Developer’s Toolkit Functions 51

int count;
short int *p;

count = pbuf_get (inbuf);

p = pbuf_get _data_ptr(inbuf);
for (i = 0; i < count; I++)
printfC'%d\n", p[i1);

A technique that is sometimes useful with blocked pipe input is a non-blocking fetch.
In this case, the term non-blocking means that the task execution is not suspended if
no data are available. This behavior is obtained by setting the pbuf_get_min_cnt
field to zero. If the pbuf_get function does not have any data available, it observes
that the number available — zero — satisfies the minimum count criterion. It returns
and reports a sample count of zero. Be sure to test for the case that the data count is
zero upon return! Attempting to process data that does not exist can cause all kinds of
unexpected and quite wrong behaviors. This technique should be used when a custom
command must coordinate among several internal processes, and cannot afford to
delay other parts of the processing while waiting for data to arrive.

The second technique is buffer storage sharing. Thisis done by allocating a PBUF with
zero size. This means that there is no storage array associated with this PBUF — at
least not at first. The initidization is completed later by using the function
pbuf_get_data_ptr to copy the storage pointer from another PBUF, and using the
function pbuf_set_data_ptr to assign that storage pointer to the PBUF that does
not have its own storage. The maximum and minimum data counts must then be
adjusted accordingly, using the pbuf_set_max_cnt and pbuf_set_min_cnt
functions to make the buffer size information in the PBUF consistent. This technique
allows data to be modified in place, using a single buffer, achieving very good
processor efficiency.

Blocked pipe input and output are illustrated by the BCOPY2 custom command. The
BCOPY2 command copies the contents of an input pipe into two output pipes. BCOPY2
is functionally equivalent to the unblocked COPY2 command, illustrated earlier in the
chapter, but it transfers data much faster. Thanks to the buffer-sharing technique, the
block input operation puts the data where it is needed for the block output operation,
and no processing is required!

52 Using Developer’s Toolkit Functions

// BCOPY2(pl, p2, p3)

// - places copies of data from pipe "pl-

// pipes "p2° and "p3*
#define BUF_SIZE 128
int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;

// Storage for parameters
PIPE *pl, *p2, *p3;

// Storage for processing
PBUF *inbuf, *outbufl, *outbuf?;
void *databuf;
int bufcount;

// Access parameters
argv = param_process (plib, &argc, 3,
T _PIPE_W, T_PIPE_W, T_PIPE_W);

pl = (PIPE *)(argv[1]):
p2 = (PIPE *)(argv[2]);
p3 = (PIPE *)(argv[3]):

// Perform initializations
pipe_open (pl, P_READ);
pipe_open (p2, P_WRITE);
pipe_open (p3, P_WRITE);

/* Allocate only one storage area */
inbuf = pbuf_open (pl, BUF_SIZE);
outbufl pbuf_open (p2, 0);

outbuf2 pbuf_open (p3, 0);

/* Share input and output storage */
databuf = pbuf_get data_ptr(inbuf);
pbuf_set_data_ptr(outbufl,databuf);
pbuf_set_data_ptr(outbuf2,databuf);
pbuf_set_max_cnt(outbufl,BUF_SIZE);
pbuf_set_max_cnt(outbuf2,BUF_SIZE);

Using Developer’s Toolkit Functions

into

53

// Begin continuous processing

while (1)

{
/* No data transfer necessary for output copies */
bufcount = pbuf_get(inbuf);
pbuf_put_set_cnt(outbufl,bufcount);
pbuf_put_set_cnt(outbuf2,bufcount);

}

return O;

}

Another example of blocked pipe operations is a more efficient version of the ZTRUNC
command that was introduced as the typical processing command in the Overview
chapter. This variation reads and processes data in blocks rather than one value at a
time, applying a fixed lower data bound of zero. Notice that the defaults, minimum
data count one and maximum data count BUF_SI1ZE, are used both for the input and
the output pipes.

54 Using Developer’s Toolkit Functions

// BZTRUNC (pl, p2)

//
//
//
//

- read data from pipe "pl*
- truncate any numbers below 0O
- output data to pipe "p2*

#define BUF_SIZE 128

int _ stdcall ENTRY (PIB **plib)

// Storage for parameters

void **argv;
int argc;
PIPE * in_pipe, * out_pipe;

// Storage for processing

PBUF * inbuf, * outbuf;

short int * datain, * dataout;
int datacount;

int i, tmp;

// Access parameters

argv = param_process (plib, &argc, 2, 2,
T_PIPE_W, T_PIPE_W);

in_pipe = (PIPE *) argv[1];

out_pipe= (PIPE *) argv[2];

// Perform initializations

pipe_open (in_pipe, P_READ);
pipe_open (out_pipe, P_WRITE);

inbuf = pbuf_open (in_pipe, BUF_SIZE);

outbuf = pbuf_open (out_pipe, BUF_SIZE);

datain = (short int *) pbuf_get _data_ptr(inbuf);
dataout = (short int *) pbuf _get _data_ ptr(outbuf);

// Begin continuous processing

while (1)

{
datacount = pbuf_get(inbuf);

for (i=0; i<datacount; i++)

{
tmp = datain[i];

Using Developer’s Toolkit Functions

55

if (tmp < 0) dataout[i]
else dataout[i]

tmp;
}

pbuf_set_cnt(outbuf,datacount);
pbuf_put(outbuf);

}

return O;

Other Pipe Functions

The function pipe_num_complete accepts a pipe pointer and returns the number of
data values currently stored in the pipe, up to a specified limit. The function
pipe_num is a useful alternative for determining whether some data are available,
when an accurate count is not required.

The function pipe_width accepts a pipe pointer and returns the size of one element
from the pipe, in bytes. A word pipe has a width of two bytes, a long pipe or a
float pipe has awidth of four bytes, and adouble pipe has awidth of 8 bytes.

The function pipe_rem efficiently removes data from a pipe. This is sometimes
useful when it is determined that the pipe contains data that do not require processing.
This function normally is not needed at the end of processing, since the DAPL STOP
command automatically empties all system pipes.

Task Control

When a task is executing, the task is competing for CPU time with al other active
tasks. When the function task_switch is called, the processor temporarily suspends
the current task. Other active tasks are given CPU time before the CPU returns to the
original task. If atask iswaiting for an event, the task_switch system call should be
used to release the CPU so that other tasks can be served.

Suppose, for example, one task sets the value of a global variable and another task
waits for the global variable to change to a nonzero value. (This technique can be used
to implement inter-task message passing via global variables.)

If the variable pointer is v, one version of the message receiving codeis:

while (1*v) /* do nothing */ ;

56 Using Developer’s Toolkit Functions

This code is inefficient. The task wastes CPU time waiting for the value of the
variable to change, but the variable value cannot change while this task is executing
the loop. A better solution is for the task to release the CPU to other tasks before
rechecking the value of the variable:

while (I *v)
task_switch(Q) ;

The signaling task usually performs a task_switch aso. After the signaling task
changes the value of the variable, a task switch forces the CPU to immediately give
the receiving task an opportunity to recognize the message.

Occasionally, execution of a custom task simply needs to be stopped. An inefficient
way of doing thiswould be:

while (1)

A better way is to call the function exit; the task then is terminated and will not be
scheduled to run again.

Direct Output Functions

A custom command can send a value to a DAC by calling the function dac_out. The
first parameter specifies the DAC number (0 or 1). The second parameter specifiesthe
data value to write to the DAC. The data value is interpreted as a 16-bit number. See
the chapter ‘Voltages and Integers' in the DAPL Manual for an explanation of the
relationship between 16-bit numbers and analog voltages.

If external analog output expansion hardware is connected to the Data Acquisition
Processor, DAC numbers greater than one may be specified in dac_out. DAC output
expansion is enabled using the DAPL OUTPORT command.

Note: The function dac_out provides a low-latency method of updating the
digital-to-analog converter in an asynchronous manner. The exact time at which this
occurs depends on the time that the task runs, which is subject to the timing
uncertainties of multitasking. For precise timing between DAC updates, it is
recommended that a custom command write DAC data to an output channel pipe.
An output procedure then can read the channel data and update the DAC at
precisely-timed intervals.

Digital output lines can be controlled using function digital_out. The first
parameter of digital_out specifies the port number of the on-board digital output

Using Developer’s Toolkit Functions 57

port. This number is zero. The second parameter specifies a 16-bit data value that is
written to the digital output port.

Two additional functions, digital_set_bit and digital_toggle_bit, alow
control of individual bits of the digital output port.

If external digital output expansion hardware is connected to the Data Acquisition
Processor, digital port numbers greater than zero and digital bit numbers greater than
sixteen may be specified by the digital output functions. Digital output expansion is
enabled using the DAPL OUTPORT command.

Note: The function digital_out provides a low-latency method of updating the
digital port lines in an asynchronous manner. The exact time at which this occurs
depends on the time that the task runs, which is subject to the timing uncertainties of
multitasking. For precise timing of digital output port updates, it is recommended
that a custom command write digital output data to an output channel pipe. An
output procedure then can read the channel data and update the digital output port
synchronously.

Real Time Clock

A custom command may need to determine the current time or may need to pause for
a specified period of time. The function sys_get_time returns the number of
milliseconds since the Data Acquisition Processor was powered on. The function
task_pause causes the current task to pause for a specified number of milliseconds.

The following custom command illustrates the use of task_pause to generate a one
Hertz sguare wave at the least significant bit of the digital output port..

58 Using Developer’s Toolkit Functions

/* SGEN

* - generates a square wave on the digital
* output port
*/

#include <cdapcc.h>
void gen_square (void);

void main (PIB **plib)

{
void **argv;
int argc;
argv = param_process (plib, &argc, 0, 0);
gen_square (;
}

void gen_square (void)

{
while (1)
{
digital_out (0, 0);
task_pause (500);
digital_out (0, 1);
task_pause (500);
3
3

The real-time clock has good long-term stability and accuracy, but the frequency and
jitter of a waveform generated in the manner of this example cannot be guaranteed.
Depending on the number and activity level of processing tasks, there could be a
variable-length delay between the time that the task_pause function completes its
timing cycle and the time that the processing task gets it next opportunity to run and
update the digital port.

Using Developer’s Toolkit Functions 59

7. Software Triggering Support

This chapter discusses special functions and useful programming techniques for
building custom commands for software triggering.

The Developer's Toolkit for DAPL provides a set of specia system routines which
give access to all software triggering features of the DAPL 2000 operating system.

Most applications can use the basic triggering commands built into the DAPL 2000
operating system, and do not need extended triggering capability. For example, a
simple threshold (LIMIT) might be adequate to determine whether something
significant is present in a data stream. Other systems might need to apply a more
complex analysis to identify important data. When the flexibility of a built-in DAPL
command is needed, but triggering capabilities of built-in commands are not
sufficient, custom triggering commands should be considered.

There is a design tradeoff between optimizing one application and building a
generally useful component. Individual applications can usualy apply ordinary
programming techniques in a custom command to avoid software triggering. This does
not necessarily make the programming task less complex. It achieves equivalent
results, gaining efficiency by giving up flexibility.

Triggering is somewhat complex, because it combines:
* analysis of a data stream to recognize special events
» communication of these events between tasks
* processing of a data stream in response to the special events

Software triggering is a powerful inter-task signaling and data selection capability.
Before developing custom commands that use software triggering, a review of the
software triggering material in the DAPL manua is strongly recommended.
Familiarity with LIMIT and WAIT commands and other triggering commands is also
helpful.

Establishing the Connection

A typical trigger configuration consists of one task that asserts a trigger and one or
more tasks that wait for trigger assertions. These are called the signaling task and the
receiving tasks, respectively. Sometimes “asserting a trigger” is described as “writing
a trigger,” because information about an event is written into a trigger structure.

Software Triggering Support 61

Similarly, “waiting for assertions’ is sometimes called “reading a trigger” because
information about an event is extracted from the trigger structure.

Each task that uses a software trigger is associated directly or indirectly with a data
stream. A signaling task reads and analyzes data from its data stream, and writes
trigger assertion information into the trigger. A task responding to the trigger assertion
reads that triggering information, and uses the information to extract the desired
samples from its associated data stream.

A trigger control structure resides in the operating system area, and contains a pipe
and a status field. The pipe is used to queue assertion information. The status field is
used to communicate operating status among trigger readers and writers.

A custom command task first uses the trigger_open function to establish a
connection with a trigger, in much the same manner that a pipe_open command is
used to access a data pipe. When either a trigger receiving or trigger signaling task
calls the trigger_open function, it receives a handle to a system trigger control
structure. This TRIGGER structure is defined by a DAPL TRIGGER command. Though
not directly accessible, the returned handle has the form of a TRIGGER pointer. The
following shows the code to initialize two TRIGGER handles, one for writing and one
for reading:

TRIGGER *Twrite, *Tread;

trigger_open(Twrite,P_WRITE);

trigger_open(Tread,P_READ);
Using the Trigger Functions

A trigger’s pipe shares many properties with ordinary data pipes, hence, there are
many similarities between trigger and pipe operations. Assertions placed into the
trigger’s pipe have the form of a 32-bit unsigned number. Continuing the previous
example, the following operations can be used to extract trigger assertion information
from one trigger and copy it into the other:

unsigned long assertion;
/* DANGER! */
assertion = trigger_get(Tread);

trigger_put(Twrite,assertion);

Unfortunately, thisis not al of the story. The above code has subtle dangers. While it
moves assertion information from one trigger to another successfully, it does not keep

62 Software Triggering Support

the trigger status fields current. This can cause some serious complications.
Fortunately, there are easy solutions.

The trigger’'s status field announces to the DAPL system the sample number of the
most recently processed sample in the associated data stream. Updating the status
indicates that the task has completed all processing associated with the corresponding
sample. Because each sample can be processed only once, the status field is strictly
increasing. Samples are numbered starting with sample 0. This numbering does not
have a direct relationship to the sampling clock, and software triggering can operate
without any active input sampling procedures.

It isessential for both trigger reading and writing tasks to keep the status field current.
Writing an assertion to a trigger automatically updates the status to match the asserted
sample number. For a signaling task with no new assertion, or in all cases for a
receiving task, one of the following two methods can be used to update the trigger
status:

unsigned long new_status, iIncrement;

/* Method 1 -- Compute a new status number explicitly */
new_status = trigger_get_status(Tread) + increment;
trigger_set_status(Tread,new_status);

/* Method 2 -- Increment the old status number */
trigger_updt_status(Tread, increment);

The example above shows code for a receiving task, but the code is similar for a
signaling task when no events are asserted.

If a sample corresponding to a trigger event is detected, a trigger signaling task has
two ways that it can signal the event:

unsigned long new_event, increment;

/* Method 1 -- Assert at an explicit sample number */
new_event = trigger_get _status(Twrite) + increment;
trigger_put(Twrite,new_event);

/* Method 2 -- Increment the old status and assert*/
trigger_updt_put(Twrite, increment);

Note that the process of fetching the old trigger writer status, updating it, and asserting
the new value is so common that these operations are combined in the function
trigger_updt_put.

Software Triggering Support 63

It should be apparent now why using the trigger_get function alone can be
dangerous. If a trigger reader task tries to get an assertion from its trigger structure,
but no assertion is present, the trigger reader task must wait. While the task is waiting,
it does not update its status, and a backlog can occur in the trigger reader’ s associated
data pipe. The data backlog can lead to inefficiencies or to a memory overflow
condition.

A solution to this problem is to use the specia trigger_wait function, which keeps
the trigger reader’s status current and discards unneeded data as it waits for an
assertion to arrive. When trigger_wait returns, the next sample in the associated
data pipe is the first sample corresponding to the asserted event. The following is a
recommended way to detect a trigger assertion without causing a data backlog:

/* RECOMMENDED! */
unsigned long assertion;
PIPE * data_pipe;

assertion = trigger_wait(Tread,data_pipe,0,1);

There are some situations, however, when a custom command will not want to wait for
an assertion to arrive. For these situations, the trigger_get_immediate functionis
an alternative to the trigger_wait function. Function trigger_get_immediate
returns immediately with a value which is either the first available assertion or the
most current status. To determine which value is received, an extra variable is passed
to the trigger_get_immediate function:

int assert_flag;

assertion = trigger_get_immediate(Tread,&assert_flag);
if (assert_flag)

{ /* process the assertion */ }
else

{ /* update status and do other processing */ }

To summarize, the responsibilities of a signaling task which processes data
individually are:
* Cdll the function trigger_open to initialize the trigger.
 Read a data value from the associated data pipe. Check for triggering conditions.
» Assert each trigger event, placing the corresponding sample number into the
trigger.
* Increment the trigger status by one for each sample scanned from the associated
data pipe without an assertion. The trigger_updt_status function is useful for
this.

64 Software Triggering Support

The above process can be described dightly differently for the case where data values
are scanned in blocks:
» Call the function trigger_open to initialize the trigger.
* Read blocks of data from the associated data pipe. For each block, scan through
the data samples testing for triggering conditions.
* Assert each trigger event to place the corresponding sample number into the
trigger.
* Update the trigger status by the number of samples remaining after the last trigger
event is asserted, or by the block sizeif there are no assertions.

The responsibilities of areceiving task are:

» Cdl trigger_open toinitialize the trigger.

* To obtain the next assertion without waiting, call trigger_get_immediate to
receive either an assertion or a status count. Use or discard data from the
associated data pipe explicitly. Update the trigger status for each item used or
discarded.

 To wait for the next assertion, call trigger_wait. When it returns, take data
values from the input pipe, and update the trigger status for each value taken.

Though dangerous, the trigger_get function is sometimes useful. It can be called
safely if the trigger_num function is called first to verify that a trigger assertion is
available. If an assertion is present in the trigger, trigger_get reads that assertion
value, and does not block task execution.

Special Trigger Modes

Some triggering commands might require a trigger with a special operating mode, or
that has a HOLDOFF or other important operating property. The
trigger_get_opmode and the trigger_get_property functions can be used to
verify that the trigger was correctly defined. See the DAPL manual for information
about trigger properties and operating modes.

Triggering Command Examples

This section provides a number of programming examples, showing typical trigger
signaling and receiving tasks.

The following example command, LIMIT2, is a simplified form of the LIMIT
command in the DAPL operating system. LIMIT2 isasignaling task.

Software Triggering Support 65

66

// LIMIT2 (pl, region, tl)
// - asserts trigger "tl" when data from pipe
// "pl® satisfies the "region” condition

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;
PIPE * in_pipe;
short int rflag;
short int low;
short int high;
TRIGGER * t;

// Storage for processing
GENERIC_SCALAR d;

// Access parameters
argv = param_process (plib, &argc, 5, 5,
T _PIPE_W, T_RFLAG, T_CONST_W, T_CONST_W,
T_TRIGGER);
in_pipe = (PIPE *) argv[1l];

rflag = *(const short int *) argv[2];
low = *(const short int *) argv[3];
high = *(const short int *) argv[4];
t = (TRIGGER *) argv[5]:

// Perform initializations
pipe_open (in_pipe, P_READ);
trigger_open (t, P_WRITE);

// Begin continuous processing
while (1)
{
pipe_value_get (in_pipe,&d);
if (rflag == R_INSIDE)
{ /* INSIDE region */
if ((d._i16 >= low) && (d._il6 <= high))
trigger_updt_put(t,1);
else
trigger_updt_status(t,1);

else

Software Triggering Support

{ /* OUTSIDE region */
if ((d-_i1l6 < low) || (d-_il1l6 > high))
trigger_updt_put(t,1l);
else
trigger_updt_status(t,1);
}
}

return O;

}

The preceding trigger example can be modified easily to create custom commands that
detect different trigger conditions. It is necessary only to change the ‘i f statements
that determine whether trigger_updt_put or trigger_updt_status is caled.
Notice how every sample is accounted for. Either an assertion is posted, or the trigger
isinformed that no assertion occurs.

The next example, the WAIT2 command, is a simplified version of the WAIT command
which is part of the DAPL operating system. WAIT2 isatrigger receiving command.

Software Triggering Support 67

68

// WAIT2 (pl, t1, nl, n2, p2)

// - FETCH n1+n2 values from pipe pl

// when a trigger assertion arrives in trigger tl
// - nl data values preceed the trigger event

// - n2 data values are at or subsequent to the event
// - place selected data into pipe p2

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;

PIPE

* in_pipe;

TRIGGER * t;
short int pretrigger;
short int posttrigger;

PIPE

* out_pipe;

// Storage for processing
GENERIC_SCALAR pipe_value;

int

// Access parameters

argv = param_process (plib, &argc, 5, 5,
T_PIPE_W, T_TRIGGER, T_CONST_W,
T_CONST_W, T_PIPE_W);

in_pipe = (PIPE *) argv[1l];

t = (TRIGGER *) argv[2]:

pretrigger = *(short int const *) argv[3]:

posttrigger= *(short int const *) argv[4],

out_pipe= (PIPE *) argv[5];

// Perform initializations
pipe_open (in_pipe, P_READ);
pipe_open (out_pipe, P_WRITE);
trigger_open (t,P_READ);

// Begin continuous processing
while (1)
{
trigger_wait(t, in_pipe, pretrigger, 1);
for (i=0; i < (pretrigger+posttrigger); i++)
{

Software Triggering Support

pipe_value_get (in_pipe,&pipe_value);
pipe_value_put (out_pipe,&pipe_value);

}

trigger_updt_status (t,(pretrigger+posttrigger));
}
return O;

Software Triggering Support

69

The following example is a combination of the DAPL system’s TSTAMP and FORMAT
commands. TSTAMP2 waits for trigger assertions and prints the sample count of each
assertion. This command is unusual because it is not directly associated with a data
stream. Thismeansiit is safe to use the otherwise dangerous trigger_get function to
suspend task execution until an assertion appears.

// TSTAMP2M (t)
// - fetches trigger assertions from trigger t
// - prints these as integer "timestamp® values

int __stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;
TRIGGER * trig;

// Storage for processing
unsigned long int assertion;

// Access parameters
argv = param_process (plib, &argc, 1, 1, T_TRIGGER);
trig (TRIGGER *) argv[1];

// Perform initializations
trigger_open(trig,P_READ);

// Begin continuous processing
while (1)
{
assertion = trigger_get(trig);
trigger_set_status(trig,assertion);
printf (“Assertion at timestamp=%ld \n",assertion);

}

The last custom command example is a “watchdog time-out”. In this application, an
event should occur at least once every N samples. If N samples pass without a trigger
assertion appearing, there is a fault condition, which is to be indicated by signaling
another trigger. Action is critical when a sample does not arrive, hence examining
trigger status isimportant to this application.

70 Software Triggering Support

// WATCHDOG (tin, N, tout)

// - examines the status of trigger tin

// - does nothing if at least one assertion occurs
// every N samples

// - otherwise, signals failure in trigger tout
// and terminates

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;
TRIGGER *tin;
TRIGGER *tout;

// Storage for processing
unsigned long int baseline, status;
unsigned long int N;
int flag;

// Access parameters
argv = param_process (plib, &argc, 3, 3,
T_TRIGGER, T_CONST_W, T_TRIGGER);

tin = (TRIGGER *) argv[1];
N = *(int *) argv[2];
tout = (TRIGGER *) argv[3];

// Perform initializations
trigger_open (tin,P_READ);
trigger_open (tout,P_WRITE);
baseline = OxFFFFFFFF;

// Begin continuous processing
while (1)

{

/* Watch status until an event is asserted */
status = trigger_get_immediate(tin,&flag);
if ((status-baseline)>N)

{
/* Timeout. Raise alarm, hang task here */
trigger_put(tout,status);
while (1) task_switch();

}

trigger_set_status(tin,status);

Software Triggering Support

71

72

trigger_set_status(tout,status);

if (flag)
baseline = status;
else
task_switch(Q);
by
return O;

Software Triggering Support

8. Floating Point Support

This chapter describes the Developer's Toolkit for DAPL support for floating point
computing.

Most custom commands do not need floating point. The data obtained from the analog
section analog-to-digital convertersis naturally represented by fixed-point values with
16-hit precision. Also, most of the processing capabilities built into the DAPL
operating system are designed for direct operations on the 16-bit data. However, there
are some situations in which widely-used numerical techniques are easier to represent
in a floating point notation, and the extra overhead of floating point computation is a
secondary consideration.

Floating point float and double data types, constants, casts, functions, and
conversions are fully supported. The 80-bit 1ong float type can be used, but is not
supported by Developer's Toolkit for DAPL math library functions. The DAPL system
provides access to shared constants, shared variables, and data pipes of float and
double type.

Floating point computation is supported in one of two ways, depending on the
hardware capabilities of the Data Acquisition Processor on which the custom
command runs. Some of Data Acquisition Processor products feature processors with
an on-chip floating point unit (FPU). When a hardware FPU is available, the FPU
executes all floating point operations. When a hardware FPU is not available, floating
point emulation software steps in, taking control temporarily and performing the
floating point operations using software services. The primary difference is a dramatic
difference in speed. If speed is not an issue, the floating point emulation may be
completely satisfactory.

Floating point support is completely automatic. There are no separate floating point
and non-floating point command libraries. There is nothing to configure.

Floating Point Library Functions

The floating point library functions provided with the supported compilers will not
work in the Data Acquisition Processor environment. These libraries use incompatible
calling conventions and incompatible exception handlers.

The Developer's Toolkit for DAPL replaces the compiler's standard floating point
library functions with equivalent functions. These functions, in addition to working

Floating Point Support 73

well in the DAPL environment, are smaller, faster, and make better use of a hardware
FPU when available.

Ordinarily, it is necessary to include the C Standard Library header MATH.H when
using mathematical functionsin C or C++ programs. Thisis not necessary inthe DTD
environment. The math functions are defined automatically when the DTD.H file is
included by each source code module.

All of the Standard C math functions are supported. In addition, non-standard
hyperbolic functions are available.

cosh sinh tanh
acosh asinh atanh

Floating point features are accessible at the assembly language level if necessary for
specialized applications. Coding may be done by inline assembly or using
independently-compiled source code module. See the appropriate assembly language
programming manual for details of the FPU instruction set for your particular
processor family.

Pipes, constants and variables are available for float and double data types. These
all work much the same. The only difference in the DTD support is that the pipe_get
and pipe_put functions cannot be used with floating point data types. The new
pipe_value_get and pipe_value_put functions must be used when accessing
single values. The PBUF and buffered pipe operations work the same way for all data

types.

Some commands in the DAPL system do not yet recognize float and double data
types. If processing is not available on the Data Acquisition Processor, it is always
possible to transfer the floating point data to the PC using aCOPY or MERGE command.
The difference is that the COPY command only works efficiently on one datatype at a
time, while MERGE is less efficient but can handle a mix of data types.

PIPE FL1 FLOAT, FL2 FLOAT
PDEF A

COPY(FL1,$BINOUT) ; Sends FL1 to the PC
MERGE($BININ,FL2) ; Receives FL2 from PC

END

74 Floating Point Support

When using the function param_process to check 32-bit float data parameter
types, use the T_PIPE_F, T_VAR_F or T_CONST_F type codes. To check 64-bit
double datatypes, usethe T_PIPE_D, T_VAR_D or T_CONST_D type codes.

Formatting floating point numbers into ASCII strings is supported by the printf,
fprintf, and sprintf functions. These functions have the same form as their
Standard C Library counterparts, except that the output stream is a text pipe rather
than a FILE. The standard output goes to the DAPL system’s $SysOut text pipe and
from there to the PC. The fprintf function writes to a specified text pipe rather than
to the default stream.

The format conversions for the FP library are mostly compatible with Standard C.
However, there are some differences for safety. For example, if you attempt to display
anumber such as 10%? using the % formatting option in Standard C, expect to seea 1
character followed by three hundred more digits — if you are lucky and don’t get a
protection fault first. Instead, the DAPL system limits field sizes, and items too large
to display in the available field will display as a row of asterisks, in the manner of
FORTRAN or BASIC.

The DAPL operating system will maintain floating point processor state information
and work areas. There is no need to worry about saving and restoring the FPU state
when more than one custom command uses the FPU, but there is some additional
overhead. To keep this overhead to a minimum, it is best to use floating point
processing in aminimal number of processing tasks.

Floating Point Example
The following custom command illustrates the use of floating point to compute a

complex algebraic function of two fixed-point pipes, writing the result to a float
output pipe:

Floating Point Support 75

76

// FLOAT (pl, p2, fp3)

//
//
//

#d

efine

- reads data from pipes "pl® and "p2*
- computes a scientific function in fl
- sends the results to pipe "fp3*

SCALE_FACTOR 3.0518e-5

int _ _stdcall ENTRY (PIB **plib)

// St
voi
int

// St
PIP
flo
GEN

// Ac
arg

pl
p2
p3

// Pe
pip
pip
pip

// Be
whi

{

orage for parameters
d **argv;
argc;

orage for processing

E *pl, *p2, *fp3;

at x1, x2;

ERIC_SCALAR pipe_value;

cess parameters

v = param_process (plib, &argc, 3, 3,
T _PIPE_W, T_PIPE_W, T_PIPE_F);
= (PIPE *) argv[1];

(PIPE *) argv[2];

= (PIPE *) argv[3];

rform initializations
e_open (pl,P_READ);
e_open (p2,P_READ);
e_open (fp3,P_WRITE);

gin continuous processing

le (1)

/* read integer input values and scal
pipe_value_get(pl,é&pipe_value);

oating point

e */

x1 = (float)(pipe_value._i16 * SCALE_FACTOR);

pipe_value_get(p2,&pipe_value);

x2 = (float)(pipe_value._i16 * SCALE_FACTOR);

/* compute a function of the two input values */

pipe_value._float = (float) (exp(3.0
((1.224e-2 * x2 + 7.5) * x2));

/* send the floating point result */

* x1) /

Floating Point Support

pipe_value_put(fp3,&pipe_value);
}

return O;

}

In this example, the fixed point input values, ranging from -32768 to +32767, are
scaled to fractions between -1 and 1. Then the computations are performed. The final
result is written to afloating point pipe.

Floating Point Error Handling

The Developer's Toolkit for DAPL supports the errno feature in the manner defined
in the Standard C library file ERRNO.H. Unfortunately, implementations provided by
the supported compilers are incompatible with the DAPL environment. Do not include
the file ERRNO . H in your source code modules. The DTD . H file includes these features
automatically. You can see the implementation in the MATH32.H file. There is no
penalty in codes size or efficiency if you do not usethe errno feature.

Note: Floating point features of the DAPL system are undergoing rapid change. The
C standards leave the use or non-use of the errno feature unspecified, at the
discretion of the function libraries. The library functions might not fully utilize the
errno feature. If this is important to you, contact Microstar Laboratories for the
latest information.

The idea of the errno feature is very straightforward. A storage location known both
to the software module and to the math function library is reserved. The software
clears this location and then calls various math library functions. Upon return from the
library functions, the software checks whether the stored value remains zero. If so, the
library functions have flagged no error conditions.

The following error codes are used:

DOMAIN 33 Invalid input arguments
RANGE 34 Output overflow or underflow

This special storage location reserved for the error codes is called the errno variable.
In the jargon of the system programmer, errno is actualy a thunk, a location
provided by afunction call, but treat it as a simple 32-bit int variable.

The following is an example of error checking applied to a sequence of computations.

Floating Point Support 77

#include “dtd.h”
double a,b,c,d;

errno = 0O;

b = exp(a);
c = exp(-a);
d = tanh((b-c)/(b+c));
if (errno)
{
printf("'Computation of term d failed.\n");
T

In this example, an invalid input value or an extremely large or extremely small output
value will cause the exp library function to fail. The value of errno will remain zero
unless one or more failure events occurs and changes its value.

There is nothing excluding the developer from using the errno feature for detecting
many other types of errors. The C standard leaves the list of error codes unspecified
and implementation-dependent. That leaves open the possibility of adding application-
specific errno codes and corresponding operations to update errno when errors
occur.

The FP library does not support the non-standard matherr functions. These higher-
level features are coupled into incompatible operating system dependencies.

The DAPL environment initializes the FPU (or its emulated equivalent) in the default
initialization mode. That is, executing the fpinit instruction is harmless to the
DAPL system, and correctly provides the benefits of clearing the FPU and setting it to
aconsistent initial state. The initial state masks floating point exceptions, and standard
fixes are applied after such errors as division by zero, overflow, and loss of precision.

The occurrence of errors is flagged in the FPU status word. Specialized applications
can examine this word using inline assembly to determine the exact nature of the error
at the instruction level. The value of the code stored in the errno variable is not
directly related to the code in the status word, because a library function can do
various fixups that alter the status after recording the diagnosis in errno. The
following shows an example of inline assembly to extract floating point status
information.

78 Floating Point Support

int statcode;
asm

)l

fnstsw ax
mov statcode,ax

(statcode&0x20) { PRECISION_ERROR; }
(statcode&0x10) { UNDERFLOW_ERROR; }
(statcode&0x08) { OVERFLOW_ERROR; }
(statcode&0x04) { ZERODIV_ERROR; }
(statcode&0x02) { DENORMAL_ERROR; }
(statcode&0x01) { INVALIDOP_ERROR; }

- o e
=h =h =h =h =h =h

In the above example, the macros PRECISION_ERROR, UNDERFLOW_ERROR, and so
forth, represent user defined actions. Be sure to clear the error flag bits to zero after
processing so that the next error can be detected.

The trap mechanism defined in the compiler library file SIGNAL .H for floating point
errors is not supported. If you change the control word bits to enable interrupts on
floating point errors, the DAPL operating system will intercept the errors, issue a
diagnostic message, and terminate the task. In general, changing the FPU exception
masks is not recommended.

Floating Point Support 79

9. Digital Signal Processing Support

The Developer's Toolkit for DAPL provides Digita Signa Processing (DSP)
functions for waveform construction, Finite Impulse Response (FIR) digital filtering,
and Fast Fourier Transform (FFT) operations. The DSP functions provide access to
the same optimized algorithms used by built-in DAPL commands, but with a greater
degree of flexibility.

Building Custom Waveforms

Waveforms are frequently required for signa modulation operations, custom FFT
“window operators,” and signal generation. One way to construct waveforms is by
calling the isine and icosine functions, storing the returned values in a table. An
easier way is to use the icoswave, isinewave, or icplxwave function to construct
a complete waveform in one operation.

These functions have a similar form:

icoswave (length, cycle, size, scale, storage);
isinewave(length, cycle, size, scale, storage);
icplxwave(length, cycle, size, scale, storage);

The Iength and cycle parameters specify the amount of data generated.
* length specifies the number of samplesto be placed into the table.
* cycle specifies the number of samples necessary to exactly cover one complete
waveform cycle.

The table Iength may be smaller or larger than the cycle. For example, if one cycle
of an output signal is to be covered by 100 samples, and the cycle is to be repeated
five times, then the cycle length parameter should be 100, and the table Iength
parameter should be 500.

Another example of length and cycle is for alookup table that is to be constructed
for a control application. For this system, torque applied to a pivoting object is
dependent on the sine of the angle of the applied force vector. A table is used to
quickly evaluate the sine function. A full cycle of tabulated data is not necessary,
because ¥4 cycle contains sufficient information. For example, a table of 1000 entries
could be built by specifying atable length of 1000 samples and a cycle length of 4000
samples.

Digital Signal Processing Support 81

The size parameter determines the type of data generated. If size is set to
eWaveWord, then two-byte (short, 16-bit) values are generated. If size is set to
eWavelong, then four-byte (long, 32-bit) values are generated.

The scale parameter is an unsigned value specifying the absolute magnitude of the
waveform. If scale is one or zero, the maximum range is used for maximum
precision. (The representable range is -32768 to 32767 for 16-bit data, or
-2147483647 to 2147483647 for 32-hit data. The value -2147483648 is not allowed.)

When the waveform has the full magnitude, it can be treated either as a very large
value or as a “normalized” signed binary fraction with the binary point immediately
after the sign bit. Sometimes this representation is awkward, and other scaling is
preferable. For example, specifying a scale parameter of 1000000 constructs a
Wa6vef0rm which ranges from -1000000 to +1000000, for a resolution of one part in
10°.

The data are placed into the storage location indicated by the storage parameter.

The icoswave, isinewave, and icplxwave functions can al generate waveform
data for a full wave cycle, multiple wave cycles, or any desired fraction of a wave
cycle. A storage area sufficient to contain this data must be set up by the custom
command prior to constructing the waveform. Waveforms may be placed into arrays
with automatic, stetic, or dynamic storage class. For long waveforms, it is best to
allocate memory blocks dynamically using the ralloc function. For example, to set
up a 32-bit waveform with 1,000 values, use the following:

longwave = (long *)ralloc(1000 * sizeof(long));

Strictly speaking, only one of the three functions is really necessary. A sine function
contains the same information as a cosine function, except shifted by ¥4 cycle. A
complex waveform also contains the same information, only packed differently. Use
whichever function is most convenient.

Other phase angles can be obtained by shifting either sine or cosine wave data. This
property can be used to generate a table for any phase shift. For example, suppose that
one full waveform of sinusoidal datais desired, with steps corresponding to 1/400 of a
cycle. The isinewave function is called to construct a waveform of exactly two
cycles with 400 samples-per-cycle, or 800 total samples. Phase shifts can then be
established by setting a pointer to selected locations in the first 400 elements of the
table. For example, a phase shift of 1/16 cycle is obtained at an offset 400/16, or 25
samples from the beginning of the data block:

82 Digital Signal Processing Support

short int *shifted_wave;
shifted_wave = storage+25;
first = shifted_wave[0];
second = shifted_wave[1l];

Sine and cosine values are often needed in pairs for specialized modulation and
custom transform operations. Using the icplxwave function, a data table can be
constructed with corresponding cosine and sine terms stored pairwise. These can be
considered the real and imaginary parts of a complex-valued sinusoid (equivalently,
an exponential function with imaginary-valued exponent). Or, they may be considered
two real numbers that are conveniently stored in a double-entry lookup table.

The following example illustrates construction of a special test waveform required to
drive an output procedure. The wave is full magnitude. The output is updated every 25
microseconds. The wave consists of 1/10 second of 400 Hz baseline tone, followed by
a 1/40 second tone burst of 4™ harmonic tone, followed by another 1/10 second of 400
Hz tone. That is, 4000 samples of baseline tone, 1,000 samples of tone burst, then
another 4000 samples of baseline are needed. At 400 Hz with 25 microsecond
updates, one complete cycle requires 100 synchronous output updates. Build this
special waveform with the following sequence of instructions:

/* Reserve 18K of memory */

short int * tone_buffer;

int errcode;

tone_buffer = (short int *)ralloc(9000*sizeof(short int));

/* Construct the three parts of the waveform */

errcode = isinewave(4000, 100, sizeof(short int),
1, tone_buffer);

errcode |= isinewave(1000, 100/4, sizeof(short int),
1, (tone_buffer+4000));

errcode |= isinewave(4000, 100, sizeof(short int),
1, (tone_buffer+5000));

if (errcode)

{
printf(“Waveform construction failed!\n”);
exit(l);

}

Performing FFT Transforms

Functions provided by the Developer's Toolkit for DAPL give access to the 16-bit
fixed-point transforms implemented in the DAPL system. In contrast to FFT

Digital Signal Processing Support 83

operations performed by a built-in DAPL FFT task, FFT operations in custom
commands are performed on demand. All of the capabilities of the FFT computing
engine are available to custom commands, plus many additional processing options.

FFT computations are set up and evaluated by means of the following functions:

- fFFL_init Initialize FFT processing
- fft_request Perform FFT processing

FFT Initialization

The FFt_init function defines the properties of an FFT in an information structure
called an FFTB, maintained by the DAPL system. This structure defines where datais
stored and which processing options to apply.

There are many options for configuring an FFT operation. All information required to
specify these processing options is collected into the FFTB structure. The FFft_init
function builds this structure, and returns a pointer for use by subsequent function
cals.

The parameter list of the F#Ft_init function has the form:

fft_init(size, realbuf, imagbuf, window, direction,
solution, post, options);

The parameters size, realbuf and imagbuf define the data storage for the FFT
operation. Thewindow, direction, solution, post, and options parameters
provide various configuration options. Each of these parameters will be discussed in
detail in the next few sections of this chapter.

The fft_init function returns a pointer to an FFTB configuration block. If an error
is detected in the function parameter list, aNULL (zero) pointer is returned. Errors are
diagnosed when there is no possible interpretation of an argument value, for example
a post-transform operation code which is not defined. Many inconsistencies between
parameter options cannot be detected, because of the wide range of potentially valid
combinations.

FFT Storage

The size parameter of the FFt_init function specifies the length of the FFT, and
consequently, determines the size of the required data areas. The size parameter
specifies the number of complex input items N of the FFT, where N = 2" for some
integer M. M is a number in the range 2 to 14. This range may be restricted for

84 Digital Signal Processing Support

particular Data Acquisition Processor models and certain DAPL versions. Note that
the built-in FFT command provided by DAPL uses M rather than N to specify the FFT
size.

In general, an FFT operation is applied to complex input data, and storage must be
provided for both real and imaginary terms. Data are usually delivered to the custom
command in DAPL pipes, so the buffer storage used for the blocked pipe operation
can also serve as storage for FFT data. Real and imaginary parts typically arrive in
separate data streams, and for this case, two storage buffers are required, with
locations specified by the pointers realbuf and imagbuf.

The size parameter specifies the number of complex input terms—it does not specify
the number of bytes of storage required. For example, suppose that a 1024 point FFT
is performed on complex input data with separate real and imaginary input data
streams.

#define FFTSIZE 1024

// wrong sizel

real_buf = (short int *)ralloc(FFTSIZE);
imag_buf = (short int *)ralloc(FFTSIZE);
// correct size!

real_buf = (short int *)ralloc(FFTSIZE * sizeof(short int));

imag_buf = (short int *)ralloc(FFTSIZE * sizeof(short int));

In some cases, it is convenient for the FFT to operate upon complex data with real and
imaginary terms stored as contiguous pairs of numbers in a single buffer. An FFT
operation can be configured to use this data format by setting a flag in the option
parameter, as will be discussed later in this chapter. For pairwise storage of complex
data, the realbuf pointer must point to a data area which istwice aslarge, in order to
contain twice as much data per FFT input element. The imagbuf parameter can be set
to NULL .

#define FFTSIZE 1024
// wrong for complex!
real_buf =

(short int *)ralloc(FFTSIZE * sizeof(short int));
imag_buf =

(short int *)ralloc(FFTSIZE * sizeof(short int));
// correct for complex!
real_buf =

(short int *)ralloc(FFTSIZE * 2*sizeof(short int));
imag_buf = NULL;

Digital Signal Processing Support 85

The FFT configuration options can specify a number of output processing options that
replace the input data with the FFT output data. In this case, the same buffer storageis
used both for input and output values. The storage areas indicated by the realbuf
and imagbuf pointers must be set up by the custom command programmer to cover
all of the requirements for both input and output data. For example, an FFT can be
configured to take N real input values and replace them with N 32-bit long power
values. In this situation, the memory storage indicated by the realbuf parameter
must be sufficiently large to contain N 32-bit long output values, twice as much
storage as required by the input data.

#define FFTSIZE 1024
short int * input_real;
long * output_long;

output_long
input_real

= (long *)ralloc(FFTSIZE * sizeof(long));

= (short *) output_long;

If the FFT configuration options specify that the input datais real-valued or complex-
valued but stored pairwise in a single buffer, and if the processing options select
output processing that yields a real-valued result, then the imagbuf parameter is not
needed and can be set to NULL .

The FFt_init function should be called only once for each type of FFT transform.
For instance, if the custom command computes transforms of size 256, 512, or 1024
points, three fft_init operations should be performed during command
initialization, one for each size.

FFT Window Operations

The window parameter specifies a window operation to be applied to the data prior to
performing the actual transform. The FFT window is characterized by an array of
coefficients. The terms of this window are multiplied term-by-term with the values in
the data arrays. The purpose of this operation is to reduce end-of-block truncation
effects when FFT analysis is to be performed on a non-periodic data sequence. (The
underlying theory of Discrete Fourier Transforms assumes that input data represent
one period of awaveform having period N.) The window operation has the effect of a
local smoothing of the FFT output spectrum. There are other side effects, however,
including large changes in dominant frequency components and loss of much of the
information from the beginning and end of the input data block.

There are two ways to specify a window. This parameter may be one of the pre-
defined window types, specified by the following codes defined in the CDAPCC _H file:
* WINDOW_RECTANGULAR

86 Digital Signal Processing Support

* WINDOW_HANNING
* WINDOW_HAMMING
e WINDOW_BARTLETT
e WINDOW_BLACKMAN

A pre-defined window option will establish storage for window coefficients
automatically. Thisis the most convenient way to apply a window operation. To make
better use of storage in advanced applications where severa tasks perform large FFT
operations using similar window operations, it is worthwhile to establish a user-
defined window vector.

WINDOW_RECTANGULAR is equivalent to no window operation, and may aso be
specified by a parameter value of zero. It means that data blocks are not modified
prior to performing FFT computations. The other window types are the most common
non-parametric window types described in the DSP literature.

Alternatively, the window parameter can specify a user-defined vector. In this case,
the parameter must be a pointer to an array containing the N coefficients of the
window operator. The values in the array must be 32-hit signed-long, positive values,
scaled so that the range from 0 to +1 is covered by the full range of representable
integers. In other words, each value can be considered a binary fraction with the
binary point immediately after the leading zero (sign) bit. The storage for the user-
defined array can be dynamically allocated by the custom command, for example
using the ralloc function. The coefficients may aso be defined by a VECTOR in a
DAPL command file. Defining a VECTOR has the specia advantage that multiple tasks
can share the coefficient set. The VECTOR must be a signed long (32-hit) type, and the
vector_start function must be used to obtain the pointer to the shared coefficient
data

The C language cannot accept a function parameter that is either an integer code or a
pointer to 32-bit data; a parameter must have a single type. A compromise is reached
by casting the window option, whether pointer or constant, to an unsigned long
type before calling the £Ft_init function.

Windowing operations can be applied to real-valued or complex input data, for all
computational methods, and either transform direction. Window operations are
typically applied to rea-valued time-domain data and forward direction transforms.
The user should ascertain whether a window operation is appropriate before using one
in other situations.

Digital Signal Processing Support 87

FFT Precision Options

There is more than one solution method available for computing an FFT. The
computation technique is selected by the solution parameter.

When the FFTSOLN_FAST option is selected, the solution method uses faster
instructions and algorithms at the expense of reduced precision, allowing more
accumulated error during the FFT computation. When FFTSOLN_ACCURATE is
selected, the solution method uses somewhat slower instructions and algorithms which
retain more significant bits and round more carefully, at the expense of speed. The
FFTSOLN_FAST option is preferred, for example, when looking for a particularly
prominent frequency peak in noisy data. The FFTSOLN_ACCURATE version is
preferred, for example, when studying low-level noise components.

When option value 0 is specified, the solution technique defaults to the
FFTSOLN_FAST option.

FFT Direction Options

An FFT may be a forward-direction transform or a reverse-direction (inverse)
transform, as specified by the vaue of the direction parameter,
FFTDIR_FORWARD or FFTDIR_REVERSE. These two transforms form an inverse pair.
That is, applying a forward transform and then a reverse transform yields (within
computational accuracy) the origina data. Applying a reverse transform and then a
forward transform also yields (within computational accuracy) the original data. Even
though the two transforms are mathematically very similar, they have different
properties computationally. The forward transform is usually considered the
transformation of time-domain data into frequency domain, and the reverse transform
is usually considered the transformation of frequency domain data back into the time
domain.

One of the two transforms must scale by a factor 1/N, in order to make the final
scaling of al the terms come out right. This scaling factor may be applied either
during the forward direction or the reverse direction transform. The 1/N is most
commonly associated with the forward transform in the DSP literature, but this
convention is not universal. In the FFT transforms provided by the Developer's
Toolkit for DAPL, the 1/N factor is applied to the forward rather than the reverse
transform.

Thisis not an arbitrary choice. Asan FFT computation progresses, intermediate terms
tend to grow and can overflow as terms are summed. To counter this tendency, it is
advantageous to continuoudly scale the computations as the transform proceeds. At the
end of the computation, a well-scaled transform results, with a net scaling factor of

88 Digital Signal Processing Support

1/N. This preserves the most significant information while avoiding overflow. For
most FFT computations, the desired information is present in the peaks, and the lesser
values are considered noise. The scaled forward FFT contains well-scaled information
about peaks.

Not all applications have these same requirements. For example, in an application that
measures harmonic distortion, the high peak value of a sine wave test signal is of no
relevance. The important characteristics are the subtle low-amplitude peaks at
multiples of the test frequency. For such an application, scaling the transform is a
disadvantage because it suppresses the desired low-level information. A transform
without the 1/N scaling is computationally a better choice to avoid loss of information.

A reverse transform can be used in place of a forward transform, to take advantage of
the different scaling strategy, as long as the different properties of the two transforms
are taken into account.

The first difference is that the weighting coefficients used in a reverse transform are
the complex conjugates of the weighting coefficients used in a forward transform.
When applied to a sequence of complex values, areverse transform delivers transform
results in reverse order. A special case of this, applying a reverse transform to a
sequence of real values, produces results which are complex conjugates of the desired
forward transform. In some cases the difference is of no importance—for example,
conjugated data has no effect on the results of a power computation. Knowing what to
expect, it is easy to adjust the data when necessary.

The second difference is that the scaling of the reverse transform can quickly send
even relatively small peaks to saturation. For example, with a reverse transform of
length 1024, any peak of magnitude 32 and above is effectively multiplied by 1024,
causing saturation. Once saturated, it is not possible to distinguish small peaks from
large ones.

The third differences is noise. The FFT computations are performed in fixed point
arithmetic, so inevitably roundoff errors will accumulate. A rule of thumb is that for a
length N transform where N = 2V, the last M/2 bits contain noise. Thisis usually not a
problem, however, because statistically meaningful peaks will stand out from the
noise. For example, given a 1024-point transform and a very clean input signal,
frequency peaks as small as 1/8 of the least-significant bit of the sampling resolution
could be detectable. (Do plenty of experiments.)

The fourth difference is accuracy. Extra precision is needed to preserve all of the low-
level information needed by the reverse transform. The FFTSOLN_FAST option does
not preserve enough low-level information for most inverse FFT applications. Thus,

Digital Signal Processing Support 89

the FFTSOLN_ACCURATE solution method is usually necessary. There is of course a
small penalty in execution time for this extra precision.

Post-FFT Processing Options

The post parameter specifies the processing steps to be applied after an FFT
transform is completed. The symbols for selecting post-transform processing options
are defined in the CDAPCC . H file.

Most operations are applied primarily to forward transforms with real-valued input
data. The Developer's Toolkit for DAPL allows any of the post-processing options to
be applied to any kind of transform, whether or not the operation has a meaningful
physical interpretation, so use with care. For example, applying the FFTPOST_POWER
option after a forward transform of real data yields information about power spectral
density. Applying the FFTPOST_POWER option to a reverse transform of frequency
spectrum data yields information about instantaneous complex power in a time-
domain signal.

The available options include the following:

FFTPOST_DEFER
» Apply no post-transform processing and return no data. The input data provided to
the FFT isreturned without change. The FFT results may be accessed and post-
processed in a separate operation at alater time. This option must be specified
when it is necessary to preserve the original input data.

FFTPOST_REAL
« Extract only the real terms from the transform result, ignoring the imaginary terms.

FFTPOST_CPLX
* Extract both real and imaginary terms from the transform result, storing the
complex values according to the data format specified for complex numbers. (See
the discussion of the options parameter.)

FFTPOST_POWER

« Convert the transform results to power by squaring and summing real and
imaginary parts. For aforward transform, this can be interpreted as power spectral
density. The computed terms have 32-bit LONG precision, but the accuracy
depends on the solution option (see the FFT_FAST and FFT_ACCURATE options
below).

» The behavior is dlightly different for real input data and complex input data. When
the FFT input is complex, the power computations are always term-by-term.
However, when the FFT input is real-valued, the power terms at the two ends of

90 Digital Signal Processing Support

the spectrum are identical and not distinguishable due to the symmetry properties
of atransform. If the number of output termsis N/2 (see the FFT_HALFOUT
option), the power from terms at the low and high ends of the spectrum are
combined, in effect doubling the power terms. If the number of returned termsis
N, the terms at the two ends of the spectrum are not combined, and an even
symmetry can be observed in the data.

* Only real-valued outputs are generated. The storage specified by the realbuf
parameter of the FFt_init function is used to store the power values. Be sure that
this areais sufficiently large to contain the long data type. The storage specified by
the imagbuf parameter of the F#Ft_init function is not affected. When input is
real-valued, the imagbuf parameter can be set to NULL.

FFTPOST_NORMPOWER
» Apply power computations, almost the same as POWER, but treating the
transformed values as normalized fractions, with the full output range covering the
interval -1 to 1. Asapractical matter, the result of this option is that each of the
post-processed output valuesis larger by afactor of two. Sometimes, the resulting
value is not representable, and isreplaced by a ‘ saturated’” maximum representable
value. Otherwise, everything else is the same as for the FFTPOST_POWER option.

FFTPOST_MAGNITUDE
» Apply the same computations as FFTPOST_POWER, but then apply a square root

operation. The result can be interpreted as the magnitude of a frequency
component in the frequency domain, or as an instantaneous complex magnitude in
the time domain. The output values have 16 bits precision. The storage specified
by the realbuf parameter of the fft_init function is used to store magnitude
values. The storage specified by the imagbuf parameter of the fft_init
function is not affected.

FFTPOST_MAG_PHASE

 Apply the same computations as FFTPOST_MAGN I TUDE, and also compute the
phase angle (the arctangent of the ratio of imaginary part to real part).

 Both magnitude and phase values are returned in 16 bit precision. Because there
are two output components, the output values are treated as if they were complex
numbers. (See the processing options below). The storage specified by the
realbuf parameter of the £Ft_init function is used to store magnitude values.
The storage specified by the imagbuf parameter of the fft_init functionis
used to store phase values. Phase angles show an odd symmetry rather than an
even symmetry when the FFT derives from real data.

Digital Signal Processing Support 91

Other Options

Other processing options are specified by a set of Boolean flag bits which make up the
options parameter. Flags are merged using a bitwise OR operation, and presented to
the FFt_init function as asingle parameter.

The option flags are used to select input and output data types. To use defaults, the
options parameter may be set to zero. As a general practice, however, is it suggested
that all options be declared explicitly, so that the custom command programmer
doesn’t have to remember which options are in effect.

At most one option flag may be specified from each of the following groups.

FFT_REALIN
FFT_CPLXIN
* These specify the type of input data provided to the FFT. Either real or complex
data may be used with any solution precision, solution direction, or post-
processing option.
» The impact of this option on speed is quite dramatic. For real-valued data, an
alternative FFT algorithm is applied, saving roughly 40% of the computation time.
 The imagbuf parameter may be NULL if input datais real-valued and the post-
processing options (such asMAGN 1 TUDE) generate only real output terms.
» Thedefault isFFT_CPLXIN.

FFT_SEPARATED
FFT_PAIRWISE

» The FFT_SEPARATED or FFT_PAIRWISE options select the storage organization
for complex numbers. These options have an effect when there is complex-valued
data on either input or output. The FFT will treat complex numbers consistently on
input and output, either as pairs of values stored together, real part first and then
imaginary part, or as separate terms stored in isolated buffers. Complex number
arithmetic is simplified when the terms are stored together, but pipe operations
may require separated terms.

» With FFT_SEPARATED, separate buffer areas are used for the real and imaginary
terms of complex-valued inputs and outputs, and a separate imagbuf storage area
must be provided for the imaginary parts. With FFT_PAIRWISE, complex terms
are stored together, and the imagbuf parameter of the £Ft_init function should
be NULL.

» The default is FFT_SEPARATED.

FFT_HALFOUT
FFT_FULLOUT

92 Digital Signal Processing Support

* Specifying FFT_HALFOUT suppresses output of the last N/2 terms of an FFT, and
has some additional impacts when FFT_REALIN isin effect.

* FFT_HALFOUT is most commonly used in conjunction with the FFT_REALIN
option. The FFT_HALFOUT option may be useful on occasions when the input data
stream is complex, but it is known that the high frequency terms are not
meaningful to the application.

» Applying an FFT to real input terms produces transformed real output terms with
even symmetry, and imaginary output terms with odd symmetry. In other words,
thereis no additional information to be learned from the last N/2 terms of the
transform. The FFT_HALFOUT option suppresses the unnecessary terms.

* There is another effect associated with this option. When FFT_REALIN isin
effect, the symmetric transform artificially splits the power spectrum into two
parts. When the FFT_HALFOUT option is used in conjunction with FFT_REALIN,
power computations recombine the effects of high-end and low-end terms. This
affectsthe FFTPOST_POWER, FFTPOST_NORMPOWER, FFTPOST_MAGNITUDE, and
FFTPOST_MAG_PHASE processing options.

* The default option is FFT_FULLOUT.

Example of option flags:
To explicitly select the FFT options which are the default options, use the following:

unsigned defaultoptions;
defaultoptions = FFT_CPLXIN | FFT_SEPARATED | FFT_FULLOUT;

Typical FFT Options

As examples of typical FFT configurations, the following listing describes the option
sets for the eight ‘modes’ supported by the FFT command provided by the DAPL
system. The FFT32 command ‘modes are sSimilar except that the
FFTSOLN_ACCURATE solution option is used instead of the FFTSOLN_FAST option.

MODE 0: Forward transform of real-valued data
real and imaginary data buffers specified
typically uses window operation
FFTDIR_FORWARD,

FFTSOLN_FAST,
FFTPOST_CPLX,
FFT_REALIN | FFT_FULLOUT | FFT_SEPARATED

Digital Signal Processing Support 93

94

MODE 1: Forward transform of complex-valued data
real and imaginary data buffers specified
typically does not use window operation
FFTDIR_FORWARD,

FFTSOLN_FAST,
FFTPOST_CPLX,
FFT_CPLXIN | FFT_FULLOUT | FFT_SEPARATED

MODE 2: Reverse transform of complex data retaining reals
real and imaginary data buffers specified
typically does not use window operation
FFTDIR_REVERSE,
FFTSOLN_FAST,
FFTPOST_REAL,
FFT_CPLXIN | FFT_FULLOUT | FFT_SEPARATED

MODE 3: Reverse transform of complex data retaining reals
real and imaginary data buffers specified
typically does not use window operation
FFTDIR_REVERSE,
FFTSOLN_FAST,
FFTPOST_CPLX,
FFT_CPLXIN | FFT_FULLOUT | FFT_SEPARATED

MODE 4: Forward transform of reals, power post-process
real buffer specified
typically uses window operation
FFTDIR_FORWARD,
FFTSOLN_FAST,
FFTPOST_POWER,
FFT_REALIN | FFT_HALFOUT

MODE 5: Forward transform of reals, magnitude post-process
real buffer specified
typically uses window operation
FFTDIR_FORWARD,
FFTSOLN_FAST,
FFTPOST_MAGNITUDE,
FFT_REALIN | FFT_HALFOUT

Digital Signal Processing Support

MODE 6: Forward transform of reals, mag/phase post-process
real and imaginary buffer specified
typically uses window operation
FFTDIR_FORWARD,
FFTSOLN_FAST,
FFTPOST_MAG_PHASE,
FFT_REALIN | FFT_HALFOUT

MODE 7: Forward transform of reals, norm-power post-process
real buffer specified
typically uses window operation
FFTDIR_FORWARD,
FFTSOLN_FAST,
FFTPOST_NORMPOWER,
FFT_REALIN | FFT_HALFOUT

Deferred Post-FFT Processing

The raw transform result of an FFT operation is preserved until the next FFT
operation is requested using the same FFTB. Before then, alternative post-transform
processing may be applied. The results may be placed into the FFT input storage
buffer area or into a different buffer area. A typical application for this option is to
preserve the input data and send the FFT data to separate storage, so that both data
sets can be processed further.

Use the Fft_postop function to request post-FFT processing without computing a
new transform. The Fft_postop function has the following form:

fft_postop(fft, realbuf, imagbuf, post, options);

Note that the parameters are very much like the ¥ft_init function parameters. The
fft parameter provides access to the FFTB containing the preserved FFT result. The
realbuf and imagbuf parameter specify locations for output data, which may or
may not be distinctive from the storage areas originally used by the FFT. The
realbuf and imagbuf parameters are used for data output exactly as the
corresponding realbuf and imagbuf areas are used by the ¥Ft_request function.

The input options in the options parameter are ignored, but alternate output options
may be specified. For example, the input to the origina FFT may have been in the
form of complex data pairs, but the new options can request real and imaginary parts
returned separately.

Digital Signal Processing Support 95

In the following example, the original FFT operation returns the real and imaginary
parts of atransform, and the follow-up operation returns the magnitude.

short int databufr[256], databufi[256], databufm[256];

fft = fft_init(256, databufr, databufi,
WINDOW_RECTANGULAR, FFTDIR_FORWARD, FFTSOLN_FAST,
FFTPOST_CPLX, defaultoptions);

fft_request(fft);

fft = fft_postop(fft, databufm, NULL,
FFTPOST_MAGNITUDE, defaultoptions);

FFT Processing With More Than One Buffer

Most FFT processing involves a sequence of operations on a single data stream, but
sometimes similar FFT transforms must be applied to data from a number of separate
data channels. For applications with multiple data channels, the function
fft_chngbuf allows setting up a single FFTB structure for use with number of
different data buffers. A separate FFTB structure for each data stream is an option, but
can consume alarge region of memory if there are many data streams.

A call to the £Ft_chngbuf function has the form:
fft_chngbuf(pFFTB, realbuf, imagbuf);

The first parameter specifies the FFTB to be modified. The realbuf and imagbuf
parameters are pointers to new real data and imaginary data storage areas respectively.
If anull pointer is passed, the corresponding buffer pointer is not changed in the FFTB
structure. It is important that the modified pointers always point to a memory area of
sufficient length.

Example FFT Application

The following code uses a Fast Fourier Transform in a custom command. This custom
command accepts three DAPL parameters: an input pipe, the size of the fast Fourier
transform, and an output pipe. The input to the transform is real-valued data from a
pipe. The results placed into an output pipe are the N points of the transform’s
magnitude. Note that this is different from the ‘mode 5' transform of the built-in
DAPL FFT command, which reports only N/2 output terms. Speed is considered most
important in this application, so the fast solution is selected, with a dight accuracy
penalty. Theinput datais not periodic, so awindow is applied.

96 Digital Signal Processing Support

// FFT2 (pl, n, p2)

// computes magnitude of a forward FFT transform

// - data arrives in pipe pl

// - size of transform n, expressed as number-of-values
// - output placed into pipe p2

// - output is magnitude values

// - output data to pipe "p2*

#define FOREVER 1
int _ stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;

int argc;

PIPE *in_pipe; /* Input pipe, real data */

PIPE *out_pipe; /* Output pipe, magnitude data */
int n; /* Size of FFT blocks */

// Storage for processing
PBUF *inbuf, *outbuf;
FFTB *fft;
short int *databuf;

// Access parameters
argv = param_process (plib, &argc, 3, 3,
T_PIPE_W,T_CONST_W, T_PIPE_W);
in_pipe = (PIPE *) argv[1];
n = *(const short int *) argv[2];
out_pipe = (PIPE *) argv[3];

// Perform initializations
/* Prepare pipes to share a buffer with the FFT*/
pipe_open (out_pipe, P_WRITE);
pipe_open (in_pipe, P_READ);
inbuf = pbuf_open(in_pipe, n);
outbuf = pbuf_open(out_pipe, 0);
databuf = (short int *) pbuf _get _data_ptr(inbuf);
pbuf_set_data_ptr(outbuf,databuf);
pbuf_set_min_cnt(inbuf,n);
pbuf_set_max_cnt(inbuf,n);
pbuf_set_min_cnt(outbuf,n);
pbuf_set_max_cnt(outbuf,n);

Digital Signal Processing Support

/* Set up FFT */
fft = fft_init(n, databuf, NULL,

WINDOW_HANNING, /* Use Hanning window */
FFTDIR_FORWARD, /* Use forward transform */
FFTSOLN_FAST, /* Accuracy not critical */
FFTPOST_MAGNITUDE, /* Compute magnitudes */

FFT_REALIN|FFT_FULLOUT); /* n reals in, n out */
if (fft == NULL)
param_error();

// Begin continuous processing
while (FOREVER)

{
pbuf_get(inbuf);
fft_request(fft);
pbuf_set_cnt(outbuf,n);
pbuf_put(outbuf);

}

Using Finite Impulse Response Digital Filters

The Developer's Toolkit for DAPL provides a set of functions for 16-bit finite impulse
response (FIR) digital filtering using a shift register filter structure. A shift register isa
region of memory which records a sequence of sample values. The filter calculates an
output value by multiplying the sequence of samplesin the shift register, term by term,
with a corresponding sequence of coefficients from a pre-defined vector. The pairwise
products are then summed to yield a calculated result. For subsequent calculations, the
oldest data are discarded from the shift register, and new data are introduced to
replace them. The process repeats. The Developer's Toolkit for DAPL functions take
care of shift register management and numerical computations. The client custom
command must provide the data and define the filter characteristics.

FIR filtering is performed by means of the following sequence of functions:

e fir_init define characteristics of a FIR Ffilter
- fir_request apply filter to data

FIR Filter Initialization

The Fir_init function defines the properties of a FIR filter and its shift register in
an information structure of type FIRB. This structure maintains information about
sampled data, filter coefficients, processing options, and numerical operations. The

98 Digital Signal Processing Support

fir_init function returns a pointer to the allocated FIRB structure. The pointer is
used by all subsequent filter operations.

The parameter list of the Fir_init function has the form:
fir_init(coeffs, length, scale, decimate);

The coefficients in vector coeffs determine the filter's output properties. The
length parameter defines the length of the coeffs vector, which in turn fixes the
length of the filter shift register. The values contained in the vector determine the
filter' sfrequency and transient response.

FIR filter design technique described in any DSP textbook can be used to derive the
coefficients. Alternatively, the FGEN utility from Microstar Laboratories can be used
to design the coefficient vector and analyze filter performance. The coefficients may
be placed into an array in the custom command, or in a VECTOR in a DAPL command
file. The vector computed during the design process is encoded as an array of signed
16-hit fixed-point fractions with 15 bits after the implied binary point, reserving the
high-order bit for the sign. The coefficients can also be thought of as ordinary integer
values in the range -32768 to +32767 with an extra scale factor of 1/32768 to be
applied later.

The number of bits required at intermediate stages of filter calculations can become
quite large. To control the growth in the number of bits, there is a scaling constraint
upon the values of the coefficients.

For the case of small filters, the sum of the absolute values of the coefficients should
produce a fixed-point value less than 2.0, in the binary fraction notation. Equivalently,
if the coefficients are thought of as ordinary signed integers, the sum of the absolute
values of the vector coefficients must not exceed 65535. If the filter vector has this
property, a scale parameter value of 1 is appropriate. Equivaently, the scale
parameter may be set to zero to indicate “no scaling is applied.”

Filters for which the signed sum of the coefficient vector terms is 32768 times the
scale parameter value have the property that the gain of thefilter at zero frequency is
1.0 exactly. Most lowpass filters are designed to have this property, so that they do not
alter the magnitudes of low frequency components.

For some filter designs, particularly long filters, scaling the filter terms as described
above forces many coefficients to be very small, leading to a loss of precision and
degraded performance. When thisis the case, the coefficient values may be multiplied
by a convenient power of two. This alows additional bits of precision in the filter
representation. The scaling multiplier, in addition to being a power of two, should be

Digital Signal Processing Support 99

less than the filter length, and must be chosen so that the filter coefficient with largest
absolute value is representable in a 16-bit format. The scaling multiplier must then be
specified as the scale parameter to the Fir_init function. Note that the FGEN
utility can be instructed to compute an appropriate scaling factor automatically.

For example, the following filter characteristic is not properly scaled:

short int vFilt [11] = {7088, 13511, 19441, 22800,
14355, 0, -14355, -22800, -19441, -13511, -7088};

The sum of the absolute values of coefficientsis 154390, which is greater than 65535.
Since this is a relatively short filter, it may be reasonable to scale the coefficient
values by the ratio 65534/154390 to obtain the following scaled filter characteristic:

int vfilt [11] = {3009,5735,8252,9678,6093,0,-6093,-9678,
-8252,-5735,-3009};

Now the sum of the absolute values of the coefficients is 65534, which conforms to
the scaling constraint. Alternatively, 154390/4 is 38597, which is less than 65535, so
the original coefficients can be used with a scaling factor of 4.

Mathematically, the operation applied by a FIR filter is a discrete convolution. This
operation can be interpreted as term-by-term multiplication between a discrete-time
sequence and another time-reversed discrete-time sequence. From this point of view,
the terms in the filter coefficient vector may be interpreted as the time-reversed
sequence of output values that result when an impulse (an isolated maximum input
sample surrounded by all zeroes) is applied to the filter. This fact is not relevant to
symmetric filters, as designed by the FGEN utility, because symmetric filters are the
same in forward and reverse order.

The last parameter of the Fir_init function is called the “decimation factor.” FIR
filters are particularly well suited for lowpass filters. For example, to prevent aliasing
of high frequency noise into low frequencies prior to performing an FFT analysis, itis
very common to sample data at a high rate and apply digita filtering to eliminate the
high frequency components. After this lowpass filtering, fewer samples are necessary
to accurately represent the cleaned signal, so the sample rate can be reduced by taking
one sample then skipping a constant number of samples in a cyclic manner. The
length of this cycle is specified by the decimate parameter. If decimation is not
required, this parameter should be 1, or aternatively 0O, to indicate “no decimation
factor.”

100 Digital Signal Processing Support

FIR Filter Computation

After completing the filter initialization and entering the run-time loop, the
fir_request function is used to initiate computations. The parameter list of the
fir_request function has the form:

fir_request(fir, data, count);

The fir parameter is the pointer returned by the Fir_init function. The data
parameter is a pointer to an array of new data to be added to the filter shift register.
For example, if data is obtained from a pipe using a get_bpipe function, the data
parameter may point directly to the data buffer in the pipe's PBUF structure. The
count parameter specifies the number of new data samples to add to the filter shift
register.

Filtered results are computed in-place and are available when the function returns. The
fir_request function reports the number of computed values that resulted. For
example, if the filter is length 40 but only 38 values have been supplied so far, the
fir_request function will return avalue of zero.

A number of initial samples are required to fill the shift register before processing can
begin. For example, consider a symmetric filter of length 41. The first 40 samples,
samples 0 through 39, are required to prepare the shift register. The arrival of the 41st
sample, sample 40, fills the shift register and allows the first computation to proceed.
This calculates a filtered value corresponding to the center location of the filter, the
twenty-first sample, at sample location 20. In other words, the filter does not produce
outputs corresponding to the first 20 input samples, 0 through 19. This delay is called
“linear phase” or “group delay” in the linear filtering literature, but its practical effect
is shifting (delaying) the output data stream by 1/2 the filter length. If this delay is
important, for example, when synchronizing the filtered signal to the origina signal
for comparison or triggering operations, a custom command must compensate. It may
inject extra values into the filter (for example, send the first sample value to the filter
an extra 20 times), or replicate extra output values (for example, sending the first filter
output to the command output pipe an extra 20 times).

Once the shift register is full, one result can be computed. One result is generated for
each additional sample (when there is no decimation).

The amount of output data is reduced if a decimation factor greater than 1 is specified
for the filter. Decimation has the effect of bypassing some of the computations. Before
each computation, a number of samples equal to the decimation factor is removed
from the shift register and this same number of new samples must be added. In the

Digital Signal Processing Support 101

event that a new data block does not have enough samples to refill the shift register,
no computed result can be returned until more data become available.

Latency of a filtering command depends on the filter design and on the manner that
data is collected and sent for processing. Collecting samples into longer blocks
requires fewer service cals and allows more efficient processing, but results are
delayed until the entire block is processed. Lowest latency is attained by passing each
datum to the filter immediately when received.

The inherent delay of the filter has an impact on latency. For the previous example of
the symmetric filter, 20 extra samples (samples 21 through 40) were required before
the filtered result at sample 20 could be computed. This 20-sample delay directly
affects the latency of the filtering process.

Additional FIR Operations

Two additional functions provide supplementary control over FIR filter operations.
These are specialized functions not needed for most filtering applications.

The Fir_change function may be used to change the properties of the filter without
disturbing the status of the filter shift register. This could be useful, for example, to
allows a user application to select from a number of smoothing (lowpass) filter
characteristics by swapping filter coefficient sets.

Changing the length of the filter or the decimation factor can change data buffering
requirements, leading to inefficiency, or in the worst case, insufficient storage to
continue filter operation. To avoid storage problems, initialize the filter using the
longest filter vector and largest decimation factor that the application will use, then
apply Fir_change to select the actua characteristics to be used before starting the
filtering run-time loop. This guarantees that the memory allocations for the filter are
adequate to cover the worst case. Extra memory will not degrade filter performance
for smaller filters. Keep in mind that changing the filter length also affects the delay
inherent in the filter, and can affect data synchronization.

Changing filter characteristics should be considered a relatively expensive operation,
roughly equal in complexity to performing afilter computation. It should be done with
great care. The Fir_change function may perform extra computations to examine the
new filter characteristic and select numerical techniques to apply. The extra
computation could have an effect on latency.

The other specialized function is fir_advance . This function is useful in
applications that must reduce data rates. For example, an application may need to
perform an FFT analysis where there is a very high frequency component. In order to

102 Digital Signal Processing Support

preserve the high frequency information, samples must be captured at a high sampling
rate, but this rate may be much too fast for a PC application to display all of the
results. The Fir_advance function has the effect of advancing the FIR filter shift
register, discarding the specified number of old samples, without performing any filter
computations. This guarantees that old, unneeded data are purged from the filter shift
register when filtering operations resume.

One of two situations will result after using Fir_advance. The first situation is that
some of the data currently in the shift register are needed to resume computations. In
this case, the application should continue to provide data to the FIR filter in the
normal manner until the shift register fills, at which point computations resume
automatically. The second situation is that none of the old data present in the shift
register will be required again. In this case, the FIR filter is |eft in an “empty” state,
and it must be refilled completely. It also may be necessary to purge additional
samples from the data source after the shift register is empty. The return value from
the Fir_advance function reports the number of items that must be purged from the
data source after calling fir_advance. If the return value is zero, removing data
from the data source is not necessary.

For example, in the following sequence, filtering without decimation, 32 filtered
values are computed and then the next 96 values are skipped.

/* Process 32 filtered values */
fir_apply(fir, coeff_array, 32);
/* Skip the next 96 values */
more_to_skip = fir_advance(fir, 96);
if (more_to_skip)

pipe_rem(inpipe, more_to_skip);

A Data Smoothing Application

In this example application, a data stream is obtained by sampling a continuous
process. The measurements are contaminated by occasional ‘noise spikes which
interfere with quality control statistics to be computed from the measurements. A
statistical study demonstrated that a local smoothing operation is effective in reducing
the impact of the noise spikes. The selected filter is a seven-term interpolating filter
that, in effect, performs alocal quadratic least-squares fit to the data, then replaces the
center term with the center value of the curve fit.

The least sguares fitting process results in a linear filter formula defined by the
following equation.

Xo=(2X3+3X o+ 6X 3+ 7Xo+6X1+3X,+-2X3)/21

Digital Signal Processing Support 103

The linear formulation means that the filtering operation has an alternate interpretation
in terms of lowpass filtering, and FIR filtering features can be used to implement this
filter.

For properly scaling the filter, the coefficients need to sum to something less than 2.0
in the binary fraction notation. Using 32768 as a normalizing multiplier, the
coefficients take on the following representation in the custom command:

int Is7filt[7] = { -3121, 4681, 9362, 10924, 9362, 4681,
-3121 };

These coefficients sum to 32768, which means that the zero frequency gain of the
filter is exactly 1. The absolute values sum to 45252. This means that for some
frequencies, it is possible that a very large amplitude signal could cause overflow, but
because the coefficients are properly scaled, the overflow will be correctly saturated to
the appropriate negative or positive limit. The application might be able to limit the
input signal to the range -23000 to 23000, which would eliminate the possibility of
overflow. Tests with actual data might also demonstrate that overflow is not a problem
for the special mix of frequencies present.

104 Digital Signal Processing Support

The following implements the filter.

Digital Signal Processing Support 105

// LSFILT (pl, p2)

// - reads data from pipe pl
// - applies 7-point least-squares smoothing
// - places results into pipe p2

#define FOREVER 1

// FIR filter characteristic vector
static short int Is7vect[7] =
{ -6241, 9362, 18724, 21845, 18724, 9362, -6241 } ;

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;
PIPE *in_pipe;
PIPE *out_pipe;

// Storage for processing
FIRB *fir;
GENERIC_SCALAR gsample;

// Access parameters
argv = param_process (plib, &argc, 2, 2,
T_PIPE_W, T_PIPE_W);
in_pipe = (PIPE *) argv[1l];
out_pipe = (PIPE *) argv[2];

// Perform initializations
pipe_open (in_pipe, P_READ);
pipe_open (out_pipe, P_WRITE);

Ffir = fir_init (
&(1s7vect[0]), /* coefficients */
7, /* length of filter */
2, /* scale factor */
0 /* no decimation */);
if (fir == NULL)
param_error();

/*
** Compensate for the 3-sample delay of a 7-term

106 Digital Signal Processing Support

** symmetric filter.

*/

for (int i=0; i<3; ++i)
pipe_put(out_pipe,0L);

// Begin continuous processing
while (FOREVER)

{
/* Apply filter to "array of length 1" in gsample */
pipe_value_get(in_pipe,&gsample);
if (Fir_request(fir,&(gsample._116),1))
pipe_value_put(out_pipe,&gsample);
}
return O;

Digital Signal Processing Support 107

10. Real-Time Control

This chapter describes general considerations for using a Data Acquisition Processor
as a component of a real-time system. The Data Acquisition Processor family is
designed both for data acquisition and real-time control applications. Data acquisition
systems place primary emphasis on fast and dependable data capture, with processing
and transmission of acquired data as a secondary priority. In contrast, real-time
control systems must place balanced priority on acquiring data, interpreting the data,
and reporting outputs within given time constraints.

Latency

A real-time system is often required to monitor a continuous input quantity. It may be
required to respond to input events on many input channels, with different data rates
on each channel, while different processing is going on for each channel. Because of
these many activities, sometimes the CPU cannot be assigned to process an event
immediately. The time between the arrival of the input data and the delivery of the
system responseis called "latency."

To meet timing requirements, most real-time systems employ “interrupt-driven
processing,” in which a computing resource is applied upon demand, and then
released for other processing. Interrupt-driven control is possible in the native
processor of an 80x86-based PC, but latency covers the complete system response, not
just processing of one single interrupt. A PC must contend with monitor, keyboard,
disk, and real-time clock services, which compete with the control task for CPU
resources. A Data Acquisition Processor, on the other hand, dedicates its full
resources to acquisition and control. The kernel services of the DAPL systems are
interrupt-driven and highly optimized. Furthermore, the Data Acquisition Processor
provides supplemental processing hardware that can sustain accurate sampling even
when the CPU resource is momentarily dedicated to other processing.

Processing speed and latency are different measures of system performance.
Processing speed, also known as throughput, is determined by the average amount of
CPU resource that must be applied to produce each computed result. Processing speed
is optimized by collecting a large number of data samples, then processing them all at
once in a highly-efficient processing loop. On the other hand, latency is introduced
while waiting for samples to be collected for processing. Every real-time application
must make a design trade-off between processing speed and response latency. This

Real-Time Control 109

chapter compares the tradeoff between latency and throughput when processing
multiple channels.

Multitasking

Another common characteristic of real-time control systems is asynchronous events.
Real-time software systems that attempt to anticipate every possible combination and
sequence of inputs and outputs can become hopelessy difficult. One strategy for
coping with this complexity is to factor the control process into a number of separate
processes that (in concept) run in parallel, as independent tasks, with modules
interacting through carefully controlled interfaces. DAPL provide exactly these
services. Each processing command or downloaded custom command is implemented
as a separate task. DAPL pipes serve as the interfaces that synchronize data exchange
between tasks.

There are costs associated with the multitasking strategy. The software system must
perform a certain amount of computation to maintain information about the identities
of the various tasks, to select tasks for processing, and to save information about the
state of each task before suspending it and assigning the CPU resource to another task.
The task-switching computation is small, but it can become significant as more tasks
are added and as task switching occurs more frequently. If DAPL tried to perform a
task switch each time a data sample arrived, al of the CPU resource could be
consumed by the task switching, with no CPU resource remaining to process the data.

To minimize the cost of task-switching and reserve CPU resources for processing
operations, DAPL uses a simple task management scheme. Every processing task is
given an opportunity to process the data available to it. The task will be suspended
while it waits for data to arrive or when it voluntarily releases control by calling the
task_switch function. To prevent any one task from consuming too many resources,
DAPL enforces a limit on the amount of CPU time that an individual task can
consume at any one opportunity.

The DAPL operating system provides the SCHEDUL ING, QUANTUM and BUFFERING
options for adjusting tradeoffs between processing speed and latency. . The
SCHEDUL ING option may be set to ADAPTIVE or FIXED. The ADAPTIVE scheduling
mode selectively schedules tasks in an effort to balance the flow of data among all
tasks. If there is arelatively balanced data flow, and real-time events occur regularly,
this strategy this tends to yield efficient processing. However, there is no analytical
guarantee of when any given task will be scheduled to execute. Latency could be very
large for a task that handles relatively infrequent real-time events, because this task
has very low data flow and is scheduled less often. The FIXED scheduling option
guarantees that all tasks are scheduled equally often. It greatly reduces the uncertainty

110 Real-Time Control

of response to critical real-time events, but tends to use more CPU capacity for task
switching overhead.

The QUANTUM option sets a limit on the interval of time that an individual task can run
uninterrupted. If a task requires more than this amount of time, it is forced to
temporarily release the CPU, alowing other tasks to run. When there is a mix of real-
time and computational tasks, usually the computational processing should not delay
real-time response. In such cases, the QUANTUM option should be set to a relatively
small number, so that the computational tasks do not hold the CPU too long. On the
other hand, the real-time system could have a computation that is time-critical. For
greatest efficiency and lowest latency in this critical task, the task should run to
completion. In this case, the QUANTUM option should be set to a relatively large
number. Note that tasks that have nothing to do will release the CPU voluntarily, so
there is ordinarily no time penalty for having a larger QUANTUM value. However, most
analytical methods for guaranteeing real-time performance depend on bounding the
amount of time that tasks can run, and larger bounds reduce the effectiveness of
analytical methods.

The BUFFERING option specifies the amount of storage to be used for data buffering
in pipes. Most real-time systems process data quickly without backlog, so setting
BUFFERING to OFF is typical for real-time systems. Some systems will accumulate
blocks of data, but then must process the data as efficiently as possible once the block
is filled. Because longer blocks are processed more efficiently, such applications
should probably select the MEDIUM or LARGE buffering options.

Under DAPL, each task will either complete all operations on the available data, or
will be interrupted at intervals to allow other tasks to run. In most real-time systems,
the desirable case is the one in which al available input data is processed in one
scheduling quantum, because results become available quickly. It is the other case,
however, which guarantees a predictable response time. In the worst case, a data
sample is captured just after the task to processit finishes execution. Because the task
did not receive that input sample, processing of that sample is delayed until all other
tasks are given a chance to run. At that point, the first task will receive the input value
and complete its processing. Assuming that the computations for one value can be
completed in one task-scheduling interval, and assuming that N tasks are operating,
the response will be availablein at most N scheduling intervals.

There are a number of important conclusions. For a given configuration of tasks,
response to an input is guaranteed within a fixed time interval. Since the calculation of
that interval assumes that all tasks use the maximum amount of CPU at each
opportunity, which is almost never the case in practice, statistical measures of
response time are typically much better than the worst-case measures.

Real-Time Control 111

Strategies for Improving Real-Time Response

Response time of a multitasking real-time system under DAPL depends on the
scheduling, the number of tasks that must process each value, and the total number of
tasks that must be scheduled. Strategies for improving real-time response result from
adjusting these factors.

The first strategy is taking advantage of the SCHEDULING and QUANTUM options to
control the scheduling quantum and strategy. Most real-time applications will select a
FIXED scheduling strategy and relatively small scheduling quantum.

The second strategy is reducing the number of tasks. The TASKSTAT command
provided by DAPL will show the number of tasks present in your configuration. If
there are several processing tasks, it may be possible to achieve a faster real-time
response by building a custom command that combines the function of those tasks.

The third strategy is control of the CPU resource in custom commands. If your custom
command cannot continue to perform computations, it is important for it to call
task_switch to release the CPU to other tasks, so that the other tasks are not
delayed. In some cases, however, a small delay may be acceptable. For example, if
data values are processed in pairs, but only one data sample has arrived, it may be
better to wait in aloop for a few cycles until the second sample arrives. Or, if other
tasks must wait for the first task to obtain data, it is probably better for the first task to
wait in an active loop, since scheduling the other tasks will serve no useful purpose.

Latency When Using Floating Point

There are some special considerations for real-time response when using hardware-
supported floating point. The floating point unit is functionally a separate processor. It
runs in parallel with the general purpose Integer Processing Unit (1PU), beginning a
floating point operation when the IPU detects one in the instruction stream. Operation
of the two units continues in parallel until the IPU detects another floating point
instruction. At that point, if the FPU has not finished its previous operation, the
integer processing unit must wait. In most cases, the delays are just a few machine
cycles, but some FPU instructions take hundreds of machine cyclesto complete.

Specia floating point instructions are used to store and reload the state of the floating
point unit after task switching has occurred. Each computation performed by the FPU
alters the interna state of the FPU. If the DAPL scheduler switches from one task
which is using the FPU to a second task that also needs the FPU, the state of the
computations for the first task must be saved and the state of the second task's
computations must be loaded. The storing and restoring are performed automatically

112 Real-Time Control

by DAPL, but only when needed. FPU state storing and recovery do not occur at all if
fewer than two tasks use the FPU. FPU state storing and recovery are infrequent if
tasks perform floating point computations at different times.

The worst case for real-time control occurs when the first task executes a floating
point instruction immediately before a task switch is due. Once the task begins the
storing and restoring operation, it must perform both operations before the task
switching can occur. If the next task needs to execute a floating point instruction as it
resumes execution, another storing and restoring operation occurs. The combination
of these operations in the two tasks can introduce additional response latencies of up
to 25 microseconds depending on processor and memory speed.

Single Tasking

Multitasking is an integral part of the DAPL system that cannot be switched on and
off. However, the DAPL system scheduler avoids unnecessary operations. So an
advanced technique for obtaining maximum efficiency is to package the entire
application in one processing command. Thisis called an advanced technique because
of the programming skill that will be required. A multi-tasking solution packages
operations that are closely related into a task, leaving the problem of making sure that
the tasks execute in a timely manner to the operating system. In a single-task solution,
one command locks all processing into arigidly structured execution sequence. If this
is an optimal sequence, it will deliver better results than a multi-tasking solution. If it
is a sub-optimal sequence, it will deliver poorer results, despite all of the development
effort invested.

Monitoring Application Example

The RTALARM custom command reads from an input pipe. If the values of three
consecutive samples exceed a pre-defined control limit, an alarm is raised and latched
by setting a bit on the digital output port. Individual values are fetched for minimal
latency. If values are not available, other tasks are allowed to run while the RTALARM
task waits for datato arrive.

Real-Time Control 113

// RTALARM(pl, vlim, p2)
// Fast real-time alarm for data values over the
// control limit.

// - Read data from input channel pipe "pl-.

// - Three consecutive readings must be over the

// limit for alarm.

// - Alarm latches bit 8 of the digital output port.
#define OUTPUT_BIT 8

#define CONTROL_LIMIT 10000

#define DEBOUNCE 3

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;
PIPE * in_pipe;

// Storage for processing
short int val;
int consec = 0;

// Access parameters
argv = param_process (plib, &argc, 1, 1, T_PIPE_W);
in_pipe = (PIPE *) argv[1l];

// Perform initializations - clear digital port alarm bit
pipe_open (in_pipe, P_READ);
digital_set bit(OUTPUT_BIT,0);

// Begin continuous processing
while (1)
{
val = (int) pipe_get(in_pipe);
if (val > CONTROL_LIMIT)

{
++consec;
ifT (consec >= DEBOUNCE)
digital_set bit(OUTPUT_BIT,1);
}

else consec = 0;

114 Real-Time Control

return O;

}

The following DAPL commands route input samples to the RTALARM custom
command at 50 microsecond intervals.

reset

idef a 1
set ipipe0 sO
time 50

end

pdef b
rtalarm(ipipe0);

end

start a,b

After the DAPL interpreter performs the START command, the RTALARM command
initializes and begins continuous operation.

Customized PID Controllers

Using Developer's Toolkit for DAPL services, you can configure a control system to
meet specia requirements. If more functionality is needed, you can easily extend the
basic controller features, adding functions for data monitoring, nonlinear output
characteristics, or managing a group of control loops. If maximum speed is needed,
you can build a simple configuration, trimmed to the bare essentials.

The essential properties of a PID controller are as follows:

« It produces a control output for each sample of the system output which it
receives.

* The control output increases as the deviation of system output from the setpoint
increases, and reduces as the system output approaches the setpoint. Thisis
"proportiona" or P-correction.

 The controller adjusts the control output to correct for errors that persist over time.
Thisis"integral" or I-correction.

 The controller adjusts its output to oppose excessively rapid changes in the system
output. Thisis"derivative" or D-correction.

* The controller's output is a weighted sum of the P-, I-, and D-corrections.

One implementation of PID control is the PID1 command provided in DAPL. The
PID1 command is controls a single PID loop. Though quite general, the standard
PID1 command has some limitations. Since each control loop is managed by a
separate PID task, there is a correspondingly large multitasking overhead when the

Real-Time Control 115

number of loops is large. Higher overhead means that less CPU capacity is available
for managing the control loops, and that the processing rate is limited.

A PID control command is structured similarly to any other processing commend. It
requires some additional initializations to set up two special data structures which are
required for PID control.

Structures for PID Control

The PID data structure is a DAPL system structure required to maintain internal state
information for a PID control loop. The pid_open function must be called once for
each PID control loop, to alocate and initialize the corresponding PID structure. The
returned pointer must be saved for use by other PID functions. The pid_open
function also performs some PID initiaizations which require an estimate of the
output of the controlled system at start-up. In some cases, you will have a good
estimate for this value, for example, when the system always starts with its output at
zero. In other cases, you will not have this information, and must read a sample from
the input pipe at command start-up.

One or more PIDCOEF data structures are needed to organize PID control parameters
in the custom command's local memory, and to install the parameter values using the
pid_tune function. The pid_tune function must be caled for each PID control
loop. Thefieldsin the PIDCOEF structure are:

setpoint desired level of system output

pl proportional correction gain, multiplier
p2 proportional correction gain, divisor
il integral correction gain, multiplier

i2 integral correction gain, divisor

di derivative correction gain, multiplier
d2 derivative correction gain, divisor

clamp_lo output low limit clamp
clamp_hi output high limit clamp

See the description of pid_tune in the command reference section for more
information about the effects of the control parameters.

Most systems begin in a state of minimum energy, often called a"zero state," "resting
state," or "cold start." This s the state given to the P1D structure when it isinitialized
by the pid_open function. In most cases, this is the correct assumption. In other
cases, it might be a terrible assumption. For example, a system might need to be
manually brought to 90% of its operating speed prior to being switched over to
automatic control. To make the transition as smooth as possible, the pid_preset

116 Real-Time Control

function can be used. The pid_preset function takes the known control input
applied to the system, and the known feedback measurement of system output, and
adjusts the internal state of the PID structure to be consistent with these conditions.
Then, when automatic PID operation begins, there will be a smooth transition to the
final setpoint.

The Control Loop

After the structures have been initialized, and the control parameters have been
installed, the real-time update loop can begin. The following illustrates the genera
form of the real-time loop.

Loop forever
I new control parameters are available
Modify parameters
Endif
For each control loop
IT a new setpoint parameter is available
Modify the setpoint parameter
Endif
Perform output computations
Perform other control functions
Send outputs
End for
End loop forever

The real-time update loop runs continuoudly until it is stopped by DAPL. The loop is
structured as a nest of two loops, with efficient updates in the inner loop, and
relatively infrequent operations which require more computation in the outer loop.

The pid_tune function is used to adjust PID parameters during real-time operation.
Some computation is required to do this, so the adjustments should be done in the
outer loop. Frequent coefficient adjustments could limit the rate at which the
application can run. Some strategies to minimize the impact of parameter changes on
latency and overall speed include:

* Use fixed parameter values.

« Avoid installing parameters when there have been no parameter changes.

* Perform several inner loop passes before installing new parameters.

« If numerous parameter changes must be installed, try to spread the installation

over time, rather than installing everything at once.

When updating PID parameters, all of the values in the PIDCOEF structure must be
valid. If you wish to change parameters, you must save the contents of the PIDCOEF

Real-Time Control 117

structure, modify the fields which are to change, and pass the modified structure to the
pid_tune function.

Most PID applications use a fixed setpoint, or at least a setpoint which is adjusted
infrequently. The setpoint is established along with all of the other PID parameters
when pid_tune is called. Other applications, which require frequent or continuous
updates of the setpoint, can use the pid_set_setpoint function to dynamically
change the setpoint without affecting the other parameters. This function is much
faster than installing the full set of PID parameters, but unnecessary calls still should
be avoided.

The function pid_compute is used in the inner loop to compute PID output
corrections and update the internal state of the controller. This function is called once
for each pass of the inner control loop. The parameters are the current value of the
controlled system's output and the P1D structure to be updated. The returned value is
the computed PID control output value. This value can be modified as needed before
being sent. The fina result is written to a DAC using the dac_out function.
Asynchronous DAC output is used, to avoid the data buffering and long response
latencies introduced by sustained synchronized output.

Low-latency PID Response

The section show an example for a single high-performance PID loop, using a
minimal configuration for lowest response latency.

The SP1D2 command has the following requirements:
* It operates on asingle PID control loop.
* It uses the output sign conventions of the DAPL P1D command.
* Its control parameters are fixed when the application is compiled.
* It reads each datum individually.
* It sends control output directly to the DAC channel.
* It startsfrom a zero initial state.
* It runs continuously after startup.

The SP1D2 parameters are defined as follows:
SPID2 (<in_pipe>, <dac_out>)

<in_pipe> word pipe, feedback from system outputs
<dac_out> word constant, DAC address for control output

This command does not make control parameter adjustments and it does not perform
any supplementary control functions. The parameters are all pre-defined, built into the

118 Real-Time Control

custom command in a static PIDCOEF structure. Once the PI1D structure is initialized
and the pipes are opened, the custom command reads each feedback sample, computes
aresponse, and updates the analog output.

Real-Time Control 119

Thefollowing isalisting for the SP1D2 command:

120 Real-Time Control

// SP1D2(pq, vdac)

// Fixed, single-loop PID control command with

// minimum latency

// - tuning parameters fixed at compile-time
// - reads system output feedback from "pl*
// - control output sent to DAC "vdac”

//

#define FOREVER 1

#define OKAY 0

#define INITIAL_STATE O

static PID * PID_block ;
static PIDCOEF coeffs =
{
10000, /* setpoint */
1000, /* pl; */
100, /* p2; */
4, /* il; */
100, /* i2; */
200, /* di; */
100, /* d2; */
0, /* clamp_lo; */

} s

24000 /* clamp_hi; */

int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;

Pl

PE * iIn_pipe;

short int dac_id;
GENERIC_SCALAR pipe_value;

// Access parameters

argv =

T PIPE_W, T _CONST W);

in_pipe = (PIPE *) argv[1];
dac_id = *(short int *) argv[2];

param_process(plib, &argc, 2, 2,

// Perform initializations
pipe_open(in_pipe,P_READ);

PID_block = pid_open(INITIAL_STATE);

Real-Time Control

121

pid_tune(PID_block, &coeffs);

// Begin continuous processing
while (FOREVER)

{
pipe_value_get(in_pipe,&pipe_value);
dac_out (dac_id ,
pid_compute(PID_block,pipe_value._116));
3
return 0O;

}

Efficient Control of Multiple Loops

In contrast to the SPID2 command, which controls a single PID loop, the BP1D2
command updates a group of PID control loops. In each pass through the real-time
loop, each PID in a"block" of PID controls is updated once. The response latency is
approximately equal to the time to collect all of the samples. The delay alows all PID
computations to be performed together, very efficiently, by asingle task. It also allows
the update computations to proceed in parallel with acquisition of the next data block.
The latency and processing speed are much better than would be achieved by an
equivalent number of independent DAPL PID1 tasks.

The BP1D2 command has the following requirements:
* It operates on a block of PID control loops, configurable at task startup.
* It uses the output sign conventions of the DAPL P1D command.
* It operates with fixed control parameters and setpoint.
* It uses blocked pipe operations to efficiently read system feedback signals.
* It sends control outputs directly to DAC channels.
* It runs continuoudly after startup.
* It runsin parallel with other DAPL tasks.

The BP1D2 parameters are defined as follows:

BPID2 (<in_pipe>, <parameter_pipe>, <blocksize>
<dac_vector>)

<in_pipe> word pipe, feedback from system outputs
<parameter_pipe> word pipe, source of parameter data
<blocksize> word constant, the number of PID loops
<dac_vector> word vector, port numbers of output DACs

122 Real-Time Control

The command does not perform any supplementary control functions. It uses fixed
setpoint and parameter values, a pipe as a source of data for initializing PID
parameters, and a set of samples from the controlled systems for initializing the P1D
structures.

The following describes the initialization logic.

INITIALIZE PID PARAMETERS
Fetch one block of samples from the input pipe.
For each PID loop
Allocate and initialize PID structure
End for
While PID coefficients remain in the parameter pipe
Fetch a group of PID parameters from parameter pipe
Apply PID parameters to the specified loop
End while
End INITIALIZE PID PARAMETERS.

The BP1D2 command obtains all configurable parameters from a single data pipe,
using normal Developer's Toolkit for DAPL pipe functions. Parameters for each PID
loop are read from the pipe together, as a unit. A specia "tag" number precedes them,
identifying the PID loop to which the parameters apply. A composite data structure,
consisting of the special "tag" and the PIDCOEF data, is used to access the parameter
data directly from the input buffer.

The BPI1D2 command does not use the parameter input pipe after initiaization is
completed. Other commands which alow parameter changes would use the
pipe_num function in the real-time loop at appropriate intervals to see whether new
parameter groups have appeared.

The following listing shows the source code for the BP1D2 command.

Real-Time Control 123

// BPID2 (pl, p2, n, vdac)
// Blocked-PID real-time control command

// - reads control parameter data from "p2*

// - reads system output feedback from "pl*

// - controls "n® PID loops

// - sends control outputs to DACs specified by "vdac*

#define i1MaxPIDLoops 64
#define FOREVER 1
#define OKAY 0
static PID * PID_blocks [iMaxPIDLoops] ;

struct tagged_PIDCOEF {

int tag;
PIDCOEF coeffs;
};

void real_time_updates(PBUF * inpipe, VECTOR * outDACs,
int size);

// BPID2 command main routine.
int _ _stdcall ENTRY (PIB **plib)

// Storage for parameters
void **argv;
int argc;
PIPE * in_pipe;
PIPE * param_pipe;
VECTOR * DACs;
int blocksize;

// Storage for processing
int channel;
PBUF * coef_buf, * in_buf;
short int * samples;
struct tagged_PIDCOEF * coeff_set;
PID * current_PID;

// Access parameters

argv = param_process(plib, &argc, 4, 4,
T _PIPE_W, T _PIPE_W, T_CONST_W, T_VECTOR_W);

124 Real-Time Control

in_pipe = (PIPE *) argv[1];
param_pipe = (PIPE *) argv[2];
blocksize = * (short int *) argv[3];
DACs = (VECTOR *) argv[4];

// Perform initializations
/* Check blocksize */
if (blocksize <1 || blocksize > iMaxPIDLoops ||
vector_length(DACs) != blocksize)
param_error();

/* Prepare for fetching feedback data blocks. */
pipe_open(in_pipe,P_READ);

in_buf = pbuf_open(in_pipe,blocksize);
pbuf_set_min_cnt(in_buf,pbuf_get_max_cnt(in_buf));

/* Prepare pipe for reading one tagged_PIDCOEFF */
pipe_open(param_pipe,P_READ);
coef _buf = pbuf_open(param_pipe,
sizeof(struct tagged_PIDCOEF)/2);
pbuf_set_min_cnt(coef_buf,pbuf_get _max_cnt(coef_buf));
coeff_set = (struct tagged_ PIDCOEF *)
pbuf_get_data_ptr(coef_buf);

/* Fetch one input sample block to initialize */
pbuf_get(in_buf);
samples = (short int *) pbuf _get _data ptr(in_buf);
for (channel=0; channel<blocksize; ++channel)
{
current_PID = pid_open(samples[channel]);
PID_blocks[channel] = current_PID;
by

/* Read parameter data and apply to the PID loops. */
while (pipe_num(param_pipe))

{
pbuf_get(coef_buf);
channel = coeff_set->tag;
if (channel < 0 || channel >= blocksize)
continue;
if (pid_tune(PID_blocks[channel],
&(coeff_set->coeffs)) 1= OKAY)
param_error();
}

Real-Time Control 125

// Begin continuous processing. Does not return.
real_time_updates(in_buf, DACs, blocksize);
return O;

} // End of BPID2 main function

// Real-time update loop for PID control.
//
void real_time_updates (PBUF * in_buf, VECTOR * DACs,
int blocksize)
{
short int * samples;
short int const * outputs;
int channel;

samples (short int *) pbuf_get_data_ptr(in_buf);
outputs = (short int *) vector_start(DACs);

while (FOREVER)
{
pbuf_get(in_buf);
for (channel=0; channel<blocksize; ++channel)

{
dac_out (outputs[channel] ,
pid_compute(PID_blocks[channel],
samples[channel]));
ke

} /* End real-time update loop */
} 7/ End of real-time function

126 Real-Time Control

11. Tips and Techniques

This chapter provides some tips, ideas, and advanced techniques for custom module
development.

Names: Module, DAPL and C++

The DAPL system imposes new constraints on name visibility. To help distinguish
these, the various namespaces are briefly summarized here.

Names can have the following kinds of visibility in a C++ programming environment.
« code block visihility. Elements have automatic storage class. The names go out of
scope at the end of the block. Formal parameters for afunction can be considered
this visibility type, as parameter names go out of scope at the end of a defining
code body.

» class member visibility. Thisincludesthe struct as a specia case. Header files
declare the member names and specify private, public, and protected
properties restricting access privileges.

e C++ namespace visihility. A namespace allows name visibility restrictions that
can apply to multiple sections in multiple modul es. Declarations of names and
namespaces are usually shared through inclusion of one or more header files.

* Items outside of class member definitions, code blocks and namespace sections,
and declared to be static, arevisible within one source code compile-unit.

» Names not restricted by class or namespace, and not limited in scope by a static
property, are visible globally. Global scope is equivalent to an entire
downloadable DAPL module. Sharing of namesis usually through inclusion of one
or more header files.

Names in the C++ environment are not visible to the DAPL environment unless these
names appear in an explicit named list of exported names. The list is collected
automatically by the compiler tools. Interaction between the environments requires
reserving the listed namesin each.

Names in the DAPL system are determined by the compile-time configuration and by
data content of downloadable modules. The module name is provided by the compiler.
The command names are obtained from a modul €' s data through the ModuleInstall
activation protocol, executed when the module is loaded. The module names and the
command names are recorded in the DAPL system, equivalent to configuration-
defined symbols for processing procedures, data pipes, or shared variables.

Tips and Techniques 127

Because the DAPL system namespace is isolated from the module namespace, task
parameters are shared at runtime through distribution of handles, not through visible
names. Values received via the handles can be assigned to any appropriate namein the
module namespace.

For example, suppose that the pointer variable VARL1 is declared in one of the source
code units:

static short int volatile *VAR1;

The name VAR1, visible with compile-unit scope, establishes a pointer that can point
to a 16-bit word of storage. The DAPL system command

VARIABLE VAR1=4

defines a DAPL variable named VAR1, which references a word of storage in the
DAPL system environment. Although the module code and the DAPL system are
using the same name, this does not imply that the VAR1 name in the C++ environment
automatically points to the VAR1 storage in the DAPL environment. To establish a
connection, the DAPL variable must be passed as a parameter via a DAPL task
configuration. The command code must use the parameter handle to initialize access
to the VAR1 pointer:

VAR1 = (short int volatile *) argv[1l];

After this statement is executed, the command’s VAR1 in the C namespace does refer
to the same storage location as the VAR1 variable defined in the DAPL system
environment. For example, the following C statements change the value of the DAPL
variable VAR1 in the shared DAPL environment from 4 to 7:

varl = (VAR *) argv[1l];
*varl = 7;

Debugging Custom Commands

The DAPL operating environment is more demanding than the environment of a
typical PC application. The DAPL operating system often has several tasks executing
shared command code, using different data streams. Furthermore, execution of a
custom command often is subject to severe timing constraints; a custom command
must process data efficiently and respond rapidly to external events.

Traditional debugging tools are not well suited to debugging downloaded commands.
DAPL multitasking executes hundreds of different code fragments every second; and

128 Tips and Techniques

this activity is very difficult to trace. A debugger aso tends to sow execution; this has
undesirable effects in areal time operating system and can introduce spurious timing
errors that in themselves are sufficient to fault the execution of the system. In short,
there is little hope of getting any help from debugging tools. Your best strategy is to
avoid bugs. Those who favor a chop-and-try development style should be prepared for
a hard ride. Good module design and careful code review should eliminate bugs
before the code is run for the first time.

System routines are not able to check their input parameters for validity. Incorrect
pointers are a common source of problems. There is some protection from pointer
errors, but it is not comprehensive. For example, the compiler will most likely place
two static arrays in the same address space, so an indexing error in one array could
cause damage in the other. A PIPE handle where a PBUF handle was expected might
seem to produce correct results, but the damage might not be detected until much later
with something that seems completely unrelated.

During custom command debugging, it often is useful to send intermediate results to
the PC using the function printf. For example, in a preliminary test run, add
printf function calls to display the values of extracted parameters, then terminate the
task with exit. Log or display the text output. Improperly initialized values will
usually be obvious. Getting this far indicates correct connections to the DAPL system,
and this eliminates a major element of uncertainty. Once this test is passed, remove
the temporary displays.

During real-time operation, some commands must respond too rapidly to allow
execution of a printf function. In these cases, an indication of progress can be sent
to the 16-bit digital output port of the Data Acquisition Processor, using the function
digital_out. For example, if the output codes indicate locations in the run-time
loop and the values on the port “freeze” this indicates the code location where the
processing deadlock occurs.

Examining Task Scheduling

The Data Acquisition Processor constantly gathers statistics about how much CPU
time various tasks use. Thisinformation is useful for analyzing CPU utilization.

The DAPL command TASKSTAT has two forms, TASKSTAT CLEAR and TASKSTAT
STATUS. TASKSTAT CLEAR resets al the CPU time statistics to zero. Issue this
command after starting command processing. TASKSTAT STATUS shows statistics
about the amount of CPU time used by each task, from the time of the last TASKSTAT
CLEAR command.

Tips and Techniques 129

A TASKSTAT STATUS command might report something like the following:

Task CPU Time Used (in ms)

DAPL 394
OVR_CHK 0
UND_CHK 0
INF_TSK 0
CFG_TSK 0
MEM_TSK 407

ALARM 2413

PID1 3645

system idle/overhead 4869
Average task cycle latency (in us): 210

The first six tasks are system tasks that always are defined. The ones that are never
scheduled show zero CPU time used. CPU utilization for system activities such as
communication and configuration is covered by *DAPL*. The ALARM and PID1
tasks can be seen to consume portions of the processing time. CPU time that is
consumed by task switching and searching for tasks to schedule is covered by the
system idle/overhead category.

The functions pipe_get, pbuf_get, task_pause, and trigger_wait suspend
task processing when no data are available. If a task does not seem to use much CPU
time, check whether it is waiting for data or waiting for some other event to occur
rather than completing its computations. If a task seems to be usng a
disproportionately large amount of CPU time, check whether it is wasting time
looking for something to do when it should be releasing the CPU for other processing.

Using Assembly Language in Custom Commands

If certain critical processing must be done with extreme efficiency, these portions of
the custom command can be coded in assembly language.

One way is to inject assembly directly into C code, using the _asm directive. Thisis
not necessarily as efficient as it would first seem. Some compiler optimizations are
disabled when inline assembly code is present. Also the compiler might generate an
excessive amount of register protection code as safety, even when this has no
beneficial effect in practice. Have the compiler generate an assembly listing and check
whether inline assembly code is effective or abad idea.

The linker allows command code to call functions declared extern “C” and
separately implemented in an Assembler module. See your compiler manuals for

130 Tips and Techniques

information about mixed language programming. This is more work to set up, but
provides complete control over code efficiency.

Note: Assembly language custom command programming is recommended only for
advanced programmers. The following guidelines must be followed when writing
assembly language functions for command modules.

Modulesrun in aflat environment. The segment registers DS, ES, and SS are
configured for the module runtime environment and must not be changed.
The FS and GS registers must never be altered for any reason, because these are
dedicated to system tasking and hardware access.
If the string-operation direction flag is set, this flag should be cleared before
leaving the assembly language routine.
Recommended module configuration directives:

.486

OPTION SEGMENT :USE32

-.MODEL flat, stdcall
Y ou can use the .CODE and .DATA directivesto identify executable and data
segments, respectively.
STDCALL conventions are suggested but not mandatory.
Extended features of the PROC directive can be used to generate the parameter
access prologue and stack cleanup epilogue code automatically, for example:

quick_swap PROC NEAR STDCALL PUBLIC \
USES eax ebx ecx edi, \
source:DWORD, dest:DWORD

Assembly code must not generate software interrupts.

Assembly code must not attempt to access BIOS features, since the code does not
run in a PC environment.

A CL1 instruction does not guarantee that interrupts will be masked, since some
Data Acquisition Processors use the nonmaskable interrupt (NM1). Interrupts can
be masked and unmasked with the functions sys_mask_interrupts and
sys_unmask_interrupts. Masking interrupts is extremely dangerous.
Interrupts must not remain masked for more than afew CPU clock cycles or
operating system failures will occur. If you think that your application requires
interrupt masking, contact Microstar Laboratories for information specific to your
software and hardware configuration.

Tips and Techniques 131

Building Modules with Multiple Commands

Downloadable modules can contain multiple commands. This makes it possible for
commands to share common code and data elements. For example the DAPL IFM
module (Infinite impulse response Filtering Module) on the Microstar Laboratories
DAPtools Standard CD-ROM provides a family of digita filters. How many filter
computation functions do you think are used by the various filtering families? Y ou are
correct if you guessed that thereis only one.

The following listing shows the command registration section for a module that
contains two commands.

#include "DTD.H"
#include "'DTDMOD.H"
#define TRUE 1
#define FALSE O

int _ stdcall MYCOPY_entry(PIB **plib);
int _ stdcall MYLCOPY_entry(PIB **plib);

int _ stdcall Modulelnstall(void *hModule)

if (Commandlnstall(hModule, "MYCOPY",
MYCOPY_entry, NULL) &&
CommandInstall (hModule, "MYLCOPY",
MYLCOPY_entry, NULL))
return TRUE;
return FALSE;

}

The convenient naming macros cannot be used here, because each command must
have a different name. Instead of one command implementation function, two
functions are declared. Instead of one CommandInstall function call, there are two
calls. The results from the two calls to CommandInstal I are combined with alogical
AND operator to test the overall success of the install process.

The bodies of the MYCOPY_entry and MYLCOPY_entry commands have no unusual
features and are omitted from the listing above. The complete listing is provided in the
DTD32\EXAMPLES\MULTIPLE.CPP file. That would be a good place to start when
building a new multiple-command module.

132 Tips and Techniques

12. Data Acquisition Runtime Library

This chapter describes the system routines provided by the Developer's Toolkit for
DAPL. When the functions are available only for specific versions of the DAPL
system or specific DAP models, the description will contain a section titled
“ Restrictions’ that describes the limitations.

Service Overview

Pipe Operations

pipe_get get afixed-point value from a pipe
pipe_value_get get ascalar value from a pipe

pipe_num determine whether a pipe contains data
pipe_num_complete return the number of datain a pipe

pipe_open open apipe

pipe_purge remove all datafrom a pipe

pipe_put put a fixed-point value into a pipe
pipe_value_put put a scalar valueinto a pipe

pipe_rem remove a fixed number of data values from apipe
pipe_width return the width of a pipe

Pipe Buffer (PBUF) Operations

pbuf_open allocate and open a pipe buffer control block
pbuf_get get ablock of data from a pipe and report count
pbuf_put put a block of datainto a pipe
pbuf_put_set_cnt set data count and put a block of datainto a pipe
pbuf_get_cnt determine the current data count
pbuf_get_data_ptr fetch the pipe buffer storage pointer
pbuf_get_max_cnt fetch the maximum data count
pbuf_get_min_cnt fetch the minimum data count

pbuf_set_cnt set the current data count
pbuf_set_data_ptr set the pipe buffer storage pointer
pbuf_set_max_cnt set the maximum data count
pbuf_set_min_cnt set the minimum data count

Data Acquisition Runtime Library 133

Data Access

param_error

param_error_msg

param_process
param_type
free

malloc

ralloc

rfree

Vectors

vector_length
vector_start
vector_type
vector_width

Task Control

exit
task_pause
task_switch

Text Formatting

atof
printf
fprintf
sprintf
sscanf

generate error message and terminate task
generate task error message and terminate task
locate task parameters and check types

test atask parameter type

release dynamically allocated storage
dynamically allocate storage

dynamically allocate task storage

release dynamically allocated storage

determine the length of a DAPL vector

obtain a pointer to DAPL vector data

return the type of data contained by the DAPL vector
return the size of one data element in the DAPL
vector

terminate a task
pause for a specified time
release the CPU

convert an ASCII string to a float
format and print a string

format and print a string

format a string

parse a string

Asynchronous Device Output

dac_out
digital_out

send a value to a digital-to-analog converter
send avalue to adigital output port

digital_set_bit
digital_toggle_bit

set asingle bit of adigital output port
toggle the state of asingle bit of adigital output port

134 Data Acquisition Runtime Library

Triggers

trigger_get
trigger_get_immediate
trigger_get_opmode
trigger_get_property
trigger_get_status
trigger_num
trigger_open
trigger_put
trigger_set_status
trigger_updt_put
trigger_updt_status
trigger_wait

FFT

Fft_chngbuf
ffe_init
FFt_postop
FFt_request

Digital Filters

Ffir_advance
Fir_change
Fir_init
Fir_request

PID Feedback Control

pid_open
pid_preset
pid_set_setpoint
pid_tune
pid_compute

Data Acquisition Runtime Library

return next available trigger assertion
return assertion or status immediately
return atrigger's operating mode
return atrigger's property value
return atrigger's current status count
determine if an assertion is present
initialize atrigger

place an assertion into atrigger

set atrigger’s status field

increment atrigger’'s status then assert
increment atrigger’s status field

wait for atrigger assertion

modify FFT data pointers
definean FFT

apply post-processing to FFT result
initiate FFT processing

bypass selected FIR filter computations
modify FIR characteristics

definea FIR filter

initiate FIR filter processing

open and initialize aPID

establish a pre-determined PID operating state
adjust PID setpoint

set PID coefficients

compute new PID state and output

General Math

icosine return the integer cosine of an integer value
icoswave build an array of integer cosine values
icplxwave build an array of integer sinusoid complex values
isine return the integer sine of an integer value
isinewave build an array of integer sine values

isqrt return the integer square root of an integer value

Requests to Command Interpreter

sys_exec_command send a command to the DAPL system interpreter
sys_get_info return system information

sys_get_time return the current time

sys_get_version return the DAPL version number

Compiler Runtime Functions

The genera rule for compiler runtime library functions: if a DAPL downloadable
module calls these functions and builds correctly it will work correctly at runtime.
However, do not expect any runtime library functions to work a-priori. Beyond the
fact that there are no assurances of suitability for any purpose in the origina PC
environment, most functions in the compiler run-time libraries depend upon
unavailable features such as file system, memory management, screen displays,
exception handlers and so forth. Microstar Laboratories cannot guarantee
compatibility or correct operation of any functions in the compiler run-time libraries.
Unresolved name references, function parameter inconsistencies, and various syntax
errors will clearly indicate when a problem exists, though it might not be clear which
function or functions originated the problems. If you wish to try using compiler run-
time library code, check the functionsindividually, and if they seem to work, use them
at your discretion.

136 Data Acquisition Runtime Library

The Standard C mathematical functions are supported by the DAPL system. The
implementations are very efficient and are shared by al command modules and the
DAPL system kernel. Do not include the compiler’s math.h or errno.h files. The
equivalents of these are provided by the DTD.H and associated files.

Math functions that are supported but not covered by the C standard include the
following:

acosh asinh atanh
cosh sinh tanh

Data Acquisition Runtime Library 137

atof

Convert an ASCII string to a double precision floating point value.

double atof (
const char *string // Pointer to numeric text

);

Parameters
string
A sequence of charactersthat can be interpreted as a numeric value.

Return Values
The function returns a double precision floating point value. If the input string has
anincorrect form, the function atof returns the value 0. 0. The return valueis
undefined in case of floating point range errors.

Description
The function atof converts a number represented by a character string to a double
precision floating point value. The input string is a sequence of characters that can
be interpreted as a floating point numeric value. The string must have the following
form:

[sign] [digits]. [digits] [exponent]
Leading or trailing space and/or tab characters are ignored. sign is an optional plus
(+) or minus (-) . digits areone or more decimal digits. At least one digit must

be present. The optional exponent consists of an introductory letter e, or E and an
optionally signed decimal number.

138 Data Acquisition Runtime Library

dac_out

Send avalue to a digital-to-analog converter asynchronousdly.

void dac_out (
int dac_number,
int data

);

Parameters
dac_number
A number specifying the digital-to-analog converter channel. This number is 0 or
1 for the analog output ports on the Data Acquisition Processor. Larger numbers
can be used when analog expansion hardware is connected to the Data
Acquisition Processor.

data
A 16-bit number representing the desired output voltage.

Return Values
Thereis no return value.

Description
The function dac_out sends a value to a digital-to-analog converter. See the
chapter "Voltages and Integers" in the DAPL manual for an explanation of how 16-
bit numbers convert to analog output voltages.

If external analog output expansion hardware is connected to the Data Acquisition
Processor, DAC channel numbers greater than one may be specified. DAC output
expansion is enabled using the DAPL OUTPORT command.

The function dac_out updates the digital-to-analog converters immediately when it
executes. Thisimmediate response makes dac_out useful in low latency
applications. However, it also means that update times depend on the execution
scheduling for the custom command task. Task scheduling depends on the activities
of all other tasks in the multi-tasking DAPL operating system so DAC updates
produced by this function do not typically appear at regular intervals over time. For
precise timing between DAC updates, it is recommended that a custom command
write DAC data to an output channel pipe. An output procedure then can read the
channel data and update the DAC synchronously.

Data Acquisition Runtime Library 139

digital_out

Send 16 data bitsto adigital output port.

void digital_out (
int port_number,
int data

);

Parameters
port_number
A number specifying the digital output port. This number is O for the digital
output port on the Data Acquisition Processor. Larger numbers can be used when
digital expansion hardware is connected to the Data Acquisition Processor.

data
16 bits of data.

Return Values
Thereis no return value.

Description
The function digital_out sends sixteen hits of datato the specified digital output
port.

If external digital output expansion hardware is connected to the Data Acquisition
Processor, digital port numbers greater than zero may be specified by the digital
output functions. Digital output expansion is enabled using the DAPL OUTPORT
command.

The function digital_out updates the digital output port immediately when it
executes. Thisimmediate response makes digital_out useful inlow latency
applications. However, it also means that update times depend on the execution
scheduling for the custom command task. Task scheduling depends on the activities
of all other tasks in the multi-tasking DAPL operating system so DAC updates
produced by this function do not typically appear at regular intervals over time. For
precise timing of digital output port updates, it is recommended that a custom
command write digital output data to an output channel pipe. An output procedure
then can read the channel data and update the digital output port synchronously.

140 Data Acquisition Runtime Library

digital_set_bit

Set asingle bit of adigital output port.

int digital_set_bit (
int bit_number,
int data

);

Parameters
bit_number
Bit identifier number. The valueisin therange 0 to 15 for digital port BO, in the
range 16 to 31 for digital expansion port B1, etc.

data
Thisvaue must be 0 or 1.

Return Values
The function digital_set_bit returns the previous state of bit bit_number.

Description
The function digital_set_bit setsthe state of bit bit_number of the digital
output port to the value of data, whichisOor 1.

Bit number 0 isthe least significant bit of the digital output port. If external digital
output expansion hardware is present, the value of bit_number can exceed 15.
Digital output expansion is enabled using the DAPL OUTPORT command.

Note: The digital_out function should be called to initialize the bit values on the
digital port before calling this function. The value returned by digital_set_bit
is undefined on power-up and after aRESTART command.

See Also
digital_out

Data Acquisition Runtime Library 141

digital_toggle_bit

Toggle the state of asingle bit of adigital output port.

int digital_toggle_bit (
int bit_number

);

Parameters
bit_number
Bit identifier number. The valueisin therange 0 to 15 for digital port BO, in the
range 16 to 31 for digital expansion port B1, etc.

Return Values
The function returns the previous state of bit bit_number. The return valueis 0 or
1

Description
The function digital_toggle_bit toggles the state of bit bit_number of the
digital output port. If the current state of the digital output bit is one, the digital
output is set to zero. If the current state of the digital output bit is zero, the digital
output is set to one. The function returns the state of the bit asit was prior to the
toggle operation.

Bit O istheleast significant bit of the digital output port. Digital output expansion is
enabled using the DAPL OUTPORT command.

Note: The digital_out function must be called to initialize the bit values on the
digital port before calling this function.

See Also
digital_out

142 Data Acquisition Runtime Library

exit

Terminate a task.

void exit (
int exit_code

);

Parameters
exit_code

A number that is reported to the DAPL system upon task termination

Return Values
Thereis no return value.

Description
The function exit causes atask to terminate.

The exit code parameter value indicatesto the DAPL system areason for task
termination. The usua values are O to indicate no errors and 1 to indicate an
abnormal condition. Only the low-order eight bits are meaningful to the DAPL
system, so error code values should be in the range 0 to 255.

After atask calls exit, the DAPL system does not schedule the task for execution,
but the task continues to appear on lists of active tasks produced by the DAPL
command TASKSTAT. The task does not rel ease temporary storage or local
variables. Storage deallocation is not performed until a DAPL command STOP is
executed.

Data Acquisition Runtime Library 143

fft_chngbuf

Modify FFT data pointers.

void fft_chngbuf (

FFTB * fft, /I FFT control block handle
shortint * real, // Pointer to storage
shortint * iImag // Pointer to storage
)i
Parameters
fft

Pointer variable containing a handle for the FFT control block to be modified.
real

Pointer to data storage for real-valued terms.
imag

Pointer to data storage for imaginary-valued terms.

Return Values
Thereis no return value.

Description
The function £Ft_chngbuf changes the real and imaginary data pointers previously
installed in an FFTB. The control block isidentified by the handle Fft. This
function allows a single FFTB to refer to data blocks from multiple data streams. The
change takes effect with the next operation that uses the specified FFTB.

See Also
fFL_init

144 Data Acquisition Runtime Library

fft_init

Define an FFT.

FFTB *fft_init (
int size,
short int *realbuf,
short int *imagbuf,
unsigned long window,
int direction,
int solver,
int post,
int options

);

Parameters
size

// Pointer to storage

// Pointer to storage

/I Enumeration pointer
/I Enumeration

/I Enumeration

/I Enumeration

/I Bit mask

The length of the FFT and required data areas. It specifies the number of complex
input items N, where N = 2 for integer M in the range 2 to 14. This range may
be restricted for particular Data Acquisition Processor models and certain DAPL

Versions.

realbuf

Pointer to a data storage area for real-valued terms.

imagbuf

Pointer to a data storage area for imaginary-valued terms. The imagbuf pointer
can be null if imaginary data storage is not needed for either input data or output

data.

window

Either awindow operator predefined enumeration, or a pointer to an array of
length size containing the 32-bit values defining a window operator. The

predefined enumeration codes include the following:

WINDOW_RECTANGULAR
WINDOW_HANNING
WINDOW_HAMMING
WINDOW_BARTLETT
WINDOW_BLACKMAN

Data Acquisition Runtime Library

145

Optionally, this parameter can specify a pointer to an array of long values
explicitly defining a window. Cast the pointer to an unsigned long type.

direction
One of the following codes:

FFTDIR_FORWARD
FFTDIR_REVERSE

solver
One of the following codes:

FFTSOLN_FAST
FFTSOLN_ACCURATE

post
One of the following codes:

FFTPOST_DEFER
FFTPOST_REAL
FFTPOST_CPLX
FFTPOST_POWER
FFTPOST_NORMPOWER
FFTPOST_MAGNITUDE
FFTPOST_MAG_PHASE

options
“Flag” bitsthat are combined using bitwise OR operations to select additional
processing options. One option from each of the three groups may be selected:

FFT_REALIN
FFT_CPLXIN

FFT_SEPARATED
FFT_PAIRWISE

FFT_HALFOUT
FFT_FULLOUT

Return Values
The function returns a pointer to a FFTB configuration block, which is used by all
other FFT functions.

146 Data Acquisition Runtime Library

Description
The function £Ft_init alocates an FFT control block structure and initializes it
with the options that define the characteristics of the FFT and its related operations.
The actual operations are performed separately.

The realbuf and imagbuf parameters specify pointers to data storage areas for
real-valued and imaginary-val ued terms respectively. The imagbuf pointer can be
NULL if imaginary data storage is not needed for either input data or output data.
The £Ft_request function will fetch input data using these pointers. Depending on
processing options, it also uses the same storage for returning results.

The storage must be allocated by the custom command, and must cover al input and
output requirements. The ral loc function can be used to obtain storage blocks. The
number of items to reserve is sometimes but not always equal to the number
specified by the size parameter. Some examples:

» Complex input data. When the input datais complex and stored in multiplexed
fashion using the FFT_PAIRWISE option, both real and imaginary terms are
provided by one data source, the realbuf array. The realbuf array requires 2 *
sizeterms.

« Half-length output data. With processing options FFT_HALF and FFT_CPLX, the
number of real input terms equals size, but after transforming, 1/2 * size
terms each are used for storing the real and imaginary results.

 Power output post-processing. Using real input data and the post-processing
options FFTPOST_POWER and FFT_FULLOUT, the number of termsreturned is
size, but the datatypeis long int rather than int. The realbuf array must
allow for 2 * sizetermsrather than size termsin its memory allocation.

The window parameter specifies either a pre-defined enumeration code for a
window operator or a pointer to an array of length size containing window operator
terms. The DAPL system can distinguish pointer values from enumeration codes, so
the meaning of the parameter is unambiguous. Unfortunately, C syntax does not
allow parameter type overloading, so a choice must be made between an unsigned
long int or apointer type. The function FFt_init requiresthe unsigned long
type. If acustom window vector is used, type cast the array storage pointer to an
unsigned long type to satisfy the compiler.

The direction parameter specifies aforward transform, typically used for
transforming from time-domain data to frequency-domain, or areverse transform,
typically for transforming from frequency-domain data to time-domain.

The solver parameter allows a selection of computational methods, one optimized
for speed and with noisy data, the other optimized for accuracy with clean, precise
data

Data Acquisition Runtime Library 147

The post and options parameters provide additional control over the
representation of the input data and the output results.

See Chapter 9 for more information about the meaning and application of the
various configuration options.

See Also
fft_request, ralloc

148 Data Acquisition Runtime Library

fft_postop

Apply post-processing to an FFT result.

int fft_postop (
FFTB *fft, /I FFT control block handle
short int *realbuf, // Pointer to storage
short int *imagbuf, // Pointer to storage
int post,
int options

);

Parameters
frt

Pointer variable containing a handle for the FFT control block to be used.

realbuf
Pointer to a data storage area for real-valued terms.

imagbuf
Pointer to a data storage area for imaginary-valued terms.

post
One of the following codes:

FFTPOST_REAL
FFTPOST_CPLX
FFTPOST_POWER
FFTPOST_NORMPOWER
FFTPOST_MAGNITUDE
FFTPOST_MAG_PHASE

options
“Flag” bits that are combined using bitwise OR operations to select additional
processing options. One option from each of the three groups may be selected:

FFT_SEPARATED
FFT_PAIRWISE

FFT_HALFOUT
FFT_FULLOUT

Data Acquisition Runtime Library 149

Return Values
The function returns a nonzero error code if a parameter error is detected, or a0
code if the operation is compl eted.

Description
The function £Ft_postop performs post-transform processing on an FFT result
after FFT computations are completed but before a subsequent FFT is performed
using the same FFTB configuration block. This operation allows additional
processing, beyond that which is done by the original FFT operation. It also allows
separation of input and output processing, so that input data are not replaced by
output data.

When the FFTPOST_DEFER option is selected in the call to the £#Ft_init function,
the Fft_request function does not return any data so a call to the fft_postop
function is required to make computation results available to the command.

The parameters are very similar to the processing options of the fft_init function.

The realbuf and imagbuf fields must specify pointers to data storage areas for
real-valued and imaginary-valued output terms. The custom command must allocate
sufficient storage to cover all output requirements.

The post and options parameters provide additional control over the
representation of the input data and the output resullts.

See Chapter 9 for more information about the various configuration options.

See Also
FFL_init, fft_request

150 Data Acquisition Runtime Library

fft_request

Initiate FFT processing.

void fft_request (
FFTB * fft /I FFT control block handle

);

Parameters
frt

Pointer variable containing a handle for the FFT control block to be used.

Return Values
Thereisno return value. The results of the FFT computation are returned in the FFT
control block.

Description
The function £Ft_request initiates FFT computation, using the configuration
previously established by the £Ft_init function. The custom command is required
to place the input data for the FFT operation into the storage arrays prior to making
this function call.

See Also
fFL_init

Data Acquisition Runtime Library 151

fir_advance

Bypass selected FIR filter computations.

int fir_advance (
FIRB *Fir, /I FIR filter control block handle
int count

);

Parameters
fir
Pointer variable containing a handle for the FIR filter control block to be
adjusted.

count
A value specifying the number of items to be removed from the data source.

Return Values
The function returns the number of additional items that must be removed from the
data source.

Description
The function Fir_advance is an optional function to advance data through aFIR
filter internal shift register, bypassing selected filtering operations. A normal
filtering operation removes old data from the filter, adds new data to replace them,
and then performs filter computations. The fir_advance function removesold
data, without replacing with new data, and without performing any filter
computations.

The function Fir_advance reports the number of additional items that must be
removed from the data source. If just afew items are bypassed, the filter shift
register is not emptied, the function returns the value zero, and filtering resumes
automatically when enough new data are provided by function fir_request to
refill the shift register. If the count islarger than the number of items present in the
shift register, Fir_advance reports the number of additional items that must be
skipped by the calling program before refilling the filter shift register.

The most common application of function fir_advance is data skipping, for
example, capturing data at a high sampling rate to preserve high frequency

152 Data Acquisition Runtime Library

information, but eliminating large blocks to avoid excessive data volume. Another
application is specialized decimating filters.

See Also
fir_request

Data Acquisition Runtime Library 153

fir_change

Modify FIR characteristics.

int fir_change (

FIRB *fir, /I FIR filter control block handle
shortint * coeffs, I/l Pointer to coefficient array
int Iength,

int scale,

int decimate

);

Parameters
fir
Pointer variable containing a handle for the FIR filter control block to be
modified.

coeffs
An array containing the coefficients that determine the computational
characteristics of thefilter.

Iength
A value specifying the number of termsin the coeffs array, up to 1024.

scale
A value specifying an optional non-negative scaling constant.

decimate
A non-negative number.

Return Values
If the function succeeds and the change isinstalled successfully, the return value is
0. If the space previoudly alocated for thefilter is not sufficient, or if any of the new
filter characteristics are invalid, a nonzero error code is returned.

Description
The function Fir_change changes filter characteristics after initialization by the
Fir_init function. The parameters of this function correspond to the parameters of
the Fir_init function, with the addition of the first parameter i r, which specifies
the filter to be modified. This function does not allocate a new FIRB structures.

154 Data Acquisition Runtime Library

This function should be used with care, because it can affect efficiency, output
continuity, phase and latency. For example, if the filter is made longer, the internal
shift register previoudly filled is suddenly not filled. The filter will cease generating
output values until a number of new samples are provided. Similarly, reducing the
filter length can leave the filter somewhat overfilled, causing an unexpected burst of
output results the next time afiltering operation is requested. The filter reserves
extra space for computational efficiency when it isinitialized, but efficiency may
drop if that extra space is consumed by alonger filter structure.

Changing coefficient values in coeffs data storage after initialization can interfere
with the evaluation of the filter. The only guaranteed way to "tune" coefficients
safely isto compute them in separate array storage, and then switch to the new array
with acall to fir_change.

All parameter values must be specified. If some of the parameters are unchanged,
specify the old values.

See Also
Fir_init

Data Acquisition Runtime Library 155

fir_init

Define aFIR filter.

FIRB *fir_init (
shortint * coeffs, I/l Pointer to coefficient array
int Iength,
int scale,
int decimate

);

Parameters
coeffs
An array containing the coefficients that determine the computational
characteristics of thefilter.

Iength
A value specifying the number of termsinthe coeffs array, up to 1024.

scale
A value specifying an optional non-negative scaling constant.

decimate
A non-negative number.

Return Values
The function returns a pointer containing a handle value required by all subsequent
filter operations.

Description
The function Fir_init alocatesaFIR digita filter control block structure and
initializes it with the options which define the characteristics of the filter. The actual
operations are performed separately.

The coefficients which determine the computational characteristics of the filter are
provided to the function Fir_init inthe array coeffs. The Iength parameter
specifies the number of termsin the coeffs array, up to 1024. The length of the
filter equals the length of this vector.

The scale parameter specifies an optional non-negative scaling constant. The
scaling is applied after other filter computations, dividing the intermediate filter

156 Data Acquisition Runtime Library

result by the specified amount to produce the final filter result. The scale factor must
be an exact power of 2, and must be smaller than the Iength parameter. The final
scaling operation is bypassed if the scale parameter hasavalue 1 or 0.

The decimate parameter isanon-negative number. If the decimate parameter is
greater than 1, one filter value is computed and then decimate-1 valuesare
skipped, so that decimate values are consumed for each filter output value
generated. A decimate vaue of 1 or O indicates that no decimation isto be
applied, and each input value will generate one corresponding output value.

The returned value is a handle required by all subsequent filter operations. If this
returned pointer isaNULL pointer, there is a parameter error, and the fir_init
function was unable to configure afilter as specified.

See Chapter 9 for more information about the meaning and application of the
various configuration options.

See Also
Fir_change, fir_request

Data Acquisition Runtime Library 157

fir_request

Initiate FIR filter processing.

int fir_request (

FIRB * Fir, /I FIR filter control block handle
short int * data, /I Data to be filtered
int count
);
Parameters
fir

Pointer variable containing a handle for the FIR filter control block to be used.

data
An array containing the data to which the filter is applied. Result values will
replace the original datain thisarray.

count
The number of filter input values in the data array.

Return Values
The function returns a status code. If filter computations are in progress, the
returned codeis -1. If the amount of data provided in the data array is not sufficient
to fill theinternal filter shift register, and computations cannot proceed, a0 is
returned. The function can return a positive value indicating the number of results
generated.

Description
The function Fir_request initiates digital filter computations, using the
configuration previously established by the Fir_init function. The filter operation
isapplied to data provided in the data array. The count parameter specifies how
many items are provided to the filter. Result values replace the original datain the
data array.

See Also
Fir_init

158 Data Acquisition Runtime Library

fprintf

Format and print a string.

int fprintf (
PIPE *output, I/l Pipe handle
char *format_string, // Pointer to conversion string
S /I Additional parameters
)

Parameters
output

Pointer variable containing a handle for the pipe to be examined.

format_string
A string of ASCII characters controlling the conversions.

A varying number of characters appearing after the mandatory parameters.

Return Values
The function returns the number of characters sent.

Description
The function fprintf formats characters and valuesinto a string and sends the
string to the byte output pipe specified in output. This function is similar to the
fprintf function defined in Standard C, except that the output destination isa
byte pipe rather than a STREAM. The full set of Standard C conversion codesis

supported in format_string, except for long long and long double conversions
and data types.

Note: To bound stack usage, there is a 132-character limit on the length of the final
formatted string. Be particularly careful not to format a very large floating point
number using the %¥ format conversion code.

Data Acquisition Runtime Library 159

free

Release dynamically allocated storage.

void free (
void * storage

);

Parameters
storage
The pointer to storage previously allocated by function mal loc.

Return Values
None.

Description
The function free releases storage allocations previoudly obtained using the
function mal loc. Do not call this function for memory obtained by other means.

The C++ delete and delete[] operations use this function implicitly . However,
free can be used explicitly for managing dynamically-constructed data structures of
various types.

See Also
malloc, ralloc, rfree

160 Data Acquisition Runtime Library

icosine

Return the integer cosine of an integer value.

inticosine (
short int ang

);

Parameters
ang
Aninput angle. The angleisinterpreted in radians, as a 16-bit signed fractional
multiple of Pl. Theinteger values -32768 to +32768 represent angles of (-32768
* Pl) /32768 to (+32767 * PI) / 32768. For example, an input value of 16384
represents an angle of PI/2 radians and an input value of -16384 represents an
angle of -PI/2 radians.

Return Values
The function returns the trigonometric cosine of angle ang. Theresultisin
undimensioned units, as a 16-bit signed fraction of 1.0. For example, aresult value
of 16384 represents a cosine value of 1/2.

Description
The function icosiine returns the trigonometric cosine of angle ang in a fixed-point
representation. Ideally the values -1.0 through +1.0 would be represented by the
fixed point range -32768 to +32768, but due to a non-symmetry of the processor
hardware, the value of +32768 cannot be reached. For most purposes, it is sufficient
to treat the value +32767 as the representation for cosine value 1.0.

The integer cosine computation performed by icosine is considerably faster than
the floating point cosine computation performed by the cos function in the Standard
C library. For many applications the fixed point approximation is sufficient.

See Also
icoswave

Data Acquisition Runtime Library 161

icoswave

Build an array of integer cosine values.

int icoswave (
long Itb,
long Icyc,
long 1w, /I Enumeration
long iscale,
void *storage // Pointer to data storage array

);

Parameters
Itb

The number of entries actually constructed in the table.

Icyc
A value specifying the number of samples necessary to cover one complete cycle
(two PI radians) of the wave.

Iw
A codeindicating the data type to place into storage.

iscale
A value specifying asigned scaling multiplier.

storage
A pointer to the storage location where values are to be stored.

Return Values
The function returns a Boolean error flag. The returned value is O if the dataarray is
constructed successfully, or nonzero otherwise.

Description
The function icoswave is a utility for constructing trigonometric waveform tables.
Applicationsinclude specialized transforms and signal generation.

A table with I'tb valuesis constructed in the storage location specified by pointer
storage. The Icyc parameter specifies the number of samples necessary to cover
one complete cycle (two Pl radians) of the wave. The I'tb parameter specifies the
number of entries actually constructed in the table. The I'tb value may be smaller or

162 Data Acquisition Runtime Library

greater than the Icyc parameter. For example, 1/4 cycle of a cosine wave of 2000
points, including the two endpoints bounding this interval, can be specified by
setting the Icyc parameter to (2000/4)+1.

The values are stored starting at the location specified by pointer storage. The
type of the data stored there depends on the value of the Iw parameter. If Iwis
eWaveWord, data of type short int isplaced into the array storage. If Iwis
eWavelong, data of type long is placed into the array storage.

This function does not dynamically allocate memory for the waveform data. This
allows great flexibility, but it also means that care must be taken to allocate
sufficient storage and correctly specify the storage pointer. For example, in the /4
wave example above, storage for the 501 short integer values can be requested at
task initialization time using the ral loc function:

short int *waveptr;
waveptr = ralloc((500+1)*sizeof(short int));

The values may be scaled by a signed multiplier given by the iscale parameter.
For 16-bit data, the multiplier can range from -32767 to +32767; and for 32-bit data
the multiplier can range from -2147483647 to +2147483647. The multiplier can be
interpreted as a bound on the range of the waveform, or as a binary fraction
multiplier in the range -1 to +1. An iscale parameter value of zero means that the
waveform covers the maximum range, with no scaling applied to the data.

The waveform values are represented as a fixed-point binary fraction. The most
significant bit is the sign bit, and the remaining bits are a binary fraction, with the
first bit after the binary point immediately following the sign bit.

The icoswave function returns an error code. An error condition will be indicated
if any of the following constraints are violated:

 The datatype code is neither eWaveWord nor eWavelong.
» The Icyc parameter is greater than 65536.
» The total amount of storage required for the table is greater than 32768 bytes.

Note: The greatest accuracy is obtained when the cycle length specified by parameter
Icycisequal to apower of 2 and the waveform is not scaled.

See Also
ralloc

Data Acquisition Runtime Library 163

icplxwave

Build an array of integer sinusoid complex values.

int icplxwave (
long Itb,
long Icyc,
long 1w, /I Enumeration
long iscale,
void *storage // Pointer to data storage array

);

Parameters
Itb
The number of entries actually constructed in the table.

Icyc
A value specifying the number of samples necessary to cover one complete cycle
(two PI radians) of the wave.

Iw
A codeindicating the data type to place into storage. Specify ewaveWord or
eWavelLong.

iscale
A value specifying asigned scaling multiplier.

storage
A pointer to the storage location where values are to be stored.

Return Values
The function returns an array of sinusoid values. The values are stored pairwise,
cosine term first followed by the sine term.

Description
The function icplxwave is a utility for constructing trigonometric waveform tables.
Applications include specialized transforms and signal modulation. Thisfunctionis
like a combination of the icoswave function and the isinewave function, except
that the returned values are stored pairwise, cosine term first followed by the sine
term, rather than in separate areas.

164 Data Acquisition Runtime Library

Because both cosine and sine terms are stored in the data array, the amount of
storage alocated for the data array is twice as much as required for the icoswave
function. In other respects, the parameters are the same as for the icoswave

function.

See Also
icoswave, isinewave

Data Acquisition Runtime Library 165

isine

Return the integer sine of an integer value.

intisine (
short int ang

);

Parameters
ang
Aninput angle, interpreted in radians, as a 16-bit signed fractional multiple of PI.
The integer values -32768 to +32768 represent angles of (-32768 * PI) / 32768 to
(+32767 * Pl) / 32768. For example, an input value of 16384 represents an angle
of PI/2 radians and an input value of -16384 represents an angle of -PI/2 radians.

Return Values
The function returns the trigonometric sine of angle ang. Theresultisin
undimensioned units, as a 16-bit signed fraction of 1.0. For example, aresult value
of 16384 represents asine value of 1/2.

Description
The function isine returns the trigonometric sine of angle ang in afixed-point
representation. Ideally the values -1.0 through +1.0 would be represented by the
fixed point range -32768 to +32768, but due to a non-symmetry of the processor
hardware, the value of +32768 cannot be reached. For most purposes, it is sufficient
to treat the value +32767 as the representation for cosine value 1.0.

The integer sine computation performed by isine is considerably faster that the
floating point sine computation performed by the sin function in the Standard C
library. For many applications the fixed point approximation is sufficient.

See Also
isinewave

166 Data Acquisition Runtime Library

isinewave

Build an array of integer sine values.

int isinewave (
long Itb,
long Icyc,
long 1w, /I Enumeration
long iscale,
void *storage I/l Pointer to data storage array

);

Parameters
Itb

The number of entries actually constructed in the table.

Icyc
A value specifying the number of samples necessary to cover one complete cycle
(two PI radians) of the wave.

Iw
A codeindicating the data type to place into storage. Specify ewaveWord or
eWavelLong.

iscale
A value specifying asigned scaling multiplier.

storage
A pointer to the storage location where values are to be stored.

Return Values
The function returns a Boolean error flag. The returned value is O if the dataarray is
constructed successfully, or nonzero otherwise.

Description
The function isinewave is a utility for constructing trigonometric waveform tables.
Applications include specialized transforms and signal generation. This function and
its parameters are identical to the icoswave function, except that the values of the
sine function rather than the cosine function are returned in the data array.

Data Acquisition Runtime Library 167

See Also
icoswave

168 Data Acquisition Runtime Library

isqrt

Return the integer square root of an integer value.

long intisqrt (
long int x

);

Parameters
X

A long integer.

Return Values
The function returns the integer part of the real-valued square root of the long
integer parameter x. If the input value is negative, isqrt returns zero.

Description
The integer square root computation performed by isgrt is considerably faster that
the floating-point square-root computation performed by the function sqgrt.

Data Acquisition Runtime Library 169

malloc

Dynamically alocate bulk storage.

void * malloc (
unsigned size

);

Parameters
size
The size, in bytes, of the storage to be allocated to a task.

Return Values
The function returns a pointer to the block of allocated storage, or aNULL pointer if
insufficient memory is available

Description
The function mal loc allocates storage to atask and returns a pointer to this storage.
De-alocation is performed automatically when a STOP command is issued or when a
free function is called. The storage size is guaranteed to be at least size bytes. The
storage can exist in a pooled storage segment for efficiency, so it is possible that
more than size bytes are physically addressable. However, it is essentia to access
only the amount of storage allocated to avoid corrupting task and system data.

The function mal loc is preferred over the function ral loc for the purposes of
constructing C++ objects. It is independent of task and diagnostic features.
However, without these features and without an ability to raise an exception to
report failure conditions, it is necessary to test the returned pointer value for a
NULL value to verify the success of constructor operation. In contrast, the ral loc
function will issue a diagnostic message and terminate the task in the event of an
allocation failure.

See Also
ralloc

170 Data Acquisition Runtime Library

param_error

Generate an error message and then terminate task.

void param_error (

);

Parameters
This function requires no parameters.

Return Values
Thereis no return value.

Description
The function param_error prints a diagnostic message in the following form and
then callsfunction exit:

<commandname>: parameter error

If the DAPL ERRORQ option is on, the error message is suppressed and ERRORQ is
set to anonzero value.

See Also
param_error_msg, exit

Data Acquisition Runtime Library 171

param_error_msg

Generate atask error message and then terminate task.

void param_error_msg (
enum ParamErrors pecode,
int ip
)i

/I Enumeration

Parameters
pecode
A code indicating the type of parameter error to be described in the error
message.
The value is one of the following:

pe_GeneralError No
pe_Lengthlnconsistent Vector or array size mismatch
pe_Sizelnconsistent Precision error
pe_Typelnconsistent Inconsistent data types
pe_Valuelnconsistent Inconsistent parameter value

pe_ValueOutOfRange
pe_ValueNotAl lowed
pe_OptionNotAllowed
pe_ParamMissing
pe_ExtraParam
pe_ParamType

ip

The value of this parameter indicates which parameter is incorrect, counting

Range limit exceeded

Invalid parameter value
Invalid optional parameter
Invalid number of parameters
Invalid number of parameters
Invalid parameter type

parameters from left to right starting with 1.

Return Values
Thereis no return value.

Description

The function param_error_msg prints an error message in the following form and

then calls terminates the task:

172

Data Acquisition Runtime Library

Error 1236: <cmdname> - parameter <ip> - <descriptive text>

The function param_error_msg should be used rather than function
param_error when diagnostic information is necessary to identify the error.

Code numbers for pecode are defined in the file DTDCNSTS .H and are included
automatically when the DTD _H file isincluded in each source code module. The
DAPL operating system supplies the cmdname , and also provides the
descriptive text based on the value of the parameter pecode. The parameter
number ip indicates the position in the parameter list where the error was detected.
This number corresponds to the index that would be used to access the parameter
from the argv pointer list generated by the param_process function.

If the DAPL ERRORQ option is on, the error message is suppressed and ERRORQ is
set to anonzero value.

See Also
param_error, exit

Data Acquisition Runtime Library 173

param_process

Locate task parameters and check types.

void **param_process (

PIB **plib, /I Parameter block handle
int *argc, // Pointer to integer

int min_arg,

int max_arg,

/I Additional parameters

).;. .

Parameters
plib
Pointer variable containing a handle for the PIB to be examined.
argc
Pointer to a variable reserved for the number of actual parameters.

min_arg
The minimum number of task parameters.

max_arg
The maximum number of task parameters.

A varying number of data type names appear after the mandatory parameters.

Return Values
Thereis no return value.

Description
The function param_process generates an argument vector from atask's
parameter-list information block (PL1B). The function places the number of actual
parametersin argc and returns a pointer to an array argv of task arguments. The
parameters then can be referenced by indexing argv :

174 Data Acquisition Runtime Library

argv[0] the name of the custom command

argv[l] - parameter 1
argv[2] - parameter 2
argv[3] - parameter 3

Note that this method of referencing task parametersis very similar to the manner in
which Standard C references command line parameters. The differences are that
Standard C command line parameters are always strings, while task parameters can
be other data types; and Standard C includes argv[0] in its parameter count while
DAPL does not.

The function param_process also checks that the numbers and types of the
parameters passed to atask are correct. The number of actual parameters specified
by atask definition using this command must be between min_arg and max_arg.
The types of the parameters must match the parameter types that follow max_arg.
The number of parameters after max_arg must equal the value of max_arg.

The parameter type codes are provided in the file DTDCNSTS .H which isincluded in
each source module automatically when the DTD - H file isincluded. The supported
type codes include the following:

T VAR W T VAR L T CONST W T CONST L T TRIGGER
T PIPE B T PIPE_W T PIPE_L T_RFLAG T _STR
T VECTOR W T VECTOR L T VAR F T PIPEF T.VARD

T _PIPE_D T CONST F T VECTOR F T _CONST D T _VECTOR D

The type codes are also described in the chapter Using Developer’s Toolkit
Functions. If atask allows several types for a parameter, the C bitwise-or operation
can be used to combine the type codes.

If param_process finds a parameter list error, the function prints an error message
and halts the task. If an error occurs when the DAPL ERRORQ option is on, the error
message is suppressed and ERRORQ is set to a nonzero value.

Data Acquisition Runtime Library 175

param_type

Test atask parameter type.

unsigned long param_type (
PIB **plib, /I Parameter block handle
int pnum

);

Parameters
plib
Pointer variable containing a handle for the PIB to be examined.
pnum
Task parameter number.

Return Values
The function returns one of parameter type codes used with the param_process
function. The code specifies the type of task parameter number pnum.

Description
The function param_type returns the type of task parameter number pnum.
Parameters are numbered starting with parameter one. The returned valueisa
parameter type code, one of the codes used with the param_process function.

Thisfunction is typically used for supplementary parameter type checking after the
param_process function has limited the possibilities. For example, if function
param_process alowsT_PIPE_W or T_PIPE_L for aparameter, the param_type
function can be used to distinguish between these types.

See Also
param_process

176 Data Acquisition Runtime Library

pbuf_get

Get ablock of data from a pipe.

unsigned int pbuf_get (
PBUF *inbuf /I Pipe buffer handle

);

Parameters
inbuf

Pointer variable containing a handle for the pipe buffer control block to be used.

Return Values
Returns the number of values that were fetched from the pipe into the pipe buffer
storage.

Description
The function pbuf_get reads a block of data from a pipe into the data array of pipe
buffer inbuf. The pipe buffer control block is associated with a data source pipe
by the function pbuf_open..

The values pbuf_max_cnt and pbuf_min_cnt of the PBUF must satisfy the
following restrictions:

0 < pbuf_max_cnt <= MAX_BUF
0 <= pbuf_min_cnt <= pbuf_max_cnt

MAX_BUF isthe maximum data array size; thisis selected when a pipe buffer control
block is allocated by pbuf_open.

The function pbuf_get automatically sets pbuf_cnt to the number of data values
read into the data array. The value can be accessed at a later time using function
pbuf_get_cnt, but in most casesit is more convenient to use the function return
value.

The pbuf_max_cnt and pbuf_min_cnt are used by pbuf_get to determine how
many values should be read into the data array. The function pbuf_get transfersa
maximum of pbuf_max_cnt values from the input pipe to the data array. If the
input pipe contains less than pbuf_min_cnt values, pbuf_get suspends the task
until sufficient data values are available in the input pipe.

Data Acquisition Runtime Library 177

If pbuf_min_cnt iszero, the function pbuf_get returns to the caller regardless of
whether any data were available in the associated pipe. Thisfeatureis useful to
avoid suspending execution of the task when no data are available. When using this
feature, be especially careful to check for zero available items by inspecting the
return value or calling the pbuf_get_cnt function.

The function pbuf_get overwrites old data in the data array.

See Also
pbuf_get_cnt, pbuf_open

178 Data Acquisition Runtime Library

pbuf_get cnt

Determine the current count of a pipe buffer.

unsigned int pbuf_get_cnt (

PBUF *pb /I Pipe buffer handle
)i
Parameters
pb
Pointer variable containing a handle for the pipe buffer control block to be
examined.

Return Values
The function returns the current count field of a pipe buffer control block.

Description
The function pbuf_get_cnt obtains the current count field of a pipe buffer control
block. The current count contains the number of valid data values in the pipe buffer's
dataarray. Thisfunction istypically called after calling the function pbuf_get to
determine the number of values that have been obtained from the associated pipe.

See Also
pbuf_get

Data Acquisition Runtime Library 179

pbuf_get data_ ptr

Get a pointer to the data array of a pipe buffer.

void *pbuf_get_data_ptr (

PBUF *pb /I Pipe buffer handle
);
Parameters
pb
Pointer variable containing a handle for the pipe buffer control block to be
examined.

Return Values
Thereis no return value.

Description
The function pbuf_get_data_ptr returns a pointer to the storage array area of a
pipe buffer control block. The returned pointer should be cast to an appropriate
pointer type depending on the type of data.

This function is commonly used to obtain direct access to data read into the pipe
buffer storage array by the function pbuf_get.

See Also
pbuf_get

180 Data Acquisition Runtime Library

pbuf_get_max_cnt

Determine the maximum pipe buffer count.

unsigned int pbuf_get_max_cnt (

PBUF *pb /I Pipe buffer handle
)i
Parameters
pb
Pointer variable containing a handle for the pipe buffer control block to be
examined.

Return Values
The function returns the maximum number of items that can be read into the pipe
buffer control block’s data array by the function pbuf_get.

Description
The routine pbuf_get_max_cnt reports the maximum number of items that can be
read into the pipe buffer's data array by the function pbuf_get. The maximum
count field isinitialized to the size of the pipe buffer's data array by pbuf_open.

The function pbuf_get_max_cnt istypically used to obtain information about a
buffer control block that has been initialized previously, so that it is not necessary to
maintain separate information about storage sizes of various PBUF structures.

See Also
pbuf_get, pbuf_open

Data Acquisition Runtime Library 181

pbuf_get_min_cnt

Determine the minimum pipe buffer count.

unsigned int pbuf_get_min_cnt (

PBUF *pb /I Pipe buffer handle
);
Parameters
pb
Pointer variable containing a handle for the pipe buffer control block to be
examined.

Return Values
The function returns the minimum number of items that can be read into the pipe
buffer control block’s data array by the function pbuf_get.

Description
The routine pbuf_get_min_cnt reports the minimum number of items that can be
read into the pipe buffer's data array by the function pbuf_get. The minimum count
fieldisinitialized to 1 by pbuf_open.

The function pbuf_get_min_cnt istypically used to obtain information about a
buffer that has been initialized previoudly, so that it is not necessary to maintain
separate information about storage sizes of various PBUF structures.

See Also
pbuf_get, pbuf_open, pbuf_get_max_cnt

182 Data Acquisition Runtime Library

pbuf_open

Open a pipe buffer.

PBUF *pbuf_open (
PIPE *pipe, I/l Pipe handle
unsigned int bufsize

);

Parameters
pipe
Pointer variable containing a handle for the associated pipe.
bufsize
The maximum number of data valuesthat the array can hold.

Return Values
The function returns a pointer containing a handle to a PBUF control structure.

Description
The function pbuf_open alocates a pipe buffer control block and adata array for
pipe pipe. The size of the data array is determined by bufsize, which specifies the
maximum number of data values the array can hold. Therefore, the size of the data
array, in bytes, is given by

bufsize * pipe_width(pipe)

The function pbuf_open aso initializes three properties:

pbuf_cnt = 0
pbuf_min_cnt = 1
pbuf_max_cnt = bufsize

These initializations mean that the data array initially contains no data, at least one
datum should be placed into the buffer when fetching data from a pipe, and no more
than bufsize items can be placed into the data array storage area at any time.

If abuffer size of zero is passed to pbuf_open, the data management portion of a
pipe buffer control block is allocated, but storage for the data array is not allocated.

Data Acquisition Runtime Library 183

Separate operations must be performed to obtain storage and complete initialization
before the PBUF is used to transfer datainto or out of a pipe. The functions
pbuf_set_data_ptr, pbuf_set_max_cnt, and pbuf_set_min_cnt must be
called to complete the initialization.

Note: Pipe pipe must be opened using pipe_open before pbuf_open is called.

See Also
pbuf_set_data_ptr, pbuf_set_max_cnt, pbuf_set_min_cnt, pipe_open

184 Data Acquisition Runtime Library

pbuf_put

Write a block of datato a pipe.

void pbuf_put (
PBUF *outbuf /I Pipe buffer handle
)i

Parameters
outbuf

Pointer variable containing a handle for the pipe buffer control block used.

Return Values
Thereis no return value.

Description
The function pbuf_put writes ablock of data from the data array of outbufto a

pipe.

The pipe buffer contains afield that points to the pipe to be written. Thisfield is
initialized by the function pbuf_open.

The function pbuf_put requires that the pbuf_cnt field be set to the number of
data values to transfer. In most cases, it is more convenient to combine the operation
of setting the count and performing the transfer using the function
pbuf_put_set_cnt instead of pbuf_put. Before returning, pbuf_put sets the
pbuf_cnt field to zero.

If pbuf_put cannot add the required number of values to the pipe because the
capacity of the pipe has been reached, the calling task either goes to sleep until the
pipe has room or throws away any excess data and returnsimmediately. The choice
is determined by the pipe’ sWAIT /NOWAIT property. This property can be set when
the pipeis defined using the DAPL command P1PES.

See Also
pbuf_open, pbuf_put_set_cnt

Data Acquisition Runtime Library 185

pbuf_put_set cnt

Write a block of datato a pipe, where the amount of datain the block is specified.

void pbuf_put_set_cnt (
PBUF *outbuf /I Pipe buffer handle
unsigned int *count

);

Parameters
outbuf
Pointer variable containing a handle for the pipe buffer control block used.

Return Values
Thereis no return value.

Description
The function pbuf_put_set_cnt writes adata block of specified size from the
data array of outbufto apipe.

Thisfunctionisin effect acombination of the function pbuf_set_cnt and the
function pbuf_put. Thiscombined operation is often very convenient to usein
practice. When the dataisin-place in the buffer and the data count is readily
available, using this function saves the overhead of an additional servicecall. See
the descriptions of these two functions for additional details.

See Also
pbuf_open,pbuf_put, pbuf_set_cnt

186 Data Acquisition Runtime Library

pbuf_set_cnt

Set the current count field of a pipe buffer.

void pbuf_set_cnt (
PBUF *pb, /I Pipe buffer handle
unsigned int count

);

Parameters
pb
Pointer variable containing a handle for the pipe buffer control block to be
modified.

count
The number of datain the data storage array of the PBUF.

Return Values
The function has no return values.

Description
The function pbuf_set_cnt places a number into the current count field of a pipe
buffer control block. This function istypically called after copying data into the
PBUF storage area, but before calling the function pbuf_put, to inform the system
of the number of items available for transfer to the associated pipe.

See Also
pbuf_put

Data Acquisition Runtime Library 187

pbuf_set _data ptr

Assign a data storage array to a pipe buffer handle.

void pbuf_set_data_ptr (

PBUF *pb, /I Pipe buffer handle
void *data I/l Pointer to data storage array
)i
Parameters
pb

Pointer variable containing a handle for the pipe buffer to be examined.

data
Pointer to a data storage array.

Return Values
Thereis no return value.

Description
pbuf_set_data_ptr assigns adata storage array to a pipe buffer. The data array
assigned by pbuf_set_data_ptr can betype int, long, or float, and should
be consistent with the type of datain the pipe.

Thisfunction is commonly used to share data buffer storage between a PBUF for
reading data from one pipe and another PBUF for writing data to a second pipe.
Typically, the function pbuf_get_data_ptr is used to obtain the address of the
storage area for the first pipe buffer, then the function pbuf_set_data_ptr
assigns that pointer value to the second pipe buffer. When a storage area is assigned,
it is also necessary to adjust the internal buffer size fields by calling the
pbuf_set_min_cnt and pbuf_set_max_cnt functions.

See Also
pbuf_set_max_cnt, pbuf_set_min_cnt, pbuf_get_data_ptr

188 Data Acquisition Runtime Library

pbuf_set_max_cnt

Set the maximum pipe buffer count.

void pbuf_set_max_cnt (
PBUF *pb, /I Pipe buffer handle
unsigned int count

);

Parameters
pb
Pointer variable containing a handle for the pipe buffer control block to be
modified.

count
The maximum number of items that can be read into the pipe buffer control
block’s data array.

Return Values
The function specifies the maximum number of items count that can beread into
the pipe buffer's data array by the function pbuf_get.

Description
The routine pbuf_set_max_cnt specifies the maximum number of items count
that can be read into the pipe buffer's data array by the function pbuf_get. The
maximum count field isinitialized to the size of the pipe buffer's data array by
pbuf_open.

The function pbuf_set_max_cnt istypically used to limit the number of itemsto
be read for a specific purpose, even though alarger storage areais available for
other purposes. The specified maximum must be greater than or equal to the
minimum count specified for the PBUF, but must never exceed the amount of storage
available in the PBUF data storage area.

See Also
pbuf_open, pbuf_get, pbuf_set_min_cnt

Data Acquisition Runtime Library 189

pbuf_set_min_cnt

Set the minimum pipe buffer count.

void pbuf_set_min_cnt (
PBUF *pb, /I Pipe buffer handle
unsigned int count

);

Parameters
pb
Pointer variable containing a handle for the pipe buffer control block to be
modified.

count
The minimum number of items that can be read into the pipe buffer control
block’s data array.

Return Values
The function sets the minimum number of items count that can be read into the
pipe buffer's data array by the function pbuf_get.

Description
The routine pbuf_set_min_cnt sets the minimum number of items count that
can be read into the pipe buffer's data array by the function pbuf_get. The
minimum count must not be negative and must never exceed the amount of storage
available in the PBUF storage array or the limit set by the function
pbuf_set_max_cnt.

The function pbuf_set_min_cnt istypically used to obtain datain fixed block
sizes rather than whatever amounts happen to be available. Fetching fixed-size
blocks also requires calling the routine pbuf_set_max_cnt to set the minimum
count and the maximum count equal .

See Also
pbuf_get, pbuf_set_max_cnt

190 Data Acquisition Runtime Library

pid_compute

Compute new PID state and output.

int pid_compute (pid, val)
PID *pid, /I PID control block handle
short int val

);

Parameters
pid
Pointer variable containing a handle for the PID control block to be adjusted.
val
Vaue of the sample.

Return Values
The function returns the value of the PID control outpuit.

Description
The function pid_compute performs the real-time computation of PID control
output. Thisfunction is called once for each captured sample of the controlled
system's output. The value of the sampleis val. The internal state of the PID
computation is maintained in the pid structure. The pid_compute function returns
the value of the PID control outpuit.

Note: For controlled systems that have inverting inputs, the negative of the value
returned by pid_compute should be used as the fina control output. See the
pid_tune function description for more information.

Note: The pid_tune function must be caled to establish values of the PID
parameters before the pid_compute function is called.

See Also
pid_tune

Data Acquisition Runtime Library 191

pid_open

Open and initialize a PID control block.

PID *pid_open (
short int val

);

Parameters
val

A value used to initialize P1D computations. This valueis an estimate or sample
of the controlled system output.

Return Values
The function returns a pointer containing a handleto aP1D control structure.

Description
The function pid_open alocatesaP 1D control structure and returns a handle for
that structure. The estimated initial value val of the controlled system's output is
used to initialize P1D computations.

If agood estimate for val is not available, a sample of the output of the controlled
system can be used as the initialization value. Some systems start from a“zero
state,” and for these systems, a constant zero value can be specified.

Note: pid_open must be called before the pid_tune, pid_set_setpoint, or
pid_compute functions are called.

See Also
pid_compute, pid_set_setpoint, pid_tune

192 Data Acquisition Runtime Library

pid_preset

Establish a pre-determined P 1D operating state.

int pid_preset (
PID *pid, /I PID control block handle
short int sysval,
short int ctrival

);

Parameters
pid
Pointer variable containing a handle for the PID control block to be adjusted.
sysval
A value specifying the feedback from the controlled system'’s outpui.

ctrival
A value specifying the PID control output level required as input to the system to
sustain the system output level at sysval.

Return Values
If the function succeeds, the return value is 0.

If the function fails, the return value is an non-zero error code.

Description
The function pid_preset establishes a pre-determined P 1D operating state.

The sysval parameter specifies the feedback from the controlled system's outpui.
The ctrival parameter specifiesthe PID control output level required as input to
the system to sustain the system output level at sysval. The gain, setpoint, and limit
settings are obtained from the P 1D structure specified by the pid parameter. An
internal state for the P1D controller is computed and stored into the PID structure.

Thisfunction istypically used when PID control action is not applied initially, but
some other control strategy is applied, so that current input and output conditions for
the system are known.

Suppose that the sysval and ctrilval parameters correspond to steady state
operating conditions for the controlled system, and that the P1D structure's setpoint

Data Acquisition Runtime Library 193

parameter is equal to sysval. Then, after successful completion of this function, the
pid_compute function will produce the output value ctrival when the system
feedback value sysval is applied. In other words, the P1D control isaso at a steady
state, consistent with the state of the controlled system.

ThePI1D control setpoint may also be set to a value different from the sysval
parameter. In this case, the P1D operation starts at the specified state, but begins a
smooth control transient to move the system from sysval to the new setpoint
specified in the PID parameters.

This function returns the value O if computations are successful. It returns a nonzero
error code if an internal P1D operating state cannot be computed to produce the
specified ctrival level given the specified sysval input. The P1D structure is not
updated unless the computation is successful.

There are two possible causes for unsuccessful completion and a nonzero error code.
Thefirst isthat the output limit clamp parameters prohibit the ctrival level
specified in the call to this function. The other possibility is that the integral-
correction coefficient is zero. Unless there is an absolute guarantee that the
ctrilval parameter is within the application's limits, and the integral coefficient is
nonzero, the custom command should check the error code and report errorsto the
application on the host computer.

Note: PI1D parameters must be established using the pid_tune function before calling
pid_preset. The setpoint may be separately adjusted by calling
pid_set_setpoint.

See Also
pid_tune, pid_set_setpoint, pid_compute

194 Data Acquisition Runtime Library

pid_set_setpoint

Assign aPID setpoint.

void pid_set_setpoint (
PID *pid, /I PID control block handle
short int val

);

Parameters
pid
Pointer variable containing a handle for the PID control block to be adjusted.
val
Setpoint value for PID structure

Return Values
Thereis no return value.

Description
The function pid_set_setpoint assigns a new setpoint value val to the PID
structure identified by handle pid.

Note: This function must be called after the function pid_tune is caled. The
pid_tune function will initialize all P1D control parameters, including the setpoint.
It is not necessary to call pid_set_setpoint unless the setpoint is changed after
parameter initialization.

See Also
pid_tune

Data Acquisition Runtime Library 195

pid_tune

Set PID coefficients.

int pid_tune (
PID *pid, /I PID control block handle
PIDCOEF *coef /I Pointer to coefficient sets
)
Parameters
pid

Pointer variable containing a handle for the PID control block to be adjusted.

coef
Pointer to the PIDCOEF structure from which control parameters are obtained.

Return Values
If the function succeeds, the return value is zero.

If the function fails, an nonzero error code is returned. The error code is one of the
following:

0 - successful installation of coefficients

2 - upper and lower output clamp values reversed
4 -theilintegral correction multiplier istoo large,
outside the range (-8192, 8191)
8 -warning, theP, I, and D terms are all zero
Description

The function pid_tune installs the parameter values from the coef structure into
PID control structure pid. If any parameter values are inconsistent or out of range,
the new coefficients are not installed and a nonzero value is returned by pid_tune.
A return value of zero indicates successful installation.

The coef parameter points to the PIDCOEF structure from which control parameters
are obtained. All fields in the structure have signed integer type. Thefields are;

196 Data Acquisition Runtime Library

coef->setpoint - desired output of controlled system

coef->p1l - multiplier for proportional correction
coef->p2 - divisor for proportiona correction
coef->il - multiplier for integral correction
coef->i2 - divisor for integral correction
coef->d1 - multiplier for derivative correction
coef->d2 - divisor for derivative correction
coef->clamp_lo - lower output limit
coef->clamp_hi - upper output limit

The PID control output is given by the following equations:

pl il di
P= -, M= -, D= -,
p2 i2 d2
correction =P *e + I * int(e) + D * d(e) ,
| clamp_lo if correction < clamp_lo
output = | clamp_hi if correction > clamp_hi
| correction in all other cases

where

e <setpoint> - input
int(e) = integral of e
d(e) = derivative of e

ThetermsP, 1, and D in the correction formula are specified by pairs of integer
parameters. This allows representation of fractional numbers. The denominator
termsp2, 2, and d2 can be set to a convenient arbitrary value, such as 1000, and
then the numerator values p1, i1, and d1 can be adjusted to produce the desired
control effects. The exact values of the parameters are not important, as long as the
ratios are correct. A zero in adenominator term is treated the same asa zero in the
numerator. There are some constraints on the ranges of the combined fractional
values:

-256.0 < P < 256.0
-16.0 <1< 16.0
-256.0 <D < 256.0

The sign conventions for coefficientsin the PIDCOEF structure are that a positive
gain works to correct a positive error, consequently, a positive error resultsin a

Data Acquisition Runtime Library 197

reduced control output. For most controlled systems, this will reduce the level of
error e. For some systems that have inverting inputs, either invert the signs on all
gain terms or negate the output value computed by the function pid_compute.

Note: The pid_open function must be called to set up the PID structure before
pid_tune functionis called.

See Also
pid_open, pid_compute

198 Data Acquisition Runtime Library

pipe_get

Get afixed point value from a pipe.

long int pipe_get (
PIPE *input I/l Pipe handle
)i

Parameters
input
Pointer variable containing a handle for the pipe to be examined.

Return Values
The function returns one value from a pipe. If the pipe has int data rather than
long int data, the returned value can be cast to an int type.

Description
The function pipe_get reads one value from a pipe. If the pipeis empty when
pipe_getiscaled, the calling task goes to sleep until the pipe contains data. If this
behavior is not desired, function pipe_num or pipe_num_complete should be
used first to determine whether the pipe contains data.

Thisfunction is provided primarily for backward compatibility, because it cannot be
extended to work with al datatypes. The function pipe_value_get isthe
recommended choice, because it is compatible with all pipe data types.

See Also
pipe_value_get, pipe_num, pipe_num_complete

Data Acquisition Runtime Library 199

pipe_num

Determine whether a pipe contains data.

unsigned int pipe_num (
PIPE *pipe I/l Pipe handle
)i

Parameters
pipe
Pointer variable containing a handle for the pipe to be examined.

Return Values
The function returns a number indicating alower bound for either the number of
data valuesin a pipe or the number of locations available for writing to a pipe.

Description
When applied to a pipe pipe which is opened as an input pipe, the routine
pipe_num returns alower bound for the number of data valuesin a pipe. When
applied to a pipe pipe which is opened as an output pipe, the routine pipe_num
returns a lower bound on the number of locations available for writing into the pipe.

This function should be used with care, since polling a pipe for data can slow an
application. Also, there are subtle differences in behavior for different types of
pipes. The behavior isregular and predictable for user-defined pipes, but can be
non-intuitive for input, output and communication pipes.

There is no guarantee of the accuracy of the number returned by this function when
used with input channel pipes. For example, function pipe_num could report a
value such as 4 when, in fact, thousands of samples are available. Furthermore, the
reported value does not necessarily improve as more data are written into the pipe.
The number returned by this function should be treated as a 'Boolean’ value. If itis
nonzero, the reported number of values can be fetched safely.

Similarly, thereis no guarantee in the utility of the returned value for output pipes. It
isalower bound, not an upper bound. For example, when the output pipeisan
output channel pipe being used by an active output procedure, a value of zero could
be returned. This value is meaningless; it says that there is no information about how

200 Data Acquisition Runtime Library

much space is available. It definitely does not mean that the synchronous output pipe
cannot accept data.

If an accurate count of the number of samples available to read from an input pipeis
required, the function pipe_num_complete should be used instead.

See Also
pipe_num_complete

Data Acquisition Runtime Library 201

pipe_num_complete

Return an accurate estimate of the number of datain a pipe.

unsigned int pipe_num_complete (
PIPE *pipe, I/l Pipe handle
unsigned count

);

Parameters
pipe
Pointer variable containing a handle for the pipe to be examined.
count
A value specifying the maximum number of samples

Return Values
The function returns an accurate estimate of the current number of samples available
in pipe pipe, up to amaximum of count samples.

Description
The function pipe_num_complete returns an accurate estimate of the current
number of samples available in pipe pipe, up to amaximum of count samples.

Except for additional samples which may appear in the pipe between the time this
function starts and the time that it ends, the number returned by this functionis
accurate. This function performs a thorough search of a pipe's data structure to
obtain this estimate. For maximum speed, the count parameter should be as small
aspossible.

The function returns when the entire pipe structure has been processed or when
count vaues have been found. A call to pipe_num_complete on an input channel
pipeisusually slower than acall to pipe_num. For other pipe types, pipe_num and
pipe_num_complete produce equivalent results.

See Also
pipe_num

202 Data Acquisition Runtime Library

pipe_open

Open a pipe.

void pipe_open (
PIPE *pipe, I/l Pipe handle
int mode

);

Parameters
pipe
Pointer variable containing a handle for the pipe to be opened for input or output.
mode
P_READ if the pipeis used for input and P_WRITE if the pipeis used for output.

Return Values
Thereis no return value.

Description
The function pipe_open prepares a pipe for input or output; mode must be P_READ
if the pipeis used for input and P_WRITE if the pipe is used for outpuit.

Data Acquisition Runtime Library 203

pipe_purge

Remove al data from a pipe.

void pipe_purge (
PIPE *pipe I/l Pipe handle
)i

Parameters
pipe
Pointer variable containing a handle for the pipe to be examined.

Return Values
Thereis no return value. The function removes all data values from a pipe.

Description
The function pipe_purge removes all data values from a pipe. This function is not
recommended in newer applications, as it removes data for all tasks reading from the
pipe. Newer applications should use the function pipe_rem to empty a pipe. For
example:

while (count = pipe_num_complete(pipe,100))
pipe_rem (pipe, count);

204 Data Acquisition Runtime Library

pipe_put

Put a data value into a pipe.

void pipe_put (
PIPE *pipe, I/l Pipe handle
long int val

);

Parameters
pipe
Pointer variable containing a handle for the pipe to receive the value.

val
Value to be added to a pipe.

Return Values
Thereis no return value.

Description
The function pipe_put adds adata value to a pipe. If the pipeisfull, the task either
goes to sleep until the pipe has room, or throws out the data and returns
immediately. Whether the task goes to sleep or returnsimmediately is selected by
the WAIT/NOWAI T property when the pipe is defined using a P IPES command in the
DAPL system configuration.

Data Acquisition Runtime Library 205

pipe_rem

Remove a fixed number of data values from a pipe.

void pipe_rem (
PIPE *pipe, I/l Pipe handle
unsigned int num

);

Parameters
pipe
Pointer variable containing a handle for the pipe from which datais removed.
num
Number of data values to be removed from the pipe.

Return Values
Thereis no return value.

Description
The function pipe_rem removes num data values from a pipe. If the pipe contains
less than num values, the calling task goes to sleep until al data values become
available and then have been removed.

206 Data Acquisition Runtime Library

pipe_value get

Get avalue from a pipe.

void pipe_value_get (

PIPE *input I/l Pipe handle
GENERIC_SCALAR *value /I Storage for value
)i
Parameters
input

Pointer variable containing a handle for the source pipe.

value
A generic storage location where the fetched value is returned.

Return Values

The function returns one value from a pipe. The value may have any supported data

type.

Description

The function pipe_value_get reads one value from a pipe. If the pipe is empty

when pipe_value_get iscaled, the calling task goes to sleep until the pipe
contains data. If this behavior is not desired, function pipe_num or

pipe_num_complete should be used first to determine whether the pipe contains

data.

See Also
pipe_get, pipe_num, pipe_num_complete

Data Acquisition Runtime Library

207

pipe_value_ put

Put avalueinto a pipe.

void pipe_value_put (

PIPE *input I/l Pipe handle
GENERIC_SCALAR *value /I Storage for value
)i
Parameters
input

Pointer variable containing a handle for the receiving pipe.

value
A generic storage location where the value is obtained.

Return Values
Thereis no return value.

Description
The function pipe_value_put takes the specified value and copies that value to
the specified data pipe. If the pipeisfull, the task either goes to sleep until the pipe
has room, or throws away the data and returns immediately. Whether the task goes
to sleep or returnsimmediately is selected by the WAIT/NOWAI T option when the
pipeisdefined using aPIPES command in the DAPL system configuration.

This function works with data of any type.

See Also
pipe_value_get, pipe_num, pipe_num_complete

208 Data Acquisition Runtime Library

pipe_width

Return the size in bytes of data elements from a pipe.

int pipe_width (
PIPE *pipe I/l Pipe handle
)i

Parameters
pipe
Pointer variable containing a handle for the pipe to be examined.

Return Values
The size of a data element from the pipe, in bytes.

Description
The function pipe_width returns the size of a data element from a pipe, in bytes.
The length of the pipe determines how many elements the pipe buffer can contain,
and the width of the pipe determines how large each individual item can be. The
width is one for a byte pipe, two for aword pipe, four for along pipe or afloat pipe,
eight for a double pipe.

Data Acquisition Runtime Library 209

printf

Format and print a string.

int printf (
char *format_string, /I Pointer to character string
/I Additional parameters

).;. .

Parameters
format_string

ASCII character string controlling the conversions performed by printf.

A variable number of optional parameters appearing after the mandatory
conversion text parameter.

Return Values
The function printf returns the number of characters sent to output pipe $SYSOUT.

Description
The function printf formats characters and numeric valuesinto a string and sends
the string to the output pipe $SYSOUT. This function does the same things as the
Standard C function, except that the output is sent to a DAPL pipeinstead of a
STDOUT stream.

The string format_string consists of printable ASCII characters controlling the
conversions performed by printf. All ANS| Standard C conversion codes are
supported except for the long long and long double conversions and types.

To control stack requirements, there is a 132-character limit on the length of the
final formatted string. Be particularly careful not to format a very large floating
point number using the %f format conversion code. Unlike the Standard C versions
of this function, if the resulting text does not fit into the specified field size, the field
isfilled with asterisk charactersin the manner of Basic or FORTRAN.

See Also
sprintf

210 Data Acquisition Runtime Library

ralloc

Dynamically alocate bulk storage.

char *ralloc (
unsigned int size

);

Parameters
size
The size, in bytes, of the storage to be allocated to a task.

Return Values
The function returns a pointer to the block of allocated storage. If insufficient
memory is available, ral loc displays an error message and the calling task is
stopped.

Description
The function ral loc alocates storage to atask and returns a pointer to this storage.
De-alocation is performed automatically when a STOP command is issued or when
function free iscalled. The storage size is guaranteed to be at least size bytes.
The storage can exist in a pooled storage area for efficiency, so it is possible that
more than size bytes are physically addressable. However, it is essentia to access
only the amount of storage allocated to avoid corrupting task and system data.

The function ral loc is preferred rather than the function mal loc when initially
setting up data structures for task operation. If memory isunavailable to initialize
the task cannot run and some cleanup must be performed in the DAPL system
configuration. In this situation, function ral loc will display an error message and
terminate the task rather than trying to continue in an impossible situation.

See Also
free, malloc, rfree

Data Acquisition Runtime Library 211

realloc

Dynamically resize allocated bulk storage.

void *realloc (
void *oldstore
unsigned size

);

Parameters
oldstore

The original allocated storage.

size
The size, in bytes, for the modified storage allocation.

Return Values
The function returns a pointer to the revised block of allocated storage, or aNULL
pointer if insufficient memory is available or no memory is requested.

Description
The function real loc can be considered a combined storage allocation and
deallocation operation. It is completely compatible with the similarly-named
function in Standard C.

A new allocation is established that has the specified size. If the specified sizeis
zero, the operation acts like a deall ocation operation for the old store allocation, and
function real loc returns aNULL pointer. Otherwise, a storage area of sufficient
length is allocated, and a pointer to this areais returned. If the allocation fails, the
original alocation is unchanged and the returned pointer isNULL.

After establishing a new storage area, copy operations are performed to preserve the
data from the original storage. If the new allocation is larger, al of the original data
isretained and any additional storage locations are indeterminate. If the new
allocation is smaller, only the first part of the original datais retained, as much as
will fit in the new storage size.

After allocation and copy operations are completed, the original alocation is
released.

212 Data Acquisition Runtime Library

There is no guarantee that the original and the new pointers are different, asthe
memory management system could map different physical memory or the same
physical memory locations to the old pointer value or to a new pointer value. There
isno guarantee that if the pointer is the same the old memory previously present is
still present and not reassigned to another purpose.

Final deallocation is performed automatically when a STOP command isissued or
when afree function is called. The storage can exist in a pooled storage area for
efficiency, so it is possible that more than size bytes are physically addressable.
However, it is essential to access only the amount of storage allocated to avoid
corrupting task and system data.

See Also
malloc

Data Acquisition Runtime Library 213

rfree

Release dynamically allocated task storage.

void rfree (
void * storage

);

Parameters
storage

The pointer to storage previously allocated by function ralloc.

Return Values
None.

Description

The function rfree releases storage all ocations previously obtained using the
function ral loc. Do not call this function for memory obtained by any other means.

See Also
malloc, ralloc, free

214

Data Acquisition Runtime Library

sprintf

Format a string.

int sprintf (
char *str, // Pointer to character string
char *format_string, /I Pointer to character string
S /I Additional parameters
)
Parameters
str

Pointer to a data storage character string.

format_string
ASCI| characters controlling the conversions performed by sprintf.

A varying number of optional parameters appearing after the mandatory
parameters.

Return Values
The function sprintf returns the number of characters stored in str.

Description
The function sprintf formats characters and valuesinto the string str. This
function isthe equivalent of the Standard C sprintffunction. All ANSI Standard

C conversion codes are supported except for long long and long double conversions
and types.

Unlike the Standard C versions of this function, if the resulting text does not fit into
the specified field size, the field isfilled with asterisk characters in the manner of
Basic or FORTRAN.

See Also
printf

Data Acquisition Runtime Library 215

sscanf

Scan a string, converting recognized values and assigning them to variables.

int sscanf (
char *str, /I Pointer to character string
char *format_string, /I Pointer to character string
S /I Additional parameters
)
Parameters
str

Pointer to a character string.

format_string
Printable ASCII characters controlling the conversions performed by sscanf.

A varying number of pointer parameters appearing after the mandatory
parameters.

Return Values
The function returns the number of items matched and assigned.

Description
The function sscanf scans text string str under control of format_string,

converting values which it recognizes, and assigning them to variables using
pointers provided by a varying-length parameter list. This function is compliant with
the Standard C version of the sscanf function, except that the long long and long
double conversion codes and the long long and long double pointer types are not

supported.

Note: This function is dangerous in any implementation. Be very careful that data
types correspond exactly to the types implied by the conversion codes, each
conversion code has a corresponding pointer in the varying portion of the parameter
list, and there is sufficient storage available to receive the formatted string.

216 Data Acquisition Runtime Library

sys_exec_command

Send a DAPL command to the DAPL system command interpreter.

void sys_exec_command (
char * command // Pointer to a character string

);

Parameters
command
A pointer to a DAPL command text in a character string. The string must be a
null terminated ASCII string containing no control characters. Multiple
commands are not allowed in the string.

Return Values
Thereis no return value. Errors might be diagnosed by the command interpreter.

Description
The function sys_exec_command sends a DAPL command string to the DAPL
command interpreter. DAPL will interpret acommand sent by sys_exec_command
when there are no other commands pending in the default text input pipe. For
example, suppose a downloaded DAPL file specifies several processing procedures
and a segquence of START, PAUSE, and STOP commands to run those procedures.
Then, no sys_exec_command messages sent by custom commands are executed
until the last operation specified in the downloaded DAPL fileis completed.

Data Acquisition Runtime Library 217

sys_get_info

Return DAPL system information.

long int sys_get_info (
int Info_code

);

Parameters
info_code
A value representing the request code for system information.

Return Values
The function returns DAPL system information selected by the request code
parameter in a long representation.

Description
The function sys_get_info returns DAPL system information. The return
information is selected by the request code parameter. The information contained in
the value returned by sys_get_info may be aword constant, along constant, or a
pointer. The return value should be cast to the appropriate data type.

The codes are defined in the file DTDCNSTS . H and are included automatically when
the DTD . H fileisincluded in each source code file. The following table summarizes
the request codes and return types:

Request Code Return Type

218 Data Acquisition Runtime Library

GI1_DECIMAL int

GI_TERMINAL int

GI_OVERQ int
GI_IBIPOLAR int
GI_OBIPOLAR int
GI_FLOAT_ERROR int
GI_ROUNDING int
GI_AINEXPAND int
GI_IN_ACTIVE int
GI_OUT_ACTIVE int
GI_IN_CNT unsigned int
GI_OUT_CNT unsigned int
GI_ICHAN_CNT int
GI_DEFAULT_BUF_SIZE int
GI_SYSouT PIPE *
GI_SYSIN PIPE *
GI1_HMEMAVL unsigned int
GI1_HMEMSIZE unsigned int
GI1_TMEMAVL unsigned int
GI1_TMEMSIZE unsigned int
GI_SERIAL unsigned int
GI_OEM_ID int
GI_FFTSIZE int
GI_IBURST_ACTIVE int
GI_OBURST_ACTIVE int
GI_BUFFERING int
GI_SCHEDULE_MODE int
GI_QUANTUM int

The following request codes return a nonzero value if ON, a zero value if OFF:
GI1_DECIMAL, GI_TERMINAL, GI_OVERQ, GI_IBIPOLAR, GI_OBIPOLAR,
GI_IN_ACTIVE, GI_OUT_ACTIVE, GI_FLOAT_ERROR, GI_ROUNDING,
G1_AINEXPAND, GI_IBURST_ACTIVE, GI_OBURST_ACTIVE, and
GI1_OPTIMIZE

TheGI_IN_ACTIVE and GI_OUT_ACT IVE request codes indicate whether an input
or an output procedure currently is started. G1_IN_ACTIVE and GI_OUT_ACTIVE
do not indicate whether the procedure is capturing or updating samples when
operating in burst mode. That information can be obtained using the
GI_IBURST_ACTIVE and GI_OBURST_ACT IVE request codes.

TheGI_IN_CNT and GI_OUT_CNT request codes return the current sample count of
an active input procedure and the current output count of an active output procedure.

Data Acquisition Runtime Library 219

The sample count is undefined when no input procedure is active. The output count
is undefined when no output procedure is active.

The GI_ICHAN_CNT request code returns the number of channelsin the currently
active input procedure. A returned value of zero indicates that no input procedureis
active,

The GI_DEFAULT_BUF_SIZE request code returns a suggested number of data
elements for PBUF storage. This number is used by the DAPL system’s processing
commands, and it is agood choice for custom commands which accept buffered data
from other processing commands, or which write buffered data to other processing
commands.

The GI1_SYSOUT and GI_SYSIN request codes return pointersto DAPL system
pipes, $SYSOUT and $SYSIN.

The GI_HMEMAVL and G1_HMEMS I ZE requests codes return the size of available
system heap storage, in bytes, and the total size of the system heap area, in bytes.
The GI_TMEMAVL and GI_TMEMSIZE request codes return the size of available
system memory, in bytes, and the total size of the system memory area, in bytes. The
system memory area includes both the heap storage area and the data buffer areas.

The GI_SERIAL reguest code returns the serial number of the Data Acquisition
Processor. The GI_OEM_1D returns the optional OEM code number for the DAPL
configuration.

The GI_FFTSIZE code reports the current size limit on an FFT. Use the DAPL
command OPTION FFTSIZE to adjust the limit. In most casesit is best to adjust
OPTION FFTSIZE when downloading rather than when running the custom
command.

The G1_QUANTUM code reports the length of the task scheduling quantum in
microseconds. The GI_SCHEDULE_MODE code returns one of the codes
eSchedFixed or eSchedAdaptive. The eSchedFixed and eSchedAdaptive
codes are defined in the file DTDCNSTS . H and are included automatically when the
DTD-H fileisincluded in each source code file.

Note: The file CDAPCC.H may contain other request codes -- these are reserved for
future expansion or backward compatibility.

220 Data Acquisition Runtime Library

sys_get_time

Return the elapsed time since the Data Acquisition Processor was powered on.

unsigned long int sys_get_time (

);

Parameters
This function requires no parameters.

Return Values
The function sys_get_time returns the number of milliseconds since the Data
Acquisition Processor was powered on.

Description

The function sys_get_time reports the elapsed time in milliseconds since power-up
of the Data Acquisition Processor. This elapsed time is derived from the hardware
CPU clock and provides good long-term accuracy. Because of the 32-bit
representation, the timing interval wraps back to 0 in approximately 50 days. See the
Data Acquisition Processor Hardware manual for information about clock accuracy.

Data Acquisition Runtime Library 221

Sys_get_version

Obtain descriptions of software and hardware versions for the DAPL environment
where the task is running.

void sys_get_version (
DAP_VERSION *version,
)i

Parameters
version

Pointer to a special structure where pointers to descriptive text can be placed.

Return Values
Thereis no return value. Results are accessed through pointers placed into the
version structure.

Description
The sys_get_version function returns descriptions of the software and hardware
versions for the Data Acquisition Processor and DAPL operating system running the
task.

To reguest the information, the caller must declare and initialize a special
DAP_VERSION structure. Thisdatatype is defined in the file DTDTYPES.H and
included automatically when the DTD . H file isincluded in each source code module.
The infosize field of this structure must be initialized to
sizeof(DAP_VERSION) .

When the function sys_get_version iscaled, the DAPL system completesthe
structure by storing pointers to text strings describing the DAP and DAPL systems:

 daplname name of the operating system
 daplver version of the operating system
» dapmodel model name of the DAP

* daprev revision number of the DAP

Each description has the form of a C-style terminated text string. For example:

222 Data Acquisition Runtime Library

DAP_VERSION dver;

dver.infosize = sizeof(struct _dap_version);

sys_get_version(&dver);

printf(“DAP model is: “%s” \n”, dver.dapmodel)
}

This sequence allocates a temporary structure of auto storage class, initializesit,
invokes the sys get version function to fill in the version information, displays the
description of the DAP model, and then rel eases the temporary structure as it goes
out-of-scope.

Data Acquisition Runtime Library 223

task_pause

Pause atask for a specified time.

void task_pause (
int ms

);

Parameters
ms
A value that represents the time in milliseconds that task execution is suspended.

Return Values
Thereis no return value.

Description
The function task_pause suspends execution of atask for ms milliseconds. After
this time has elapsed, the Data Acquisition Processor continues execution of the task
at the statement following the function task_pause.

Note: As aresult of DAPL system multitasking, there can be several milliseconds of
additional delay before a task continues after a call to task_pause, dependent on
the processing configuration and option setting.

See Also
sys_get_time

224 Data Acquisition Runtime Library

task_switch

Temporarily suspend the task to allow other tasks to use the CPU.

void task_switch (

);

Parameters
This function requires no parameters.

Return Values
Thereis no return value.

Description
The function task_switch temporarily suspends the task and allows other tasks to
use the CPU. Execution resumes after some delay, at the next statement after the
task_switch function. This function allows tasks to suspend their operation for
reasons other than waiting for new data to arrive, usually to decrease latency of
real-time response in a multi-tasking configuration. Most tasks can simply wait for
datato arrive, and do not need to use this function to release the CPU.

Data Acquisition Runtime Library 225

trigger_get

Extract and return the next available trigger assertion.

unsigned long int trigger_get (
TRIGGER *trig /I Trigger handle

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.

Return Values
The function returns the next available assertion from trigger trig.

Description
Function trigger_get extracts atrigger event from atrigger. Function
trigger_get does not return until the requested assertion is available, and this can
block execution of the calling task, leading to backlog conditions. In most situations,
the trigger_wait or trigger_get_immediate functions should be used
instead. However, trigger_get can be called safely after using the trigger_num
function to verify that atrigger assertion is available, or when backlog situations
cannot occur.

See Also
trigger_get_immediate, trigger_wait, trigger_num

226 Data Acquisition Runtime Library

trigger_get_immediate

Return the next available assertion or status report immediately.

unsigned long int trigger_get_immediate (

TRIGGER *trig, /I Trigger handle
int *fFlag // Pointer to integer variable
)i
Parameters
trig
Pointer variable containing a handle for the trigger to be examined.
flag

The address of an integer variable.

Return Values
The function fetches the next available trigger assertion, or if an assertion is not
available, returns the status of the writer for the trigger. The meaning of the returned
valueisindicated by the Flag variable:

» flag iszero (logical false) if no assertion is present in the trigger structure, and
the returned value is a status,

» flagisnonzero (logical true) if an assertion iswas extracted from the trigger and
sent as the returned value.

Description
The function trigger_get_immediate fetchesthe next available assertion event
from the specified trigger, or if an assertion is not available, returns the status of the
writer for thistrigger. Whether the returned value is an assertion or status number is
indicated by the contents of the integer variable flag.

Unlike the trigger_get or trigger_wait functions, which will cause the task to
wait until atrigger assertion occurs, the trigger_get_immediate function avoids
suspending the calling task.

Data Acquisition Runtime Library 227

Function trigger_get_immediate allows atrigger reading task to determine the
state of the trigger writer task. If a status number is returned, the returned value
specifies a sample number up to which it is guaranteed that no assertion occurs.

See Also
trigger_num, trigger_get_status, trigger_get, trigger_wait

228 Data Acquisition Runtime Library

trigger_get_opmode

Return atrigger’ s operating mode.

unsigned int trigger_get_opmode (
TRIGGER *trig /I Trigger handle

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.

Return Values
The trigger_get_opmode function returns a code indicating the operating mode
of trigger trig.

Description
The function trigger_get_opmode examines the operating mode defined for
trigger triginthe DAPL configuration. The mode can be examined but not
changed. For example, a custom command could be intended for single-event
processing, and should only be used in a configuration with atrigger in
TRIG_MANUAL_MODE. The trigger_get_opmode function alows the custom
command to verify the trigger configuration.

The returned code will be one of the following:

TRIG_NATIVE_MODE
TRIG_MANUAL_MODE
TRIG_AUTO_MODE
TRIG_NORMAL_MODE
TRIG_DEFERRED_MODE

These codes are defined by the DTDCNSTS.H file and are included automatically
when the DTD . H file isincluded in each source code module.

See Also
trigger_get_property

Data Acquisition Runtime Library 229

trigger_get_property

Return atrigger’s property value.

unsigned long int trigger_get_property (
TRIGGER *trig, /I Trigger handle
unsigned int prop

);

Parameters
trig
Pointer variable containing a handle for the trigger to be examined.

prop
A code selecting atrigger property.

Return Values
The function returns the numerical value of the specified trigger property prop for
trigger trig.

Description
The function trigger_get_property returnsatrigger’s property value. The
property prop isan identifier from the following list. These codes are defined by the
DTDCNSTS.H fileand areincluded automatically when the DTD . H fileisincluded in
each source code module.

TRIG_HOLDOFF_PROPERTY
TRIG_CYCLE_PROPERTY
TRIG_STARTUP_PROPERTY
TRIG_GATE_PROPERTY

The returned numbers are the holdoff interval length, the auto-mode cycle length,
startup interval length, or the GATE arming, respectively. HOLDOFF, CYCLE, and
STARTUP intervals return unsigned long integer values. The GATE property is ARMED
if the returned value is nonzero, or DISARMED if the value is zero. Only the GATE
property can change after the trigger is defined.

Note: A processing command cannot directly change a trigger’s GATE property. The
property can be changed indirectly by sending a number to a TRIGARM task through

230 Data Acquisition Runtime Library

a pipe, or by sending an EDIT command to the DAPL system using the function
sys_exec_command.

See Also
trigger_get_opmode, sys_exec_command

Data Acquisition Runtime Library 231

trigger_get_status

Return atrigger’s current status count.

unsigned long int trigger_get_status (
TRIGGER *trig /I Trigger handle
)i

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.

Return Values
The function returns the current status count for the calling task.

Description
The function trigger_get_status getsatrigger's current status count. The
status is different for each task accessing the trigger. The writer status describes the
progress of the writer task scanning its data pipe for triggering. A reader status
describes the progress of the reader task as it takes or discards samples from its data
pipe.

Using this function, it is not necessary for the custom command to maintain a

separate status count variable. This information can be obtained from the trigger as
needed.

Note: The status information returned by the trigger_get_status function is
different from the status information returned by the trigger_get_immediate

function, which reports information about the progress of the trigger writer task to a
trigger reader task.

See Also
trigger_get_immediate

232 Data Acquisition Runtime Library

trigger_num

Determine if an assertion is present.

unsigned int trigger_num (
TRIGGER *trig /I Trigger handle

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.

Return Values
For atrigger reader task, the function returns a nonzero number of assertionsif an
assertionis available in the trigger, or a zero value if no assertion is present. For a
writer task, trigger_num reports the number of locations available for storing
additional assertionsin the trigger structure.

Description
The function trigger_num operates in the manner of the pipe_num function,
except it teststrigger trig rather than a data pipe.

See Also
trigger_get_immediate, pipe_num

Data Acquisition Runtime Library 233

trigger_open

Initialize atrigger.

void trigger_open (
TRIGGER *trig, /I Trigger handle
int mode

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.
mode
The parameter mode must be P_WRITE to open the trigger for signaling
assertions, or P_READ to open the trigger for receiving assertions.

Return Values
Thereis no return value.

Description
The function trigger_open initializestrigger trig. All tasks which use a trigger
must call this function prior to calling other triggering functions. The codes
P_WRITE and P_READ are defined by the DTDCNSTS.H file and are included
automatically when the DTD . H file isincluded in each source code module.

234 Data Acquisition Runtime Library

trigger_put

Place an assertion into a trigger.

void trigger_put (
TRIGGER *trig, /I Trigger handle
unsigned long int sc

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.

SC
The sample number for an asserted event.

Return Values
Thereis no return value.

Description
The function trigger_put generates atrigger assertion, writing sample number sc
into trigger trig. The name trigger_assert isan aiasfor the function
trigger_put. The status of the trigger is updated automatically to be consistent
with the asserted sample number.

Note: The sequence of sample numbers written to the trigger must be a strictly
increasing sequence.

Data Acquisition Runtime Library 235

trigger_set_status

Set atrigger’s status field.

void trigger_set_status (
TRIGGER *trig, /I Trigger handle
unsigned long int sc

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.

SC
A sample number indicating the task’s progress in checking for events.

Return Values
Thereis no return value.

Description
The function trigger_set_status isused to set the status number of trigger
trig to specified value sc. Thisinforms the DAPL system that any samples or
events with alesser or equal sample number are no longer needed by thistask. This
function is useful for triggering commands which generate events at predetermined
times, for example, automatic sweep generation. It isalso useful for commands
which copy status information from one trigger to another.

In most applications, it is safer and easier to compute an incremental change and
apply the trigger_updt_status function instead.

Use of the trigger_set_status function is demonstrated in the TSTAMP2.CPP
custom command example.

Note: It is essential for every trigger signaling or receiving task to keep the status of
the trigger structure current with the number of the sample most recently processed.
Samples are numbered starting with sample 0. The function trigger_set_status
always must set the trigger status to a value which is greater than or equal to the
previous trigger status.

236 Data Acquisition Runtime Library

See Also
trigger_updt_status

Data Acquisition Runtime Library 237

trigger_updt_put

Increment the trigger’ s status and assert the trigger at the new value.

void trigger_updt_put (
TRIGGER * trig, /I Trigger handle
unsigned long int incr

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.

incr
The number of samples.

Return Values
Thereis no return value.

Description
The function trigger_updt_put isacombination of atrigger status adjustment
followed by an assertion at the new sample number. First, trigger_updt_put
computes a new status, adding incr samples to the old status number field. Then, it
signals a new event by placing this sample number into trigger trig.

The same effect can be achieved by fetching the value of the trigger status, adding
incrto that number, and then calling trigger_put to assert the trigger event and
update the status.

Thisfunction is particularly useful when data samples are processed in blocks.
While scanning a data stream, if an event is detected at the Nth sample in the block,
call the trigger_updt_put function:

trigger_updt_put(trig,N);

238 Data Acquisition Runtime Library

Otherwise, call the trigger_updt_status function:

trigger_updt_status(trig,N);

See Also
trigger_put, trigger_updt_status

Data Acquisition Runtime Library 239

trigger_updt_status

Increment atrigger’s status field.

void trigger_updt_status (
TRIGGER * trig, /I Trigger handle
unsigned long int incr

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.

incr
The number of samplesto increment the trigger trig status.

Return Values
Thereis no return value.

Description
The function trigger_updt_status increments the status number field of trigger
trig by incr samples. Thisinformsthe DAPL system that any events or data
corresponding to these samples are no longer needed.

Thisfunction is particularly useful when data samples are processed individually.
Cdll trigger_updt_status to adjust the status count by one after each sampleis
processed.

Note: It is essential for every trigger signaling or receiving task to keep the status of
the trigger structure current with the number of the sample most recently processed.
Samples are humbered starting with sample 0. When processing blocks of data,
beware of using this function in combination with the trigger_put function,
which also adjusts the trigger status count.

See Also
trigger_put

240 Data Acquisition Runtime Library

trigger_wait

Extract and return the value of a trigger assertion when it becomes available.
Automatically discard unneeded data.

unsigned long int trigger_wait (
TRIGGER *trig, /I Trigger handle
PIPE *pipe, I/l Pipe handle
unsigned long int pre_count,
unsigned int mult

);

Parameters
trig
Pointer variable containing a handle for the trigger to be accessed.
pipe
A pipe containing data samples to be processed.

pre_count
The number of pre-trigger samples

mul't
A trigger rate correction. Most applications set mult equal to one. mult can be
set to some other value N to locate a group of N samplesin a multiplexed data
set, in the manner that the WAI T command provided by the DAPL operating
system processes multiplexed input channel list data.

Return Values
The function returns the value of an assertion from trigger trig.

Description
The function trigger_wait extracts and returns the value of an assertion from
trigger trig . Thefunction is used by trigger reader tasks that respond to trigger
events by taking a data block from the pipe data stream.

While waiting for atrigger assertion to appear in trigger trig, function
trigger_wait automatically removes unneeded data from pipe pipe, and updates
the trigger status to account for the samples removed.

Data Acquisition Runtime Library 241

When function trigger_wait returns, pipe pipe contains data beginning
pre_count samples before the trigger assertion. The calling task can use

pipe_value_get or pbuf_get to fetch the data associated with the signaled
event.

See Also
pipe_value_get, pbuf_get

242 Data Acquisition Runtime Library

vector_length

Determine the length of a DAPL vector.

int vector_length (
VECTOR *vect /I Vector handle

);

Parameters
vect

Pointer variable containing a handle for the vector to be examined.

Return Values
The function returns the number of elementsin aDAPL vector.

Description
The function vector_length is useful for determining an index bound for
accessing itemsin a DAPL vector.

See Also
vector_width, vector_start

Data Acquisition Runtime Library 243

vector_start

Return a pointer to the first element in a vector defined in a DAPL configuration.

void *vector_start (
VECTOR *vect /I Vector handle

);

Parameters
vect

Pointer variable containing a handle for the vector to be examined.

Return Values
The function returns a pointer to the first element in aDAPL vector.

Description
The routine vector_start returns a pointer to the first element in a vector defined
ina DAPL configuration. The returned pointer must be cast to the appropriate data
type before attempting to access the vector data.

See Also
vector_length

244 Data Acquisition Runtime Library

vector_type

Return the type of data contained by a DAPL vector.

unsigned long vector_type (
VECTOR *vect /I Vector handle

);

Parameters
vect

Pointer variable containing a handle for the vector to be examined.

Return Values
The function returns a code which indicates they type of data contained by the
vector. This returned code is one of the codes used to specify avector data type
during parameter processing.

Description
The routine vector_type accepts a handle to a DAPL vector of any data type, and
returns a code indicating the type of data contained by the vector.

See Also
param_process

Data Acquisition Runtime Library 245

vector_width

Return the size in bytes of one data element in a DAPL vector.

int vector_width (
VECTOR *vect /I Vector handle

);

Parameters
vect

Pointer variable containing a handle for the vector to be examined.

Return Values
The function returns the size in bytes of one data element in the vector.

Description
The function vector_width reports the number of bytes for one element of a
DAPL vector storage array, in the manner that a C sizeof operator would report
the size of aC variable or struct. Thisisuseful for determining storage utilization
directly, rather than deriving storage size from task parameter information.

See Also
vector_length, vector_type

246 Data Acquisition Runtime Library

13. Appendix A. Compatibility with DTD Version 4

This appendix discusses changes and compatibility between version 4 of the
Developer's Toolkit for DAPL and the new version 5.

Hardware Compatibility

The Developer's Toolkit for DAPL version 5 generates 32-bit code that is not
compatible with a 16-bit processor. Features that apply only to 16-bit products are not
supported in the Developer's Toolkit for DAPL version 5. The Developer's Toolkit for
DAPL version 4 has been remarkably stable, and it can continue to be used to develop
code for older 16-bit Data Acquisition Processor modelsiif thisis necessary.

Binary Code Compatibility

There is no binary compatibility between 32-bit modules and 16-bit custom
commands. The binary modules are completely different. The BDOWNLOAD
command and the DAPIO features used to download 16-bit custom commands will
not work with 32-bit modules. You must use the 32-bit downloading facilities as
described in the chapter Compiling and Downloading.

Compatibility with Previous DTD Versions

Most of the source code developed for 16-bit custom commands can be converted
easily to the new form required for 32-bit custom modules. The majority of the DAPL
system functions work the same as they did in the Developer's Toolkit for DAPL
version 4, and the overall organization of the source code is very similar. However,
there are there some fundamental reasons why 100% source code compatibility is not
possible.

» The compilers are different

» The compiler output formats are different

* Theinstruction sets are different

* The data element sizes are different

* The runtime environment is different.

The CDAPBACK.H file from version 4 mapped many deprecated or retired functions
from earlier Developer's Toolkit for DAPL versions into version 4 equivalents. Users
with a strong commitment to preserving old source code can salvage the
CDAPBACK.H from the Developer's Toolkit for DAPL version 4 and make

Appendix A. Compatibility with DTD Version 4 247

appropriate modifications. This should make it possible to continue using many of the
archaic code conventions. Microstar Laboratories does not endorse this practice, so
exercise good judgment.

Among the version 3 or earlier features no longer supported:

1. Higtorical function names for many of the fundamental services, including pipe,
pipe buffer, system information, triggering, and PID operations.

2. Compatibility macros that mapped old naming schemes.

3. Features related to the 16-bit DSP operations on the historical DAP 2400e and
DAP 2400a products. These services were replaced in all newer products.

Use of i nt data type

The 16-bit compilers implemented the int data type as 16-bit fixed point. With the 32-
bit compilers, the int data is implemented as 32-bit fixed point. Compilers are free to
do this, as the precision of the int data type is bounded below but not above. Be
careful, this is not consistent with the behavior of al compilers, and may be
unfamiliar.

The extra precision will usually make no difference to program flow, but it can make a
big difference in the management of sampled data, which arrives in a compacted 16-
bit format. Pointers and data structures must be consistent with this, or the compiler
will generate incorrect addresses when fetching the data. As a genera rule, any
constants, structures or variables which relate to data samples and their values should
be 16-bit short int or short unsigned to match the precision of the data.

The fft and fir filtering functions make extensive use of data buffering. The function
prototypes have been updated to declare the buffer storage areas short int rather than
int, but the calling code will need to be updated to make storage declarations
compatible.

32-bit Variable Access

The functions var32_get and var32_set are no longer provided. Under the 16-bit
Developer's Toolkit for DAPL version 4, there was a very small chance that a
multitasking operation could interrupt a task between the time that the upper and
lower 16 hits of a 32-bit value were stored or fetched. This could cause confusion with
other tasks sharing that variable. However, in the 32-bit environment, these operations
are done in a single 32-bit machine cycle, with no possibility of interruption, so no
useful purposeis achieved.

248 Appendix A. Compatibility with DTD Version 4

If there is extensive use of DAPL variables, and it is undesirable for some reason to
upgrade the code to remove the unsupported function, user-defined macros can be
added to the DTD.H file:

#define var32_set(pt,val) (*pt=val)
#define var32_get(pt) pt)

Multitasking Control

The sys_set_multitasking() functionisno longer useful and is removed. Many
versions ago, the DAPL operating system had a certain level of overhead associated
with operation of the multitasking system. Since that time, the multitasking system has
been improved so that there is no performance difference between using this feature
and not using it -- but the restrictions necessary to use it are very complicated. Hence,
the decision was made to removeit.

If there is existing code with a heavy commitment to using this function, a user-
defined macro can be added to the DTD.H file:

#define sys_set _multitasking(mode) (€D

PID Gain

Back in antiquity, the DAPL P1D command (which is no longer supported) did an
unconventional thing. In a conventional control loop structure, a PID correction is
computed by first taking the setpoint input minus the feedback. So, for example, if the
feedback level is too low, the resulting difference is positive. This difference is
multiplied by P, | and D gain terms to compute the control output. The problem was,
the old PID command got the sign of the difference wrong. Consequently each P, |
and D gain term needed to have its sign reversed to make the sign of the control
output right.

This problem was corrected long ago in the DAPL system, with the introduction of the
processing command PID1. In the relatively quiet Developer's Toolkit for DAPL,
there was no opportunity to repair the old sign problem, and the PID function set
continued with the reversed sign.

The sign problem is now corrected in Developer's Toolkit for DAPL version 5. Rather
than risk that old code would be compiled and seem to run just fine, only to discover
that a sign was changed, a decision was made to remove the function pid_update.
The function pid_compute is its replacement. It has the same form and purpose as
pid_update, except for the differencein sign.

Appendix A. Compatibility with DTD Version 4 249

To convert to the new function, it is necessary to do one of the following:

1. Locate the code that sets up the P, | and D gains for the custom PID control, and
reverse the signs on each term.

2. In the controller custom command, apply a minus sign to each value computed
by function pid_compute, and then continue to use the inverted gain settings as
before.

Pipe PBUF Get and Put

The operations of setting an output sample count and then putting that number of data
to a pipe aimost always occur together. The complementary operations, getting a
number of data from a pipe and then determining how many values are available, also
occur in pairs. It is now possible to perform paired operations with one function call.
Check the function description details and the tutorial sections for more information
about how to use this feature to improve program efficiency.

Dynamic Allocations

Code that manages large dynamic areas as lists of independently-allocated “pages’
will still work. If there are any problems, the rallloc() function can now allocate
very large memory regions, so it might be easier to restructure the data as a single
contiguous storage region. This function also has a companion rfree() function that
can be used to release dynamic allocations.

The malloc and free functions that are employed by C++ constructors and
destructors are also supported.

A New sys_get_version Function

The sys_get_version function has changed to work with new DAP systems and
server software. Applications that use the old version of this function must modify
both the function call and the processing of the returned values. In return for this
inconvenience, the returned information should be much easier to interpret because
there are no intermediate number codes to look up.

C++ Environment

The Developer's Toolkit for DAPL version 5 supports C++ compiler mode. To the
extent that C++ is a “better C” (that argument will never be settled) most code will

250 Appendix A. Compatibility with DTD Version 4

work the same as it did before, and a “C” coding style as opposed to an object-
oriented style is still perfectly acceptable.

The C++ exceptions facility cannot be used. Perhaps this limitation can be removed in
future Developer's Toolkit for DAPL versions, but we must live with this for now. The
most significant consequence of this is that constructors do not have any mechanism
to indicate an internal failure. So, for example, an object could be returned that does
not have a proper initialization of one of the derived or component classes. The
choices are:

« validate the object after construction

* presume that construction is okay if the returned pointer valueis not aNULL.

Appendix A. Compatibility with DTD Version 4 251

Index

= = 10 1e (1= w1 Y= TSRS
32-Dit Variahl@ ACCESS......oeuiiiteisieeeete ettt ettt
ACCESSING ParamELErS.......ccuiiieiiiiiiieiceeti sttt sttt e ettt b et et eseeseste st e saese s eseenaenes
Additional FIR Operations
Advanced Parameter ChECKINGcovoviiiieiiiiseseieee ettt 34
ATTOCELIONS. ...ttt et b ettt b ettt b ettt e b et b et
An Example Custom Command
DIV vttt ettt b bR e A AR R E R bR R et e e A bk R et e bbb e Rt sttt
Assembly Language in Custom Commands
AASSEITION L. bbb b b e bbbt
Asynchronous Output
BEOF ettt R e bbbt et b et ne e b
Auxiliary Functions.
BCOPY 2M.CPP ...ttt sttt bbb se et e s bt et e sae e besbeetennee e
Binary Code ComPatibilitycccoveiiiiiiiieieeces sttt 247
BINAIY OULPULoviveiteieieeetcete ettt sttt n et st b et et e e eseeseeresaennan 57,141, 142
BlOCKEA PP OPEratiONS......c.eceeiiiiicieciesiesteteeee ettt sv et sa e e tesbestesbesaeste st e e esesseesessessenaens 48
T D o TSP 122, 123
BZTRUNGCM.CPP ...ttt sttt sttt st st ee bt st se e s be st e besseenbesne e besseensesneenes 54
C Functions
(0= oo U | OSSOSO 118
L2 PP UP ST PSPPI OPRPPN 171,172
L L ST PRRRRR 98
LA =0 LU= SOOI 98
TCOSWAVE ...ttt ettt bt b bttt b et 81, 164, 167
[0t 0 DAL= Y= RSSO 81
TSINBWAVE ...ttt b et b et b ettt b et ne et bt 81, 164

Index 253

task_switch
L 1= o = AU

C++ BUilder IDE COMPIIE....cuiiiiieieiee ettt se et e e ens 5
C++ Environment .
Command Line COMPITING ...ceeoeeeeirieeiese et be e se e e eaesaeseeseesean
(0000910072010 M@ (0= o T2 o] o SRR
Compatibility with Previous DTD Versions... .
Compiler OPLIMIZALIONS........coeiereereeeeeee ettt e e b e beseeste e e e neeresbeseesseneenean
L0000 1] 1= £SO
Compiling and Loading Modules .
Compiling frOM thE IDEcuoieeeeeeee ettt sttt b e e e e e enean
Compiling Using the Command LiNe..........co.ooeriiiriiiieee et e
Compiling with Borland MAKE..............

Compiling with Microsoft NMAKE
CoNtrol LOOP ...ceueeueeeeneeieesiesieeeeeeeie e
COPY2M.CPP

digital_toggle bit.......cocoiiiiieiiiniiiee
Digital-to-analog converter............cccco.....

Downloading the Compiled Modules
DSP SUPDPOIT ...ttt b e b ae bt e e b e neenenre e e s

254 Index

DTDMOD.H
(DYt g ol N | [Tz o] TSR 250
ENTRY macro

FFT DiIreCtion OpPLiONS.ccceieeeuerieeierieeiesiet ettt st see e e e e s sbesaeseessesee e eneesesneseesaeseensaneans 88
FFT Initialization
FFT PreCiSion OPLiONS.cooiieiiieeereeee ettt b e seesbe e e e e e e seenessesaeseeseaneans 88
Ll IS (0] =0 L= ST P PP PR UPPTURTORNE
FFT Transforms
FFT WiNAOW OPEIELiONS.....cuieteiuiieerierieeeieeeie st sie st seeseesee e essesseseesaeseesseseeneeneesesneseesaeseensaeans 86
FFT With MUItIPIE BUFFEIS ...ttt 96
fft_chngbuf
FET_CPLXIN .ottt ettt n e nnen e nn e enea
FFT_FULLOUT
FFT_HALFOUT
L0 PSPPSR
direction

FFT_PAIRWISE
L L 00 o] ST

FET _REALIN <.ttt bbbttt bbbttt
fft_request
FET_SEPARATED ..ottt b e

FFTDIR_FORWARD....
FETDIR_REVERSE ..ottt bbb
FFTPOST_MAG_PHASE
FFTPOST_MAGNITUDE
FFTPOST_NORMPOWERoooitititiiiiririsieieiet sttt ettt nnes 91
FIETSIZE ...ttt b et e bbbttt b ettt
FFTSOLN_ACCURATE..
FETSOLN _FAST ..ttt bbbttt bbbt
FGEN ULHTITY ..ttt sttt a e et e st et e e e e e neeaeebeseesbeeeseeeannans
FILL
FIR Filter COMPULBLION.........iteeeieeeceiesie sttt sttt sbe b e e e e sae b sbe b e e e e e e enenees
FIR Filter INItialiZaIONc..coiiieeeeeeeeee ettt st b e st ene
[LS T (= =TSSR ST

Index 255

fir_request...
FIRB .ttt bbb bbb bbbttt bttt
FLOAT.CPP ...ttt bbbkttt bbbttt ettt et
Floating Point .
Floating Point Error HaNAIINGcooeiiiiieeieeeees et
Floating POINt EXAMPIE ..ottt see e ene
Floating Point Library Functions
FlOating POINt SUPPOIT.........oieeeeieieee ettt e et sae st e e e se e e e eneseesaeseeneennans
L] 1L PR

[(O] 1@ i @ = =
(o0 1S] o1 YOS
icoswave
[0t o D= Y= ST TPSRRRR

INCIUAE FIES ...ttt ettt et e e et e s aae e be e st e e saeeeabeesseeeteesaneeseeanes
Initializations .
[0S = 1 = 1o o SRR

Libraries.
LIMIT2.CPP ...tttk b etk b ettt
LOW-1ELENCY PID RESPONSE.......ciuieieieiteiesieeeee ettt see e e et ae st saeseesse e e e enesaesaeseeseenen

Makefiles

Modules with Multiple Commands
VKo qTi (ol gTqlo oY o] o] ITer= i o] o OSSR

MUILIPIE CONLIOI LOOPS ... ettt e ettt sttt sae st s ae st e s e e e e enas
T RS L oo TSSO

256 Index

IVTUITEBSKINIG -ttt ettt a et et et eaeeaesbe s e e ebe s e neeneens
Multitasking Control ...
NOWAIT Lottt bbbttt bbbt ne e

OPTIONS ...ttt bbbt E bbbttt b bbbt e bbbt ne b
Other Options
Other PIPE ROULINES........coueitiiieiiee ettt sttt st esee e et e se e st sbesbeseeneeneans

o] o101 o0 LS = o 0| ST
pbuf_set cnt
(o oIS o = = T o1 TSR
[o 0= O 7= o 0| RS

pbuf_set min_cnt....

.. 118, 192, 194
...116, 191, 192, 194, 195

pid_set_setpoint ...
o TKo I (00T OSSOSO
PIDCOEFottt b bbbttt bbbt b b s
Pipe Applications....
LT o= o105 (= SO URSUPTR

Pipe PBUF Gt N PUL ...ttt s 250
Pipe REA0 ROULINES........eitieeieeeieee ettt sttt sttt b e sb e b e se e e e e seeaesbesbeseeneaneans 39

Index 257

1L OSSR

L 010 =S o o= o S SS
Programming in C

Programming SUGQESHIONSceurueiuiruerieriereereeieeuesie st seeseeseeessesaesaeseesaesseseneeseeneseessessensenes 127
PIOJECE FIIES......e ettt b e b st e b e st e e e e eaeeaeseeseeseenteneennan 3

PRTM.CPP

Receiving task
[£SoTTo g =" TSP

RTALARMUCPP......ce et

Runtime libraries
RUNEIME Library, LIDrary ..ottt 133
RUNLTME SUPPOIT ...ttt sttt sttt e et b e e be e et e es e e emeereeaeseeseeseeneenseneennan 2
Scheduling
SEIVICE OVEIVIEW......viieieee ettt r et n e et e r e nr e nenennes 133
SGENLCPP......ottteii ittt bbbttt e bbbt e e bbbttt e b bbbttt ne bbbt e s
Signaling task
SINQGIE TASKING - euteueeteeteeteeteeeeee et e etestesteseesee e e e eseeteaaeseeabese e e e e eseaaeetesbeseeseneeseeneesesbeseenseneans
S0 LT W T To < 1 o o TSRS
Specid Trigger Modes
SPID2.CPP ...ttt bbb bbbkt n e

258 Index

SUPPOITEA SYSLEIMS...... ettt sttt bttt e e e e e se e st seeseeseeee e eneeaeereseeseeasensaneanean 2
SYS EXEC_COMMMIAING......eiuertetietiieree et ettt st e ee e et e seeaesbesbeseeseneeseeaesbesbeseeseeeneenessesaesaenseneans 217
sys _get_info
YR o = A (] 0 OSSPSR
Sy SR o L= = £ o] o USSR

sys _get_version Function...
SYSEOM FUNCLIONS. ...ttt sttt et e b e et e sb e e e e e neeneeaeebeseeneenen
L= S 011 o ST
Task Parameters...

Time delay
Trigger assertion
THQOEN FUNCLIONS......cuiiteteiei ettt sttt se e e st st e be st e s e e eneenesbesaeseenbeneennan
THIQOEN SEBEUS. ... veteeeeeeeieete et ee ettt besee e et e aeeaeseesbese e e eaeeseeae et e besee s eneeneenesbesaeneenbensanean
trigger_get
trigger_get_immediate
gl o= o= So o000 e USROS
trigger_get_property....
gl o L= o = A = UL USSR
trigger_num
trigger_open
LT o = o | OSSPSR
g0 Tc s A = 0L OSSPSR
trigger_updt_put
TrIQOEN_UPOL SEALUS.......eeueeeeeeteee ettt sttt ae e st e be e e s e e eseenesbesbeseeeeneans
LT o< Y7) OSSO USRS
Triggering Examples
Typica FFT Options
USING RUNEIME LIDEBIY.....ieieeeeeet ettt ettt et st se e e e e eneene
vector_|ength
VECEOT _SEBIT......cveeeetet ettt bbbttt bbbttt ettt
VECEOT LY.ttt ettt ettt bbbttt e bbbt b bttt e bbb
vector_width

WAIT

Index 259

	Developer’s Toolkit for DAPL Manual
	Contents
	Introduction
	Supported Systems

	Installation
	Adjusting Project Files
	Compiling Using the Command Line
	Compiling with Microsoft NMAKE
	Compiling with Borland MAKE
	Compiling with the Borland Builder IDE
	Compiling with the Microsoft IDE

	Overview
	Organization of Custom Command Code
	An Example Custom Command

	Compiling and Loading Modules
	Preparing Files and Environments
	Command Line Environment
	Microsoft IDE Environment
	Borland IDE Environment

	Compiling From the Command Line
	Simplified Command Line with Batch File

	Compiling from the IDE
	Compiling from the Borland IDE
	Compiling from the Microsoft IDE

	Adjusting Compiler Optimizations
	Downloading the Compiled Modules

	Include Files
	The DTDMOD.H File
	The DTD.H File
	Supplementary Header Files

	Using Developer’s Toolkit Functions
	Header Files
	Registering Commands
	Task Parameters
	Accessing Parameters
	Auxiliary Functions
	Advanced Parameter Checking
	Vectors
	Initializations and Allocations
	Pipe Read and Write Routines
	Application Examples Using Pipes
	Text Transfer
	Blocked Pipe Operations
	Other Pipe Functions
	Task Control
	Direct Output Functions
	Real Time Clock

	Software Triggering Support
	Establishing the Connection
	Using the Trigger Functions
	Special Trigger Modes
	Triggering Command Examples

	Floating Point Support
	Floating Point Library Functions
	Floating Point Example
	Floating Point Error Handling

	Digital Signal Processing Support
	Building Custom Waveforms
	Performing FFT Transforms
	FFT Initialization
	FFT Storage
	FFT Window Operations
	FFT Precision Options
	FFT Direction Options
	Post-FFT Processing Options
	Other Options
	Typical FFT Options

	Deferred Post-FFT Processing
	FFT Processing With More Than One Buffer
	Example FFT Application
	Using Finite Impulse Response Digital Filters
	FIR Filter Initialization
	FIR Filter Computation
	Additional FIR Operations

	A Data Smoothing Application

	Real-Time Control
	Latency
	Multitasking
	Strategies for Improving Real-Time Response
	Latency When Using Floating Point
	Single Tasking
	Monitoring Application Example
	Customized PID Controllers
	Structures for PID Control
	The Control Loop
	Low-latency PID Response
	Efficient Control of Multiple Loops

	Tips and Techniques
	Names: Module, DAPL and C++
	Debugging Custom Commands
	Examining Task Scheduling
	Using Assembly Language in Custom Commands
	Building Modules with Multiple Commands

	Data Acquisition Runtime Library
	Service Overview
	Pipe Operations
	Pipe Buffer (PBUF) Operations
	Data Access
	Vectors
	Task Control
	Text Formatting
	Asynchronous Device Output
	Triggers
	FFT
	Digital Filters
	PID Feedback Control
	General Math
	Requests to Command Interpreter

	Compiler Runtime Functions
	atof
	dac_out
	digital_out
	digital_set_bit
	digital_toggle_bit
	exit
	fft_chngbuf
	fft_init
	fft_postop
	fft_request
	fir_advance
	fir_change
	fir_init
	fir_request
	fprintf
	free
	icosine
	icoswave
	icplxwave
	isine
	isinewave
	isqrt
	malloc
	param_error
	param_error_msg
	param_process
	param_type
	pbuf_get
	pbuf_get_cnt
	pbuf_get_data_ptr
	pbuf_get_max_cnt
	pbuf_get_min_cnt
	pbuf_open
	pbuf_put
	pbuf_put_set_cnt
	pbuf_set_cnt
	pbuf_set_data_ptr
	pbuf_set_max_cnt
	pbuf_set_min_cnt
	pid_compute
	pid_open
	pid_preset
	pid_set_setpoint
	pid_tune
	pipe_get
	pipe_num
	pipe_num_complete
	pipe_open
	pipe_purge
	pipe_put
	pipe_rem
	pipe_value_get
	pipe_value_put
	pipe_width
	printf
	ralloc
	realloc
	rfree
	sprintf
	sscanf
	sys_exec_command
	sys_get_info
	sys_get_time
	sys_get_version
	task_pause
	task_switch
	trigger_get
	trigger_get_immediate
	trigger_get_opmode
	trigger_get_property
	trigger_get_status
	trigger_num
	trigger_open
	trigger_put
	trigger_set_status
	trigger_updt_put
	trigger_updt_status
	trigger_wait
	vector_length
	vector_start
	vector_type
	vector_width

	Appendix A. Compatibility with DTD Version 4
	Hardware Compatibility
	Binary Code Compatibility
	Compatibility with Previous DTD Versions
	Use of int data type
	32-bit Variable Access
	Multitasking Control
	PID Gain
	Pipe PBUF Get and Put
	Dynamic Allocations
	A New sys_get_version Function
	C++ Environment

	Index

