
DAPL 2000 Manual

Data Acquisition Processor
Analog Accelerator Series

Version 6.00

Microstar Laboratories, Inc.

This manual contains proprietary information which is protected by copyright. All
rights are reserved. No part of this manual may be photocopied, reproduced, or
translated to another language without prior written consent of Microstar Laboratories,
Inc.

Copyright © 1985-2003

Microstar Laboratories, Inc.
2265 116 Avenue N.E.
Bellevue, WA 98004
Tel: (425) 453-2345
Fax: (425) 453-3199
http://www.mstarlabs.com

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAP, iDSC, DAPL,
and DAPview are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any
Microstar Laboratories products are to be used in or with systems, devices, or
applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark
of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Part Number MSDAPL2000M600

Contents iii

Contents

Contents .. iii
Section I. Overview ... 1
1. Introduction... 3

New and Changed Information.. 3
2. Introduction to DAPL... 5

Architectural Basics... 6
Data Processing Configuration .. 8

System Commands .. 8
Defining Commands.. 9
Input Configuration Commands.. 9
Output Configuration Commands ... 10
Processing Configuration Commands ... 10

General Rules for Command Syntax.. 12
Case... 12
Names.. 12
Uniqueness .. 12
Abbreviations .. 12
Blanks.. 12
Comments ... 12
Continuation.. 13
Line Termination... 13
Numbers .. 13
Channel Pipe Notations... 14
Task Parameter Notations.. 15
Range Notations .. 15

About Efficiency.. 16
Direct Interaction with the Interpreter ... 16
About Custom Processing Commands... 18

3. System Commands .. 21
4. System Element Definition Commands.. 23
5. Input and Output Configuration Commands.. 25

Input Configuration Commands .. 25
Output Configuration Commands.. 27

6. Task Definition Commands .. 29
7. Task Definition Using DAPL Expressions... 33

Expression Syntax ... 33
Target .. 33
Expression... 33

Expression Operands ... 33
Expression Data Types .. 34

iv Contents

Expression Operators ...35
Operator Precedence ..38
Buffering During Expression Evaluation ...39
Data Extraction...40
Other Notes on Expressions ...40

8. Voltages and Number Representations...43
Analog Input Voltages ...43
Digital Input Voltages ..44
Interpreting Integers as Analog Voltages ...45
Binary Representation ..46

12-bit Data Acquisition Processors..46
14-bit Data Acquisition Processors..46
16-bit Data Acquisition Processors..47

Interpreting Readings as Binary Fractions ...47
12-bit Data Acquisition Processors..48
14-bit Data Acquisition Processors..48
16-bit Data Acquisition Processors..49

Digital Readings...50
Integers Used by DAPL..50
Floating Point Types ..51
Conversions Between Integer Types ..51
Hexadecimal Notations and Integers ..52

9. Data Transfer ...55
Standard Com Pipes ...56
Sending Text to the PC ..56
Sending Binary Data to the PC...57
Reading Text from the PC..58
Reading Binary Data from the PC..58
Additional Com Pipes ..58

10. Processor and Memory Allocation..59
Multitasking ...59
Interleaving of Output ..60
Memory Allocation ..60
16-bit Custom Command Stack Memory Allocation ...61

11. Optimizing Processor Performance ..63
Reducing Processor Load...63
Digital Signal Processing ...63
Communication Formats ..64
Channel Pipe Efficiency...64
Scheduling Options ..64
Streaming Data to the PC ...65
Trigger Performance...65
High-Speed Triggering...66
Benchmarking an Application..67

12. Overflow and Underflow ...69
Overflow Messages ..70

Contents v

Preventing Overflow.. 71
Underflow Messages ... 72
Preventing Underflow.. 73

13. Low Latency Operation .. 75
Buffering Control .. 76
Task Scheduling Control ... 77
Evaluating Task Latency.. 79
Low Latency Commands ... 79
Using Custom Modules to Reduce Latency... 80

14. DAPL Software Triggering .. 81
Defining Software Triggers ... 82
Applying Software Triggers... 84
How Software Triggering Works... 85
Equalizing Data Rates ... 86
Starting and Stopping Triggers.. 88
Triggering Modes .. 90
Applying Trigger Operating Modes... 93

Oscilloscope Emulation Application... 93
Process Monitoring Application.. 93
Event Counting Application.. 94
Destructive Tests and One-Shot Events .. 94

Timestamp-Modifying Commands .. 96
Triggers and Independent ON/OFF Events ... 97
Triggering with Multiple-Data Acquisition Processors ... 99
Asynchronous Events and PCASSERT... 102

15. Digital Filtering ... 105
Average and Running Average.. 105
Finite Impulse Response Filters... 106
Generating Filter Coefficients.. 106
Window Vectors.. 107
Phase Response and Time Delay ... 107

16. Fast Fourier Transform.. 109
FFT Commands ... 110
FFT Modes .. 111
Window Vectors.. 112
Scaling in the FFT ... 113
Representing Sampled Data... 114
Nyquist Frequency... 115
Representing Sample Data with Complex Exponentials.. 116
Representing Sampled Data with Cosines and Sines... 118
Symmetry Around the Nyquist Frequency... 119
Interpreting the FFT .. 120
Interpreting the FFT for Real Data .. 121
Errors in the FFT ... 122

vi Contents

Section II. Reference..125
17. DAPL Commands ..127
18. DAPL 2000 Messages ..377

Error Messages 0-99 - System Errors...378
Error Messages 1000-1049 - Configuration Errors ..379
Error Messages 1050-1099 - Configuration Errors ..381
Error Messages 1100-1149 - Configuration Errors ..384
Error Messages 1150-1199 - Configuration Errors ..387
Error Messages 1200-1499 - Task Operating Errors ..391
Warning Messages 1500-1599 ...395
Error Messages 2201-2272 - Configuration Errors ..397
Error Messages 2273-2282 - Downloadable Module Errors..405
Error Messages 2283-2288 - Information Channel Query Errors407
Error Messages 2289-2399 - General Errors..408

19. Appendix A. Previous Versions of DAPL...409
System Commands Now Obsolete ...410
Processing Commands Now Obsolete..411
Sampling Procedure Notations...411
Processing Command Changes ..411
Old TRIGGERS Command Syntax ..412
Name Conflicts...412
Options...413
Hexadecimal Notations ..413
Low Latency Tasks...413
Variables in Parameter Lists...415
Obsolete Commands...415

20. Glossary ..431
Index ...441

Section I. Overview 1

Section I. Overview

Chapter 1 Introduction 3

1. Introduction

The Data Acquisition Processor from Microstar Laboratories is a complete data
acquisition system that occupies one expansion slot in a PC. Data Acquisition
Processors are suitable for a wide range of applications in laboratory and industrial
data acquisition and control.

Two other manuals complement the DAPL Manual:
� The Applications Manual introduces the Data Acquisition Processor by showing

how to set up a wide variety of data acquisition applications.
� A Data Acquisition Hardware manual contains installation instructions and a

configuration reference.

New and Changed Information

This edition of the DAPL Manual contains information for version 2.05 and above of
DAPL 2000. While many user functions of DAPL 2000 are consistent with other
versions of the DAPL operating system, there are some fundamental differences:

� DAPL 2000 is a 32-bit operating system and is compatible only with Data

Acquisition Processors that have a 32-bit processor.
� Appendix A discusses command forms that are superceded in current versions of

the DAPL 2000 system.

Chapter 2 Introduction to DAPL 5

2. Introduction to DAPL

A Data Acquisition Processor is capable of simultaneously running sophisticated real-
time data capture, data processing, and signal generation tasks, under control of the
DAPL operating system. The DAPL system supports a broad range of hardware,
timing, and processing configurations, and provides a library of built-in processing
functions for data selection, conversion and on-line analysis tasks.

This versatility is made accessible through a very powerful, high-level scripting
language. The configuration commands are typically organized as text files and
downloaded to the DAPL system, as needed, by a software application. A single
command line in the DAPL configuration script is the equivalent of hundreds of lines
in most programming or scripting languages.

6 Chapter 2 Introduction to DAPL

Architectural Basics

The DAPL operating system is downloaded into Random Access Memory (RAM) of
the Data Acquisition Processor during the boot sequence of the host processor. A
configuration describing the input sampling, the output signal generation, and the data
processing is then downloaded by application software. That configuration is
translated automatically into a set of tasks. When the application tells the DAPL
system to run the configuration, a multitasking scheduler coordinates acquisition,
signal generation, and communication events. Streams of data are routed to processing
tasks. The results of the processing are usually transferred back to the host software �
but not always. Sometimes the Data Acquisition Processor is configured to directly
control various output signals independent of the host software system.

DAPL tasks communicate through buffering structures called pipes. Tasks place data
in pipes and remove data from pipes. A pipe holds data temporarily until the next task
in the processing sequence is ready for that data. DAPL keeps the data in correct
sequence by enforcing a first-in, first-out discipline. Data in pipes are considered
available for all tasks to read, but only those tasks that specify the pipe as a data
source are allowed access. Each task that asks to read data from a pipe will see all of
the data from that pipe as if it were reading its own private copy.

During processing, data samples are recorded, output signal data are consumed, and
intermediate computed values are used and discarded. All of these activities require
intermediate memory buffers. The DAPL system takes care of all task synchronization
and all memory buffer management. For example, if a task is temporarily unable to
continue because it has read all of its input data or because no space is available in its
output pipe, the DAPL system will suspend that task temporarily, scheduling other
tasks to consume or provide data. Depending on the demands of the processing, the
amount of buffering memory in each pipe expands and shrinks dynamically.

The Data Acquisition Processor organizes the physical channels into configurable
groups, known as channel lists. The characteristics of each channel in the channel list
are also configurable: signal source, gain, etc. Data captured from the various
channels are moved as efficiently as possible into memory and grouped according to
the channel list. This mixed organization is rather awkward for processing the data, so
the DAPL system provides a mechanism called �input channel pipes� for accessing
the data in a more orderly fashion. The �input channel pipes� are treated like any other
data pipes for accessing data channels individually or in groups. In a similar fashion,
�output channel pipes� provide an orderly mechanism for collecting data for clocked
output signal updates.

Chapter 2 Introduction to DAPL 7

The DAPL system also enforces rules of �scheduling fairness.� That is, a task that
demands a lot of CPU computing resource is not allowed to exclude other tasks. If a
task exceeds its time allocation or cannot proceed for any other reason, the DAPL
system goes on to schedule the next task.

A unique mechanism for inter-task coordination called �software triggers� is also
provided. Software triggers are really a kind of pipe, but instead of passing ordinary
data, they pass information about where to locate data of special interest. Sometimes
this information is called �trigger events.� These are not really time-events in the
ordinary sense, rather, they are indications of where to find data. For example,
suppose that a block of 100 data samples is to be retained every time the block
contains an odd number of positive values greater than 10000 but no negative values.
A task responding to these �trigger events� would know exactly which data to retain.
The data to be collected sometimes corresponds to a moment in real-time prior to the
triggering event, which seems implausible. How can the system respond to an event
before it happens? This �pre-trigger sampling,� as it is often called, is really an
illusion. It doesn�t have anything to do with sampling. It is really intelligent data
management.

8 Chapter 2 Introduction to DAPL

Data Processing Configuration

The configuration script for a DAPL application is very different from a programming
language in the usual sense. Most scripting languages are essentially procedural. That
is, they specify �do this, then if this condition is satisfied, do this�� and so forth.
Even object-oriented languages operate this way, though their procedures are bound to
data objects: �If this object receives this message, do this, and if this condition is
satisfied issue this message to that object�� In contrast, a DAPL command specifies
configuration rather than immediate action. It is sometimes useful to say that only one
command, the STARTSTARTSTARTSTART command, actually executes. The rest of the commands just
specify what to start. (This is not strictly true. Still, it is a useful concept.)

In fact, all commands execute, but in most cases the effect is to configure some aspect
of the system, not to immediately perform an application process.

The commands can be assigned to the following categories.

System Commands

These commands configure the system environment, provide operating status
information, and start or stop application configurations established by the other
commands.

A task called the �command interpreter� is always available and active. It is
responsible for receiving the text of all commands and providing the appropriate
response. The command text is usually received through the built-in $SYSIN text
channel, but commands can also arrive from other sources. When it receives a system
command, the command interpreter executes this command immediately. Some
commands, such as STARTSTARTSTARTSTART or STOPSTOPSTOPSTOP, control the execution of an application
configuration. Commands such as DISPLAYDISPLAYDISPLAYDISPLAY report current status information.
Commands such as PAUSEPAUSEPAUSEPAUSE affect the operation of the interpreter task, for example, to
allow time for processes to complete. Commands such as OPTIONSOPTIONSOPTIONSOPTIONS affect the system
operating environment. Commands such as RESETRESETRESETRESET clear the operating environment for
beginning a new application configuration.

For example, the following sequence of commands will collect data using sampling
procedure A for three seconds, but allow three additional seconds to complete the data
analysis using processing procedure ANALYZE.

Chapter 2 Introduction to DAPL 9

START A, ANALYZE
PAUSE 3000
STOP A
PAUSE 3000
RESET

Defining Commands

These commands define shared data elements used by processing tasks.

The defining commands can be considered a special set of system commands, whose
effect is to define a named data element. Because these named elements are known to
the system, processing tasks can use them to share data access. Pipes establish
connections between tasks and are always shared elements, so it is always necessary to
declare pipes before defining the processing tasks that use them. A shared data
element persists in memory, and will remain defined until removed by a system
command such as ERASEERASEERASEERASE or RESETRESETRESETRESET.

For example, the following commands define a variable called LAST_EVENT and a
software trigger called T_EVENT.

VARIABLE LAST_EVENT
TRIGGER T_EVENT MODE=NORMAL HOLDOFF=128

CONSTANT elements in the DAPL configuration maintain a fixed value while the
configuration is running. VARIABLE elements, however, are �active� and any tasks
that access variables can change the values at any time. Furthermore, the value of a
variable can carry over from one run to the next, unless the variable is erased or
explicitly assigned a new initial value.

Input Configuration Commands

These commands configure input channel lists, physical input channels, timing, and
sample collection sequences.

Input configuration commands occur in a group that begins with an IDEFINEIDEFINEIDEFINEIDEFINE
command and ends with an ENDENDENDEND command. Special commands appear inside of the
input configuration, such as the SETSETSETSET command for assigning input channel pipes to
input pins, and the TIMETIMETIMETIME command for establishing sampling intervals.

10 Chapter 2 Introduction to DAPL

For example, the following input procedure configures input sampling to capture a
sample every 10 microseconds, taking samples alternately from the digital port and
single-ended analog channel 1 with gain of 10.

IDEFINE ALT
 CHANNELS 2
 SET IP0 B
 SET IP1 S1 10
 TIME 10
END

Output Configuration Commands

These commands configure output channel lists, output converters, timing, and
clocked signal update sequences.

The isochronous (clocked) output configuration commands occur in a group that
begins with an ODEFINEODEFINEODEFINEODEFINE command and ends with an ENDENDENDEND command. Special
commands appear inside of the output configuration, such as the SETSETSETSET command for
assigning a data channel to an output device, and the TIMETIMETIMETIME command for establishing
update timer intervals.

For example, the following configuration generates a periodic signal of length 250
samples at analog output converter 0, clocking a new update every 400 microseconds.

ODEFINE SIGNAL 1
 SET OP0 A0
 TIME 400
 CYCLE 250
END

Processing Configuration Commands

These commands configure a network of processing tasks that consume, process,
modify and transfer data in various ways. The configuration can be considered a
simple list without an enforced order of execution. Pipes serve as the �wiring� � or
�plumbing� if you like � for routing the outputs of a task to the inputs of subsequent
tasks. If data are available to process, a task can execute. Otherwise, some other task
will run. This kind of configuration is known as a �dataflow model.�

A task definition uses a processing command, but isn�t one. This distinction is
important, and explains why a command like SKIPSKIPSKIPSKIP or LIMITLIMITLIMITLIMIT can be used any number
of times. If you like, you can think of each task as a separate thread of execution

Chapter 2 Introduction to DAPL 11

through a body of shared command code, each thread of execution using its own set of
data sources and destinations.

Most task definition commands in the processing procedure consist of:

1. A command name.
2. Keyword options. Only a few commands use these.
3. A parameter list. The parameter list specifies various explicit or shared data
 elements, such as the pipes serving as data sources or destinations.

For example, the AVE processing configuration below alternately processes and
discards data blocks of length 100 elements, and computes the average value for each
retained block. Pipe PSKIP is used to transfer the intermediate data between tasks.
Assume that pipes PDATA, PSKIP and PAVE have been defined previously.

PDEFINE AVE
 SKIP(PDATA, 0,100,100, PSKIP)
 AVERAGE(PSKIP,100,PAVE)
END

There is a second kind of task definition called a DAPL expression that looks very
different. The DAPL expression in the following example takes each value from pipe
P1 and rounds it to the next smaller multiple of 10, placing the results into pipe P2.

P2 = (P1/10) * 10

This looks very much like an assignment statement in an ordinary programming
language, but there is a big difference. An assignment statement operates on one
value. A DAPL expression converts one or more streams of data to another stream.
For more information about DAPL expressions, see Chapter 7.

Task definitions must refer to command names that are known to the system, hence,
these must either be processing commands built into the system or custom-
programmed commands that previously have been downloaded into the Data
Acquisition Processor memory.

The tasks defined in a processing procedure remain available, though inactive, until
the system command STARTSTARTSTARTSTART activates the procedure.

12 Chapter 2 Introduction to DAPL

General Rules for Command Syntax

Case

The DAPL system does not distinguish between upper case and lower case letters.
They may be used interchangeably. For example, the names �AaA� and �aAa� are
considered to be one and the same within the DAPL system.

Names

Names assigned to shared elements must begin with an alphabetic character and may
contain up to 22 additional alphabetic, numeric, or underscore characters. Some pre-
defined system names can begin with a �$� character, for example, the $BINOUT pipe.

Uniqueness

Names assigned to shared data elements must be distinctive from all built-in command
names, pre-defined symbols, reserved command keywords, and other user-assigned
names.

Abbreviations

Some system command names can be abbreviated. This is not generally recommended
in configuration files, but is sometimes useful for direct interaction with the command
interpreter. See the listings for the individual commands for information about the
accepted abbreviations.

Blanks

Blank characters serve as separators, but have no meaning except within string
constants. With rare exceptions, blanks can appear anyplace where other separator or
termination characters appear, for example, the expressions �A=B� and �A = B� have
equivalent meanings. However, the commands �AB = C� and �A B = C� are not
equivalent, because the intervening blank separates characters A and B into two
distinct names.

Comments

DAPL supports �trailing comments� that begin with a �//� character pair outside of a
string constant. Comments continue to the end of the current line. Continued lines

Chapter 2 Introduction to DAPL 13

cannot be commented. Comments have the same interpretation as blanks, that is, they
act as a separator but otherwise have no meaning.

Note: Trailing comments beginning with �;� are accepted but discouraged. Avoid
comment lines that begin with the character sequence �;$� or �;%�. These are valid
and acceptable in the DAPL environment, but these notations are interpreted
specially by some Microstar Laboratories software utilities.

Continuation

A very long command line can be temporarily terminated with a backslash �\�
character at the end of the line, with the command continued on the next line. The
effect is the same as if the command were on a single very long line. String constants
cannot be continued this way, however. Continued lines cannot have trailing
comments.

NOTE: Some commands provide alternative notations for line continuations. See for
example the VECTORVECTORVECTORVECTOR command.

Line Termination

A combination of a carriage-return character followed immediately by a linefeed
character, or a linefeed character followed immediately by a carriage-return character,
is treated as a single line termination character. Otherwise, each carriage-return or
linefeed character terminates a separate line.

Numbers

Number constants can be entered in a decimal or hexadecimal notation. Hexadecimal
constants are prefixed by a �$� character without any intervening blanks. For
example:

$ABCD

The hexadecimal notation is treated as a pattern of bits, and the value depends on the
interpretation of the sign bit. If the value above is placed into a 16-bit data pipe, the
high-order bit is a 1 so the value is -21555. But if placed into a 32-bit long pipe, the
high-order bit is not in the sign bit position, so the value is 43981.

For certain command notations, numbers must be specified in a decimal notation. Two
examples:

14 Chapter 2 Introduction to DAPL

TIME $1F : invalid!
TIME $8 : invalid!

Channel Pipe Notations

Input and output channel pipes are accessed using input channel pipe and output
channel pipe notations, respectively.

An input channel pipe notation has two parts, an IPIPE notation and a channel
specifier, with an optional separating blank. The IPIPE keyword can be abbreviated
to IP. An output channel pipe notation is similar, except for the OPIPE or OP
keyword.

The channel specifier part has two forms, a single channel specifier or a channel pipe
list.

The following example shows an input channel pipe notation with a single channel
specifier. This form is used in an input procedure or output procedure for assigning a
signal pin to a channel pipe.

SET IPIPE0 S9 // input procedure
SET OP 0 A0 // output procedure

A similar notation can be used in a task definition parameter list to access the channel
pipes. For example:

COPY(IP 0, $BINOUT)
SINEWAVE(5000,200,OP0)

The channel pipe list notation specifies sets of samples to be collected. Channels can
be listed individually, or ranges of numbers can be specified using a �dot-dot�
notation, but the channels must always be in a strictly ascending order. The
specifications are separated by commas, and the list enclosed in parentheses. For
example, the following command will transfer the data from the first four input
channel pipes directly to the first four output channel pipes.

COPY(IP (0,1,2,3), OP (0..3))

Usually, a shared constant or vector value is also accepted as a channel or channel list
specification. For example, if constant CCHAN is defined

CONSTANT CCHAN = 1

Chapter 2 Introduction to DAPL 15

then the following would be an acceptable input channel specification:

IPIPE CCHAN

The blank separator is required in this example; otherwise the characters
�IPIPECCHAN� would be interpreted as a shared element name rather than an input
channel pipe.

Task Parameter Notations

Most task definitions require specification of a number of configuration parameters.
Tasks that require no parameters can omit the parameter list. The list consists of a
number of parameter items, separated by commas, and enclosed in parentheses. The
elements in the list can be:

1. Explicit constant values
2. Named constant values
3. Named variable values
4. Explicit vectors, enclosed in parentheses, with the vector terms separated by

commas
5. Named vectors
6. Explicit strings
7. Named string values
8. Pipe names
9. Input or output channel pipe notations
10. Software trigger pipe names
11. Range notations (see the discussion below)

The FORMATFORMATFORMATFORMAT command allows some additional formatting notations. See the FORMATFORMATFORMATFORMAT
command reference pages for full information.

Range Notations

A region notation is a special combination of task definition parameters. It consists of
three parameters: a special reserved name INSIDE or OUTSIDE, a 16-bit numeric
parameter specifying a lower range limit, and a 16-bit numeric parameter specifying
an upper range limit. The terms are separated by commas. If the range limits are
variable names, these limits can be adjusted dynamically while the task is running.

The range values usually represent data values, but sometimes they constrain an index.
The INSIDE condition is satisfied if the value under test, data or index, is greater than
or equal to the lower limit, and also less than or equal to the upper limit. The

16 Chapter 2 Introduction to DAPL

OUTSIDE condition is satisfied if the value under test is strictly less than the lower
limit or strictly greater than the upper limit.

In the following example, a LIMITLIMITLIMITLIMIT command uses a range specification to test for data
falling outside of the range -32768 to 0 (that is, any strictly positive number).

LIMIT(P1, OUTSIDE, -32768, 0, T1)

In the following example, the range specification instructs the FINDMAXFINDMAXFINDMAXFINDMAX command to
examine only the first 128 values from blocks of data containing 256 samples.

FINDMAX(P1, 256, INSIDE,0,127, P2)

About Efficiency

A processing configuration might use perhaps two dozen commands to invoke very
powerful processing options. This processing is specified using a very high-level
DAPL configuration script. But very high level languages tend to achieve their power
at a cost to speed and efficiency. When the application runs, what is the speed penalty,
compared to (say) a hand coded application in Assembly language?

The answer is: No penalty. How is this possible?

Recall, the high level commands used to configure an application do not execute
directly, rather, they configure system elements. This configuration is typically
expressed in terms of interrelated data structures, not executable code. The code that
actually runs, in all of the data sampling, updating and processing tasks, is highly
optimized at the machine code level. Execution of the configuration script is slow (by
comparison), but this does not apply to the run-time processing.

Direct Interaction with the Interpreter

Most of the time, DAPL configuration files are downloaded through the $SYSIN
command pipe under software control, using software facilities such as the
DAPIO32.DLL, or utility programs like DAPview for Windows. But it is also possible
to transfer configuration information manually and directly to the DAPL interpreter.
For this kind of manual operation, typically the interpreter is put into the SYSINECHO
mode using the OPTIONSOPTIONSOPTIONSOPTIONS command. Any input text is echoed back to the sender
through the $SYSOUT text pipe in the manner of a data terminal operating in half-
duplex mode. The interpreter will also send prompt characters to indicate when it is
expecting the next command. Normally the prompt character is the �#� character.
After sending an IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE or PDEFINEPDEFINEPDEFINEPDEFINE command, the prompt character is

Chapter 2 Introduction to DAPL 17

changed to �>� indicating that the interpreter is awaiting the commands that make up
the body of the input, output or processing definition respectively. After the
terminating ENDENDENDEND command, the �#� prompt returns.

18 Chapter 2 Introduction to DAPL

About Custom Processing Commands

While the capabilities of the built-in processing commands are extensive, it is not
possible for any given set of commands to meet every possible processing
requirement. The DAPL system allows developing and downloading command
modules specifically suited to special data acquisition applications. Once downloaded
into the Data Acquisition Processor memory, commands in a module have the same
status as a built-in task definition command. The most common reasons for employing
custom command modules are:

1. Specialization and Extension.

A custom command can provide processing features that are not available using
pre-defined commands. For example, there are hundreds of specialized digital
signal processing algorithms besides the basic filtering and transform operations
provided by the operating system. Specialized operations can be downloaded to
act in combination with, or as replacements for, the built-in commands.

2. Combination for Efficiency.

Some applications require sequences of processing operations. When applied to
very long input channel lists, this can mean hundreds of processing tasks,
transferring data through hundreds of data pipes. The operating overhead of any
one pipe or task is small, but multiply this by several hundred and this can lead to
inefficiencies that compromise processing capacity. A custom command can
perform the equivalent of several pre-defined processing operations, improving
processing efficiency.

3. Combination for Speed.

A custom command task can substitute for very complicated DAPL expressions.
Some complex computations can be computed more quickly if compiled to native
machine code and optimized by a compiler.

Chapter 2 Introduction to DAPL 19

4. Real-time Response.

When it is important to respond to time-critical events, having a large number of
tasks can be a hazard. Any tasks that execute between the time that an event is
detected but before the response can be sent introduce a delay, also known as
�latency.� If the delay is unacceptable, processing can often be packaged into a
limited number of tasks, sometimes as few as one, so that the latency is bounded to
an acceptable level.

Custom command modules are written in the C++ programming language, compiled
into a binary code image, and downloaded to a Data Acquisition Processor using one
of the utilities such as CDLOAD32 or DAPview for Windows. Tools for preparing the
command code, all of the required utilities, and lots of working examples are provided
by the Microstar Laboratories Developer�s Toolkit for DAPL.

Chapter 3 System Commands 21

3. System Commands

DAPL system commands start and stop sampling, set system options, request status
information and set initial conditions. They are executed immediately when received
by the DAPL command interpreter.

The following system commands are built into the DAPL operating system:

DIAGNOSTICDIAGNOSTICDIAGNOSTICDIAGNOSTIC test Data Acquisition Processor hardware
DISPLAYDISPLAYDISPLAYDISPLAY display symbol and system status information
EDITEDITEDITEDIT modify input and output procedures and com pipes
EMPTYEMPTYEMPTYEMPTY empty all data from a pipe
ERASEERASEERASEERASE remove a symbol
FILLFILLFILLFILL add data values to a pipe
HELLOHELLOHELLOHELLO return a line including the DAPL version number
LETLETLETLET change the value of a variable or constant
OPTIONSOPTIONSOPTIONSOPTIONS change a system option
OUTPORTOUTPORTOUTPORTOUTPORT define output expansion board types
PAUSEPAUSEPAUSEPAUSE pause DAPL interpreter
RESETRESETRESETRESET reset DAPL interpreter
RESTARTRESTARTRESTARTRESTART perform a power-up restart of DAPL
SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD wait for input processing to stop
SDISPLAYSDISPLAYSDISPLAYSDISPLAY display information about symbols
STARTSTARTSTARTSTART start input, output, and processing procedures
STATISTICSSTATISTICSSTATISTICSSTATISTICS display task statistics
STATUSSTATUSSTATUSSTATUS display system status
STOPSTOPSTOPSTOP stop input, output, and processing procedures

Chapter 4 System Element Definition Commands 23

4. System Element Definition Commands

A defining command is a special kind of system command. It executes immediately,
but its effect is to construct a persistent, shared system element with an assigned name.
Execution of the command will:

� allocate memory for the element
� assign and record its name
� initialize the memory with appropriate values

The element is inactive until a configuration that uses it is started. A defined element
will remain defined until removed by an ERASEERASEERASEERASE command or a system initialization
command such as RESRESRESRESETETETET.

Some elements reserve data storage memory when the element is defined. Other
elements will allocate data memory dynamically when the processing configuration
runs. For example, the data storage areas for pipes will grow and shrink as data are
accumulated or extracted.

The following system element definition commands are built into the DAPL operating
system:

CONSTANTSCONSTANTSCONSTANTSCONSTANTS define constants
PIPESPIPESPIPESPIPES define pipes
STRINGSTRINGSTRINGSTRING define a string
TRIGGERSTRIGGERSTRIGGERSTRIGGERS define triggers
VARIABLESVARIABLESVARIABLESVARIABLES define variables
VECTORVECTORVECTORVECTOR define a vector.

Once an element is defined, it can be used in DAPL processing configurations. For
example, a variable VALUE and a pipe PSTREAM can be combined by a DAPL
expression PSTREAM + VALUE.

Chapter 5 Input and Output Configuration Commands 25

5. Input and Output Configuration Commands

Input configuration commands establish an operating configuration for input sampling
hardware. Output configurations establish an operating configuration for output
updating hardware. Other than this major difference, input and output configurations
are similar in many ways. Both are closely related to the hardware features of the Data
Acquisition Processor, so the supported options may vary with the Data Acquisition
Processor model. Both are optional. More than one input and output procedure can be
defined, but at most one of each can run at any one time. Both associate physical pins
to logical data channels called channel pipes. Both use sets of configuration
commands to select buffering, clocking, hardware triggering, and time interval
options.

The commands that make up an input or output procedure definition are the equivalent
of a single system element defining command, in the sense that together they define a
data structure, though it is a complex one.

Some Data Acquisition Processor models are specialized for high speed data capture
only, and do not support output updating configurations.

Input Configuration Commands

An input configuration begins with an IDEFINEIDEFINEIDEFINEIDEFINE statement, ends with an ENDENDENDEND
statement, and contains a number of commands that configure input sampling options.

IDEFINEIDEFINEIDEFINEIDEFINE begin an input configuration definition
ENDENDENDEND complete an input configuration definition

26 Chapter 5 Input and Output Configuration Commands

CHANNELSCHANNELSCHANNELSCHANNELS configure the number of channels to receive data
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING select the channel list clocking mode
CLOCKCLOCKCLOCKCLOCK select internal or external clocking
COUNTCOUNTCOUNTCOUNT specify the number of samples to acquire
GROUPSGROUPSGROUPSGROUPS configure the number of channel groups to receive data
GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE define the number of channels in a programmable input

channel group
HTRIGGERHTRIGGERHTRIGGERHTRIGGER select the hardware triggering mode
SETSETSETSET associate a channel pipe with a physical pin or pin group
TIMETIMETIMETIME select the sampling interval
VRANGEVRANGEVRANGEVRANGE set configurable input voltage range limits
UPDATEUPDATEUPDATEUPDATE select continuous input operation or burst input operation

Chapter 5 Input and Output Configuration Commands 27

Output Configuration Commands

An output configuration begins with an ODEFINEODEFINEODEFINEODEFINE statement, ends with an ENDENDENDEND
statement, and contains a number of commands that configure output updating
options. Output configurations are not supported on DAP 3400a boards, DAP 4400a
boards or DAP 5400a boards, which are specialized for data sampling only.

ODEFINEODEFINEODEFINEODEFINE begin an output configuration definition
ENDENDENDEND complete an output configuration definition

CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING select the channel list clocking mode
CLOCKCLOCKCLOCKCLOCK select internal or external clocking
COUNTCOUNTCOUNTCOUNT select the number of output updates
CYCLECYCLECYCLECYCLE specify the cycle length for periodic output data
HTRIGGERHTRIGGERHTRIGGERHTRIGGER select hardware triggering mode
OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT select the number of samples to buffer before updating begins
SETSETSETSET associate a channel pipe with a physical pin
TIMETIMETIMETIME select the output update interval
UPDATEUPDATEUPDATEUPDATE select continuous output operation or burst output operation

Chapter 6 Task Definition Commands 29

6. Task Definition Commands

Processing configurations define groups of tasks known collectively as a �processing
procedure.� A processing procedure begins with a PDEFINEPDEFINEPDEFINEPDEFINE statement, ends with an
ENDENDENDEND statement, and contains commands that define processing tasks. Task definitions
can apply any of the built-in processing commands or a command in a downloaded
command module. A DAPL expression can also define a processing task. A
processing command can be used any number of times, assigning different data
sources and destinations for each task.

The tasks created in this manner become available for execution, but they do not run
until their processing procedure is activated by the STARTSTARTSTARTSTART system command. When the
STARTSTARTSTARTSTART command selects the processing procedure containing a task, the STARTSTARTSTARTSTART
command will

� allocate stack space for the task
� set up a data storage area for the task
� assign a scheduling entry for the task

Once running, a task locates the system elements specified by its parameter list and
executes the body of command code. This code is separate from the DAPL interpreter,
and is optimized for efficient execution. A running task can access data sources and
data destinations, including: read data from data pipes, perform computations, write
result data to data pipes, access shared variable or vector data, or report software
trigger events.

The following task definition commands are built into the DAPL operating system:

PDEFINEPDEFINEPDEFINEPDEFINE begin a processing configuration
ENDENDENDEND complete a processing configuration

ABSABSABSABS compute absolute values
ALARMALARMALARMALARM generate digital alarm signals
AVERAGEAVERAGEAVERAGEAVERAGE average pipe data
BAVERAGEBAVERAGEBAVERAGEBAVERAGE perform block averaging
BINTEGRATEBINTEGRATEBINTEGRATEBINTEGRATE integrate blocks of data
BMERGEBMERGEBMERGEBMERGE merge blocked data
BMERGEFBMERGEFBMERGEFBMERGEF merge blocked data with identifying flags
BPRINTBPRINTBPRINTBPRINT transfer binary input channel pipe data to the PC
CABSCABSCABSCABS compute the sum of squares of the values in two pipes

30 Chapter 6 Task Definition Commands

CHANGECHANGECHANGECHANGE scan for changes in data
COMPRESSCOMPRESSCOMPRESSCOMPRESS compress data flow for inputs that change infrequently
COPYCOPYCOPYCOPY copy the data in a pipe into several other pipes
COPYVECCOPYVECCOPYVECCOPYVEC copy data from a vector to a pipe
CORRECORRECORRECORRELATELATELATELATE compute cross correlations
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE generate cosine waveforms
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER compute cross power spectrum
CTCOUNTCTCOUNTCTCOUNTCTCOUNT accumulate long word counts from counter timer board data
CTRATECTRATECTRATECTRATE compute frequencies from counter timer board data
DACOUTDACOUTDACOUTDACOUT send data to an analog output port
DECIBELDECIBELDECIBELDECIBEL convert positive values to decibels
DELTADELTADELTADELTA compute the differences of the values in a pipe
DEXPANDDEXPANDDEXPANDDEXPAND calculate data required for digital output port expansion
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT send data to a digital output port
DLIMITDLIMITDLIMITDLIMIT scan data for slopes that are out of range
EXTRACTEXTRACTEXTRACTEXTRACT extract single bits from word data
FFTFFTFFTFFT compute fast Fourier transforms, emphasizing speed
FIFIFIFINDMAXNDMAXNDMAXNDMAX find the locations of maxima in blocks of data
FIRFILTERFIRFILTERFIRFILTERFIRFILTER apply digital filtering and reduce data volume
FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS apply predefined lowpass digital filtering
FORMATFORMATFORMATFORMAT format data as text and transfer to the PC
FREQUENCYFREQUENCYFREQUENCYFREQUENCY determine frequencies of trigger assertions
HIGHHIGHHIGHHIGH compute maxima of blocks of data
INTEGRATEINTEGRATEINTEGRATEINTEGRATE compute the running integral of pipe data
INTERPINTERPINTERPINTERP interpolate with a lookup table
LCOPYLCOPYLCOPYLCOPY copy the data in a pipe into several other pipes with minimal

latency
LIMITLIMITLIMITLIMIT scan data for values that are out of range
LOGICLOGICLOGICLOGIC scan binary data for bit transitions
LOWLOWLOWLOW compute minima of blocks of data
MERGEMERGEMERGEMERGE merge data from several pipes into one pipe
MERGEFMERGEFMERGEFMERGEF merge binary data from several pipes, adding identifying flags
NMERGENMERGENMERGENMERGE merge different quantity of data from several pipes into one

pipe
NTHNTHNTHNTH remove excess trigger events
OFFSETOFFSETOFFSETOFFSET perform an offset adjustment
PCASSERTPCASSERTPCASSERTPCASSERT generate triggers based on PC control
PCOUNTPCOUNTPCOUNTPCOUNT count the number of values placed in a pipe
PEAKPEAKPEAKPEAK search for maxima and minima of pipe data
PID1PID1PID1PID1 compute data for closed-loop process control, reducing the

control error to 0
POLARPOLARPOLARPOLAR convert from rectangular to polar coordinates

Chapter 6 Task Definition Commands 31

PRINTPRINTPRINTPRINT print all input channel pipe data to the PC
PULSECOUNTPULSECOUNTPULSECOUNTPULSECOUNT count the number of digital input pulses
PVALUEPVALUEPVALUEPVALUE determine the most recent value in a pipe
PWMPWMPWMPWM perform pulse width modulation
RANDOMRANDOMRANDOMRANDOM generate pseudorandom numbers
RANGERANGERANGERANGE remove data values that are out of range
RAVERAGERAVERAGERAVERAGERAVERAGE compute running averages of pipe data
REPLICATEREPLICATEREPLICATEREPLICATE copy data, repeating each value a specified number of times
RMSRMSRMSRMS compute root mean square values
SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH generate sawtooth waveforms
SCALESCALESCALESCALE scale pipe data and add an offset
SCANSCANSCANSCAN wait for a group of input pins to be sampled before

transferring data
SEPARATESEPARATESEPARATESEPARATE separate merged data
SEPARATEFSEPARATEFSEPARATEFSEPARATEF separate flagged merged data
SINEWAVESINEWAVESINEWAVESINEWAVE generate sine waveforms
SKIPSKIPSKIPSKIP delete selected blocks of data
SQRTSQRTSQRTSQRT compute square roots
SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE generate square waveforms
TANDTANDTANDTAND combine triggers with logical �and�
TCOLLATETCOLLATETCOLLATETCOLLATE combine triggers producing a combined event stream
TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 calculate transfer functions from frequency domain data
TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 calculate transfer functions from cross-power spectra and

auto-power spectra
TGENTGENTGENTGEN generate periodic triggers
THERMOTHERMOTHERMOTHERMO perform thermocouple linearization on data
TOGGLETOGGLETOGGLETOGGLE test trigger events for alternating ON and OFF events
TOGGWTTOGGWTTOGGWTTOGGWT collect data between alternating ON and OFF events
TORTORTORTOR combine triggers with logical 'or'
TRIANGLETRIANGLETRIANGLETRIANGLE generate triangle waveforms
TRIGARMTRIGARMTRIGARMTRIGARM allow a task to arm or disarm software triggers
TRIGRECVTRIGRECVTRIGRECVTRIGRECV recover encoded software trigger information
TRIGSCALETRIGSCALETRIGSCALETRIGSCALE modify a stream of trigger events
TRIGSENDTRIGSENDTRIGSENDTRIGSEND transfer trigger information to another DAP
TSTAMPTSTAMPTSTAMPTSTAMP convert trigger assertions to time stamps
VARIANCEVARIANCEVARIANCEVARIANCE compute the statistical variance of pipe data
WAITWAITWAITWAIT wait for a trigger event and transfer trigger data to a pipe
WAVEFORMWAVEFORMWAVEFORMWAVEFORM generate analog waveforms

Chapter 7 Task Definition Using DAPL Expressions 33

7. Task Definition Using DAPL Expressions

DAPL expressions provide flexible means for performing arithmetic and bitwise
operations on streams of data. While an expression statement might look like an
�assignment statement� from various familiar programming languages, it is actually
much more. Each expression defines a task that reads from pipes, input channel pipes,
or variables, performs arithmetic and bitwise operations, and puts results into a pipe,
output channel pipe or variable.

Expression Syntax

A DAPL expression consists of three parts: a �target� which is the destination for the
computed results, an �assignment operator� represented by an equal sign, and an
�expression� consisting of constants, names, and operators:

<target> = <expression>

Examples:

P3 = P1 + (P2 & $07F)
OPIPE0 = P5*P6 - P7

Target

<target> specifies the destination for computed results. The target must be a defined
variable or pipe that can accept arithmetic data.

Expression

<expression> is a combination of operands and operators that specify the
computations to perform.

Expression Operands

Operands are terms that provide data. They can be of the following types:

Named Constant: a shared value of numeric type defined by the CONSTANTSCONSTANTSCONSTANTSCONSTANTS
command. This value is �locked� once the DAPL configuration is started.

34 Chapter 7 Task Definition Using DAPL Expressions

Explicit Constant: a numeric value specified directly as a term in the expression.
Decimal, hexadecimal, or floating point constant notations can be used. The notation
is unambiguous and is not overridden by the global OPTIONSOPTIONSOPTIONSOPTIONS DECIMAL=OFF mode
that controls data formats.

Variable: a shared word, long, float, or double value residing in shared storage
reserved by the VARIABLESVARIABLESVARIABLESVARIABLES command. Unlike a named constant, a variable value can
be changed at any time by another task or the PC host. The expression task attempts to
use the most current value of the variable for its computations.

Pipe: a stream of numeric values of word, long, float, or double type. A pipe operand
names a stream of data rather than individual values. Any pipe that can provide
numeric data can be used. The pipe can be a user-defined pipe, input channel pipe, or
communications pipe. If no data are available from the pipe, the task suspends
execution at that point, waiting for data to arrive.

When pipe operands are evaluated, the expression attempts to extract from the pipe as
many values as it can, consistent with the buffering mode. When buffering is off, only
one value is fetched at a time.

Because pipe operands refer to streams of data, not to individual values, each
reference to the name of a pipe obtains access to the entire stream of data. It is as if
there are multiple, separate and independent copies of the data stream. Consequently,
the following two commands are equivalent:

 P3 = P1 + P1 + P1
 P3 = P1 * 3

Integer scalars can be expressed in a 32-bit hexadecimal notation. In general, it is a
good idea to represent all 32 bits, explicitly showing sign extension bits, particularly
when the values are to be treated as numeric (as opposed to bitwise) data.

Example: Select the high-order 8 bits from a 16-bit data value.

 POUT = P1 & $0000FF00

Expression Data Types

Inside of DAPL expressions, all values, whether taken from operands or computed,
are classified into one of three internal data types:

� Fixed point
� Bitwise
� Floating point

Chapter 7 Task Definition Using DAPL Expressions 35

Data from word or long fixed point pipes or variables are represented as fixed point
internal data. Data from float or double pipes or variables are represented as floating
point internal data.

Data types depend on the operators that are applied.

Expression Operators

Operators can be categorized as
� arithmetic operators
� bitwise operators
� shift operators
� negation operators
� grouping operators

Arithmetic operators

Arithmetic operators are infix operators that perform the usual arithmetic operations.
They include:

addition +
subtraction -
multiplication *
division /

Examples:

 P1 + 100

 RAW * SCALE1 / SCALE2

Arithmetic operations applied to bitwise or fixed point data types yield fixed point
values. Arithmetic operations for which one or more of the values is floating point
yield a floating point result.

Bitwise operators

Bitwise operators are infix operators that perform the usual Boolean operations of
setting, clearing, and inverting patterns of bits. These operations include the
following:

36 Chapter 7 Task Definition Using DAPL Expressions

bitwise-and &
bitwise-or |
bitwise-xor ^

Examples:

 P1 & $FF00

 P1 | P2

Bitwise operations cannot be applied to floating point operands or floating point
intermediate results. A bitwise operation applied to fixed or bitwise data types yields a
bitwise result.

Shift operations

Shift operations are infix operators that shift patterns of bits left or right. The result of
a shift is a bitwise value.

The first operand specifies the initial bit pattern and the second operand specifies the
number of bit positions to shift. Shift operations cannot be applied to floating point
operands or floating point intermediate results. Fixed point values specified as bit
patterns are treated as if they were bitwise data. The number of bit positions to shift
must be a fixed point number, or a bit pattern interpreted as a fixed point number, in
the range 0-31.

The shift operations include the following:

shift left <<
shift right >>

Example:

 P2 = (P1 >> 12) & $000F

A left shift has the same effect as multiplication by a power of two, except for the data
type of the result. Vacated low-order bit positions are filled by zeroes.

The effect of a right shift is similar to a division by a power of two. The DAPL system
replicates and propagates whatever bit value happens to be in the high-order (sign) bit
position when the shift is applied. This behavior is common in PC-based compilers,
where operands are numeric types rather than bit patterns.

Chapter 7 Task Definition Using DAPL Expressions 37

To avoid problems with inconsistent treatment of high-order bits, it is recommended
that the modified high order bits be considered indeterminate after a right shift, and
either forced to known values or ignored.

If the number of positions to shift is negative or larger than 31, the shift is treated as
an out-of-range condition. The result will be the same as if the initial bit pattern were
shifted a very large number of positions. For the case of a right shift, this has the effect
of setting all of the bits in the bit pattern to match the initial high-order bit. For all
other cases the result is a zero bit pattern.

Negation

There is one negation operator, a minus sign preceeding an operand or subexpression.
The result of negating a fixed point or bitwise expression is a fixed point value. The
result of negating a floating point expression is a floating point value.

negation -

Examples:
 P1 = -P2
 NEGSUM = -(A+B)

Grouping operators

Grouping can be used to control order of evaluation or just to make the evaluation
sequence more clear. Terms inside of the grouping consist of expression operators and
operands, and for this reason can be called subexpressions. Subexpressions can
include nested groupings, but this nesting is restricted to 10 levels. There is no run-
time speed penalty for grouping terms. The enclosing parentheses always occur in
pairs, and if any open parenthesis is not balanced by a close parenthesis, the
expression is not valid.

begin subexpression (
end subexpression)

Example:
 POUT = (P1 + P2) * (P3 | P4)

A subexpression has the value and data type of the result computed inside the
grouping. Because a subexpression has a value, a negation operator can be applied to
a subexpression group.

38 Chapter 7 Task Definition Using DAPL Expressions

Operator Precedence

Operator precedence determines the order in which operators are applied to operands.
If operators have the same precedence, the operations are performed from left to right.
However, if operators are at different precedence, the operators with higher
precedence are performed first. The levels of precedence, from highest to lowest, are:

1. Evaluation of primitive operand terms and subexpressions
2. Negation
3. Multiplication and division
4. Addition and subtraction.
5. Bitwise operations and shifts

These same rules of precedence are applied (recursively) for evaluating terms
bracketed by sub-expression parentheses.

Example 1:

P1 = P2+P3*P4|P5

The multiply operation has the highest precedence, so the intermediate result P3*P4 is
computed first. The addition operator has next-highest precedence, so P2 is added to
the intermediate result as the second operation. Bitwise-or has lowest precedence, and
is performed last to yield a bitwise result.

Example 2:

P1 = P2 * -(P3+P4)

The subexpression is evaluated at highest precedence. The intermediate sum is then
negated, the negation operation having higher precedence than the multiply operation.

Example 3:

 P3 = P1 & $01 + P2 & $02

It is unlikely that this command will compute the desired result. Because the addition
operation has higher precedence and is performed first, the expression is equivalent to
the following, with bitwise operations performed left to right:

 (P1) & ($01+P2) & ($02)

Chapter 7 Task Definition Using DAPL Expressions 39

Example 4:

 POUT = P1<<2 ^ P1>>2

It is unlikely that this command will compute the desired result. Because shift and
other bitwise operations are equal precedence, the shift and exclusive-or operators are
applied left to right. The command is equivalent to the following:

 POUT = ((P1<<2) ^ P1) >> 2

Buffering During Expression Evaluation

A DAPL expression defines a task in a processing procedure configuration. Because
DAPL expressions operate on streams of data like other processing tasks, they are
subject to the same tradeoffs between rapid response and efficient throughput. To
respond to events as quickly as possible, it is necessary to push each value through the
evaluation process just as soon as it appears. But doing this requires extra computing
overhead. To evaluate large volumes of data quickly, it is better to collect data into
buffers and process blocks of data rather than single values. But some amount of time
delay occurs while the data accumulates to fill the buffers, leading to a delay in real-
time response. There is a trade-off between response delay and processing efficiency.

As it starts running, each DAPL expression task will examine the current setting of the
system BUFFERING option (see the OPTIONSOPTIONSOPTIONSOPTIONS command) to determine whether to
buffer the data or to try to use the data immediately. With the option
BUFFERING=OFF, the expression evaluator task pushes individual values through the
sequence without buffering. With the option BUFFERING=MEDIUM or
BUFFERING=LARGE, the expression evaluator sets up buffering storage and performs
evaluation operations on data blocks.

With buffered data, the data arrival patterns in data pipes can be unpredictable, so the
position in a data stream where a change in a variable takes effect can also be
unpredictable.

� If there is a backlog of data in memory, the value of the variable could be more
current than the data being processed. If the data are plotted as a function of
sampling time, a variable value change could seem to appear at an implausibly
early time. The plot, of course, doesn�t show that the processing of the data was
delayed, causing the data samples and the variable values to be �out of sync.�

� When a variable value is combined with a data stream that arrives early, this can
produce intermediate results that take effect when other data arrive somewhat
later. The illusion is that the variable value changed late, or perhaps not at all. In

40 Chapter 7 Task Definition Using DAPL Expressions

fact, there was just a full buffer of intermediate values that already included the
old variable value.

Data Extraction

The data representation for fixed point, bitwise, and floating point data internal to
DAPL expressions is very general. The final operation of the expression is to
�extract� the results, and �convert� into an accessible form. There is no guarantee that
the computed results will fit naturally into the target specified as the destination for
the computed result. The expression task will do the best that it can to represent the
final result accurately.

If the target of the expression is a variable, only one value can be stored. The value
selected for storage is the last one to be computed, the �most current� value.

For both variables and pipes, the data conversion depends upon the data type of the
computed result and the data type of the target structure.

� If the target location stores word data, the value of the result expression is reduced
to a 16-bit quantity. Arithmetic values that are too large or small are bounded at
the appropriate limits of their range. Floating point values are rounded to the
nearest integer. Bitwise results drop the high order bits without changing the
values of the remaining low-order bits.

� If the target location stores long data, the treatment is the same as word data
except that the range limits are much larger.

� If the target location is float data type, a fixed-point value is rounded to the closest
numeric value that the floating point notation can represent. The lowest 24 bits of
a bitwise result are retained.

� If the target location is a double data type, the treatment is the same as for float
type except that approximations or truncation are not necessary.

Other Notes on Expressions

Floating point faults (division by zero, overflow to infinity, etc.) result in IEEE
�special numbers� such as NAN and +INF without generating a floating point
exception.

With older models of Data Acquisition Processors and past versions of DAPL, shift
operations were recommended as a subsitute for multiplication and division when the
multipliers or divisors were powers of two. The advantages are less clear with CPU
devices available on new generations of Data Acquisition Processors. In general, we
recommend that you avoid clever programming tricks.

Chapter 7 Task Definition Using DAPL Expressions 41

DAPL fixed point expressions will �saturate� in the event of fixed point overflow
conditions. For example, if there is an attempt to add 1,000 to the value
2,147,483,640, the overflow will be detected and the reported result will be the
maximum representable positive number, 2,147,483,647.

Be careful of multiplying sequences of large numbers in fixed point. Arithmetic
operations that attempt to increase or decrease values too much can reach the
saturation limits, and might not have the expected effect.

Fixed point division by zero in a DAPL expression is treated as a limiting case of
division by a very small positive number. If the dividend was positive, the result is
saturated to a maximum positive value. If the dividend was negative, the result is
saturated to the largest negative number.

There is no complementation operator for bitwise data. To invert bits, use the
exclusive-or bitwise operator. For example, to complement the low order four bits:

 P2 = P1 ^ $000F

Chapter 8 Voltages and Number Representations 43

8. Voltages and Number Representations

The analog and digital inputs and outputs of the Data Acquisition Processor are
voltages. The Data Acquisition Processor converts voltages to integers, performs
computations on the resulting integers, and converts integers to voltages. This chapter
explains how voltages and integers are related.

Analog Input Voltages

The input voltage for each analog input pin is buffered, amplified by the pin�s gain
factor, and fed to the analog-to-digital converter. The gain factor is between 1 and 500
and is specified independently for each input channel pipe. Each time the Data
Acquisition Processor samples a pin, the analog-to-digital converter returns an integer
between -32768 and +32767. The range of valid input voltages depends on the pin�s
gain and on the analog-to-digital converter range. Note that different Data Acquisition
Processors have different ranges. Possible ranges with unity gain are 0 volts to
+5 volts, -2.5 volts to +2.5 volts, -5 volts to +5 volts, and -10 volts to +10 volts.
Voltage ranges that start at zero volts and go up to some positive voltage are called
unipolar ranges while voltage ranges that span both negative and positive voltages are
called bipolar ranges.

The Data Acquisition Processor Hardware Manual explains how to configure the
voltage range of the Data Acquisition Processor.

44 Chapter 8 Voltages and Number Representations

Digital Input Voltages

Digital inputs are voltage signals with only two significant levels, low (0) and high
(1). Data Acquisition Processor inputs follow the standard TTL specification that any
voltage between ground and 0.8 volts is low, and any voltage between 2.0 volts and
the supply voltage, approximately 5.0 volts, is high. Voltages between 0.8 volts and
2.0 volts are regarded as transition voltages, and may be sensed as either low or high.

Digital signals must originate from TTL-compatible components. Voltages applied to
digital input pins must be between ground and the supply voltage, approximately 5.0
volts. The digital input latches may be damaged if this precaution is not observed.

There are pull-up resistors on all digital inputs. Because of these pull-up resistors,
unused inputs appear as 1�s.

Chapter 8 Voltages and Number Representations 45

Interpreting Integers as Analog Voltages

The readings that the Data Acquisition Processor receives from the analog-to-digital
converter or sends to a digital-to-analog converter are referred to as conversion
values. All conversion values are scaled so that a reading of zero represents zero volts,
a reading of 32768 represents positive full scale, and a reading of -32768 represents
negative full scale. For unipolar inputs, negative values are not used, so the lower
range limit is 0.

The following gives a formula relating voltage, conversion value, and full scale. Let X
represent a conversion value, and let F represent the full scale voltage � 2.5 volts, 5
volts, or 10 volts. The voltage V corresponding to the conversion value X is given by:

V = (X/32768) * F

For Data Acquisition Processors on bipolar ranges, input and output voltages can
range from negative full scale to slightly below positive full scale. For Data
Acquisition Processors on unipolar ranges, input and output voltages can range from 0
to slightly below positive full scale. The possible readings range from

• -32768 to +32752 for 12-bit Data Acquisition Processors on bipolar ranges
• 0 to +32760 for 12-bit Data Acquisition Processors on unipolar ranges
• -32768 to +32764 for 14-bit Data Acquisition Processors on bipolar ranges
• 0 to +32766 for 14-bit Data Acquisition Processors on unipolar ranges
• -32768 to +32767 for 16-bit Data Acquisition Processors on bipolar ranges

Only bipolar ranges are offered on 16-bit Data Acquisition Processors.

46 Chapter 8 Voltages and Number Representations

Binary Representation

Within the Data Acquisition Processor, conversion values are represented by 16-bit
signed binary numbers. These are numbers of the form

xxxx xxxx xxxx xxxx

where each �x� represents a �0� or a �1�. The highest order (leftmost) bit always
represents the sign. A number is positive if its highest order bit is 0 and negative if its
highest order bit is 1.

12-bit Data Acquisition Processors

The 12-bit Data Acquisition Processors have 12-bit analog-to-digital converters and
12-bit digital-to-analog converters. In order to represent a 12-bit value as a 16-bit
number, some of the bits are set to 0. For the bipolar ranges, the four rightmost bits
are set to 0, so the conversion values are in the form

xxxx xxxx xxxx 0000

Possible conversion values range from -32768 to 32752. All are divisible by 16, and
the increment between possible conversion values is 16. In hexadecimal form, the
conversion values range from 8000 to 7FF0.

For the unipolar ranges, the leftmost bit is set to 0 so that the conversion values
always appear as positive binary numbers. The conversion values then take the form

0xxx xxxx xxxx x000

Possible conversion values range from 0 to 32760. All are divisible by 8, and the
increment between possible conversion values is 8. In hexadecimal form, the
conversion values range from 0000 to 7FF8.

14-bit Data Acquisition Processors

The 14-bit Data Acquisition Processors have 14-bit analog-to-digital converters and
14-bit digital-to-analog converters. In order to represent a 14-bit value as a 16-bit
number, some of the bits are set to 0. For the bipolar ranges, the two rightmost bits are
set to 0, so the conversion values are in the form

xxxx xxxx xxxx xx00

Chapter 8 Voltages and Number Representations 47

Possible conversion values range from -32768 to 32764. All are divisible by 4, and
the increment between possible conversion values is 4. In hexadecimal form, the
conversion values range from 8000 to 7FFC.

For the unipolar ranges, the leftmost bit is set to 0 so that the conversion values
always appear as positive binary numbers. The conversion values then take the form

0xxx xxxx xxxx xxx0

Possible conversion values range from 0 to 32766. All are divisible by 2, and the
increment between possible conversion values is 2. In hexadecimal form, the
conversion values range from 0000 to 7FFE.

16-bit Data Acquisition Processors

The 16-bit Data Acquisition Processors have 16-bit analog-to-digital converters and
16-bit digital-to-analog converters. All bits in the 16-bit binary representation are
significant.

All Data Acquisition Processors are calibrated so 0000 0000 0000 0000 represents
zero volts in all ranges. For the 12-bit Data Acquisition Processors, there are 4096
possible conversion values for each scale, so the highest conversion value is 4095
steps above the lowest. For the 16-bit Data Acquisition Processors, there are 65,536
possible conversion values for each scale, so the highest conversion value is 65,535
steps above the lowest. As a consequence, the highest conversion value for each scale
is one step below the nominal full scale value.

A DAPL expression or a SCALESCALESCALESCALE command can be used to scale the digitized values.
The FORMATFORMATFORMATFORMAT command has an option to print values with decimal points. Together,
these commands allow the Data Acquisition Processor to send data directly into
programs that require data in engineering units. See the Applications Manual for an
example of conversion from integers to engineering units.

Interpreting Readings as Binary Fractions

Conversion values can be considered as signed binary fractions by placing an implicit
binary point after the leftmost bit of each value. This is equivalent to dividing each
reading by 32768. In this representation, each reading is just a fraction of full scale.
The input voltage V is the binary fraction reading multiplied by the full-scale voltage.

As shown here, the bit indicated by �s� is 0 for a positive sample or 1 for a negative
sample. The bits indicated by �x� can take values 0 or 1. The bits indicated by �0� are

48 Chapter 8 Voltages and Number Representations

fixed at zero. The period represents the implied binary point. For unipolar voltages,
the high order bit is always zero, indicating a positive value.

12-bit Data Acquisition Processors

As binary fractions, the readings for 12-bit bipolar voltages take the form

s.xxx xxxx xxxx 0000

Possible numbers in this form range from -1 to 32752/32768 = 0.9995. In a
hexadecimal base, the values range from -$1.0000 to +$0.FFE0 and are represented as
integers $8000 to $7FF0.

As binary fractions, the readings for 12-bit unipolar voltages take the form

0.xxx xxxx xxxx x000

Possible numbers in this form range from 0 to 32760/32768 = 0.9998. In a
hexadecimal base, the values range from +$0.0000 to +$0.FFF0 and are represented
as integers $0000 to $7FF8.

14-bit Data Acquisition Processors

As binary fractions, the readings for 14-bit bipolar voltages take the form

s.xxx xxxx xxxx xx00

Possible numbers in this form range from -1 to 32764/32768 = 0.99988. In a
hexadecimal base, the values range from -$1.0000 to +$0.FFF8 and are represented as
integers $8000 to $7FFC.

As binary fractions, the readings for 14-bit unipolar voltages take the form

0.xxx xxxx xxxx xxx0

Possible numbers in this form range from 0 to 32766/32768 = 0.99994. In a
hexadecimal base, the values range from +$0.0000 to +$0.FFFC and are represented
as integers $0000 to $7FFE.

Chapter 8 Voltages and Number Representations 49

16-bit Data Acquisition Processors

As binary fractions, the readings for 16-bit bipolar voltages take the form

s.xxx xxxx xxxx xxxx

Possible numbers in this form range from -1 to 32767/32768 = 0.99997. In a
hexadecimal base, the values range from -$1.0000 to +$0.FFFE and are represented as
integers $8000 to $7FFF.

50 Chapter 8 Voltages and Number Representations

Digital Readings

The digital input port of the Data Acquisition Processor has 16 bits. The pins of the
digital input port always are read simultaneously by the Data Acquisition Processor.
The resulting value may be interpreted either as forming one 16-bit digital input, or as
16 binary inputs.

A 16-bit binary value from the digital input port appears in the form

xxxx xxxx xxxx xxxx

This may be treated as an integer between -32768 and +32767. Note that the highest
order bit determines the sign. If the highest order bit is 0 the integer is positive, and if
the highest order bit is 1 the integer is negative.

Integers Used by DAPL

Most DAPL tasks deal with integer values in the range from -32768 to +32767. Thus
the internal representation follows the format defined by the analog-to-digital
converter. Integers in the range from -32768 to +32767 are called word integers. Each
integer in this representation occupies two bytes of the Data Acquisition Processor
buffer memory.

The range from -32768 to +32767 is too restrictive for some computations in DAPL,
so DAPL has a �long integer� data type. Long integers range from -2,147,483,648 to
+2,147,483,647. Each long integer occupies four bytes of the Data Acquisition
Processor buffer memory. When there is a choice between word integers and long
integers, use word integers unless extra precision is needed.

DAPL applications related to the fast Fourier transform also use complex integers.
Each complex integer is represented implicitly by two ordinary integers.

Chapter 8 Voltages and Number Representations 51

Floating Point Types

The processor on the Data Acquisition Processor and the DAPL operating system
provide support for floating point computations consistent with IEEE Std 754.
Floating point is available for internal processing tasks. The standard �single real�
data type is called FLOAT in the DAPL system. Each FLOAT value occupies four bytes
of the Data Acquisition Processor buffer memory. The �double real� data type is
called DOUBLE in the DAPL system. Each DOUBLE value occupies eight bytes of the
Data Acquisition Processor buffer memory. The standard �extended real� type is not
supported as a DAPL data storage type. Standard math library functions are supported
to the precision of a DOUBLE data type. Where floating point facilities are not
provided directly by the CPU hardware, the DAPL system includes floating point
emulation. The emulation, because it consists of complex sequences of integer
processing unit instructions, is slower than the hardware floating point unit (FPU) by a
factor of roughly 500, so as a practical matter, most applications that need floating
point computations also need Data Acquisition Processor models that provide a
hardware FPU.

Conversions Between Integer Types

Sometimes a computation with integer values requires a higher precision format.
Word integer values can be converted to a long integer format. To make this
conversion, the original number value is stored in the lower 16-bit positions, and the
bit in the sign bit position is replicated to fill the higher 16-bit positions. This process
is called �sign extension.� Most sign extension conversions are automatic. For
example, if the value of a word data pipe is placed into a long data pipe by a DAPL
expression, sign extension is applied.

A long integer value can be reduced in precision without affecting the value if the 16
extension bits all match the sign bit position of the lower two bytes. A long integer
value not in the form of a sign-extended 16-bit value is beyond the representable range
of a word integer. If a long integer number that is not word representable is assigned
to a word integer element, the value actually stored will be the largest positive or
negative number representable by the word integer, according to the sign of the
original 32-bit value. This range-limiting operation is called �saturation.� For
example, if the SCALESCALESCALESCALE command computes an intermediate long value that exceeds the
range of a word output data pipe, the output value is saturated at a range limit for a
word output pipe.

52 Chapter 8 Voltages and Number Representations

Hexadecimal Notations and Integers

The DAPL system provides a hexadecimal notation for access to individual bits in a
binary number representation. This feature is particularly useful for encoding or
decoding information that is transferred through the digital data ports. The
hexadecimal numbers $0000 through $FFFF can be used to represent word integer
values. The hexadecimal numbers $00000000 through $FFFFFFFF can be used to
represent long integer values.

Hexadecimal number do not have a natural representation for negative numbers, but
data stored in the DAPL system have a signed interpretation. Whether the bit pattern
is interpreted as positive or negative depends on the value of the bit in the sign bit
position. If the bits are numbered so that the last, lowest order bit is numbered as bit 0,
then word values have a sign bit in bit position 15, and long values have a sign bit in
bit position 31. If a hexadecimal notation does not specify some of the higher-order
bit positions, those bit positions default to zeroes.

Problems can arise because the sign bit position depends on the number of bits in the
representation. That means, hexadecimal notations are not necessarily unique, and
must be used with care. For example, the hexadecimal notation $FFF0 is equal to
65520 when it is used to initialize a 32-bit constant value, because only 16 of the 32
bits are specified, and the sign bit position is among the 16 higher-order bits that
default to zero. But when used to assign a value to a word constant, this same $FFF0
notation yields a value of -16, because the leading bit is a 1, giving a negative
interpretation.

For DAPL expressions, all explicit integer constants are presumed to be 32-bit values,
and this applies to hexadecimal as well as integer notations. Consequently, eight
hexadecimal digits must be specified to represent a negative number in DAPL
expressions using a hexadecimal notation. For example, if the notation $FFF0 is
intended to represent a value -16, this notation must be sign extended to $FFFFFFF0
in the DAPL expression command line.

For DAPL system commands that define scalar values, the sign bit position for
integers is determined by the data type specified. For the case of long integer type, the
interpretation of hex notations is exactly the same as in DAPL expressions. For the
case of word integer type, only hex notations $0000 through $FFFF are meaningful.
Any bits beyond the first 16 cannot be stored, consequently, any additional nonzero
bits are diagnosed as an out-of-range condition. For example, $0FFF0 would be
considered the same as $FFF0, with the leading zero digit not significant, but $FFFF0
is a range error.

Chapter 8 Voltages and Number Representations 53

For task parameters, the hex notation is interpreted differently because there is no
prior information about whether the constant value should be considered a word or
long type. If the hexadecimal notation contains four or fewer hex digits, it is presumed
that the notation is intended to define a word value, and the notation is interpreted in
the manner of a 16-bit word value. However, if the hexadecimal notation contains five
or more hex digits, it is presumed that the notation is intended to define a long value,
and the notation is interpreted in the manner of a 32 bit value. Consequently, $FFF0
would be interpreted as a word value -16, while $0FFF0 would be interpreted as a
long value +65520.

Chapter 9 Data Transfer 55

9. Data Transfer

Communication pipes (com pipes) are first-in-first-out buffers for communication
between a Data Acquisition Processor and its host PC. Com pipes allow text or binary
communication, and transfer data on the PC bus.

This chapter summarizes the communication pipes and the tasks through which DAPL
sends and receives data.

56 Chapter 9 Data Transfer

Standard Com Pipes

The default configuration for a Data Acquisition Processor has four standard com
pipes: $SYSIN, $SYSOUT, $BININ, and $BINOUT. $SYSIN and $SYSOUT are text com
pipes for reading data from and writing data to the PC. All commands to the DAPL
interpreter are read from $SYSIN; all status and error messages are sent to $SYSOUT.

$BININ and $BINOUT are binary com pipes for reading data from and writing data to
the PC.

Sending Text to the PC

The PRINTPRINTPRINTPRINT and FORMATFORMATFORMATFORMAT commands are used for sending text data to the PC. Both
commands format data into ASCII characters before sending the data to the PC. A
PRINTPRINTPRINTPRINT task sends all raw data from the input channel pipes to the PC without any
processing. A FORMATFORMATFORMATFORMAT task sends computed data to the PC. A FORMATFORMATFORMATFORMAT task can send
data from pipes or variables, and also can send line counts, constants, and strings.

If several FORMATFORMATFORMATFORMAT tasks are active at one time, each FORMATFORMATFORMATFORMAT task can send a different
identifying string. This lets programs in the PC determine which FORMATFORMATFORMATFORMAT task sent
each line of data.

Chapter 9 Data Transfer 57

Sending Binary Data to the PC

Most DAPL commands can send binary data to the PC. The simplest way to send
binary data to the PC is with the BPRINTBPRINTBPRINTBPRINT command. BPRINTBPRINTBPRINTBPRINT sends all raw data from
the input channel pipes directly to the PC.

Binary data also can be sent to the PC by using $BINOUT as the output pipe of any
task. Because binary data have no implicit identifying symbols, in most applications
only one task can write to $BINOUT.

If data streams from several pipes are to be sent to the PC, it is necessary to merge the
data streams. DAPL provides several merging commands for this purpose. If data
enter several pipes at the same rate, a MERGEMERGEMERGEMERGE task with output pipe $BINOUT can be
used to combine the data. If data enter the pipes at different rates, the command
MERGEFMERGEFMERGEFMERGEF can be used. A MERGEFMERGEFMERGEFMERGEF task adds an identifying flag to each binary value.
While this doubles the communication overhead, it allows a program in the PC to
identify the source of each binary value. If data enter the pipes at different but
proportional rates to each other, the command NMERGENMERGENMERGENMERGE can be used.

The commands BMERGEBMERGEBMERGEBMERGE and BMERGEFBMERGEFBMERGEFBMERGEF are more efficient blocked versions of MERGEMERGEMERGEMERGE
and MERGEFMERGEFMERGEFMERGEF. A BMERGEBMERGEBMERGEBMERGE or BMERGEFBMERGEFBMERGEFBMERGEF task reads blocks of data from each of several
pipes and writes the blocks to its output pipe. The output pipe usually is $BINOUT.
BMERGEFBMERGEFBMERGEFBMERGEF adds an identifying flag to each block of data. BMERGEFBMERGEFBMERGEFBMERGEF appends one flag
per block, so it is more efficient than MERGEFMERGEFMERGEFMERGEF.

58 Chapter 9 Data Transfer

Reading Text from the PC

The DAPL command interpreter receives all data sent to a Data Acquisition Processor
through $SYSIN. This com pipe also can be used to put data into pipes with the FILLFILLFILLFILL
command, or to set the values of variables with the LETLETLETLET command.

Reading Binary Data from the PC

Binary data can be sent from the PC to the Data Acquisition Processor through the
com pipe $BININ. If the PC sends multiplexed data, a SEPARATESEPARATESEPARATESEPARATE task can be used to
break out the data streams in the Data Acquisition Processor. If each data stream has a
different rate, the PC can append flags to the data sent to the Data Acquisition
Processor and use SEPARATEFSEPARATEFSEPARATEFSEPARATEF task to break out the data streams.

Additional Com Pipes

In addition to the default com pipes $SYSIN, $SYSOUT, $BININ, and $BINOUT, other
com pipes can be defined. This allows the Data Acquisition Processor to have several
binary and text communication pipes transmitting and receiving simultaneously. The
additional pipes are configured in the DAPcell control panel application. It constructs
the required communication channels and configures them automatically.
Communication pipes can also be configured by software applications, using features
of the DAPIO32 programming interface.

Chapter 10 Processor and Memory Allocation 59

10. Processor and Memory Allocation

This chapter describes how the DAPL operating system manages shared CPU and
memory resources.

Multitasking

As a multitasking operating system, DAPL is responsible for allocation of processor
resources among all the tasks that are active at any time. DAPL is responsible for
giving priority to certain critical tasks that are necessary for error-free data
acquisition. Once reliable system operation is assured, processing tasks defined by
task definition commands are allowed to perform all other required processing.

The DAPL operating system is responsible for switching repeatedly among tasks. This
means that DAPL maintains a run-time environment for each active task. When a task
is active and is running, the environment is found in the processor�s registers and
stack. When a task is active, but is not running, the run-time environment is saved in
memory. When DAPL switches between tasks, one task�s environment is saved to
memory and another task�s environment is recalled from memory.

DAPL switches between tasks for either of two reasons:

1. a task uses up its maximum CPU time allocation, or
2. a task has no data to process and explicitly requests a task switch.

Under the default options assumed when the DAPL system is initialized, the
maximum time allocation allowed per task is typically 2000 µs. This setting can be
adjusted using the QUANTUM option. A setting of 200 µs is typical when low response
latency is required.

When DAPL switches between tasks, the operating system is responsible for selecting
the task to activate. Under the SCHEDULING=FIXED option, DAPL uses a round robin
scheduling algorithm. Under the SCHEDULING=ADAPTIVE option, DAPL uses an
adaptive algorithm that schedules some tasks more often and some tasks less often, as
required by the actual data flow. In the limiting case, a task that does not require much
time is scheduled one fifth as often as a task that requires a lot of CPU time.

Because task scheduling depends on the unpredictable arrival of data, there is no
guaranteed relationship between the order in which the DAPL command interpreter
processes task definition commands and the order in which DAPL schedules the

60 Chapter 10 Processor and Memory Allocation

commands. This should be considered in interpreting the output of a DAPL
application.

Note: See OPTIONSOPTIONSOPTIONSOPTIONS in the command reference for information on setting
scheduling options.

For information about optimizing processor performance see Chapter 11.

Interleaving of Output

When several tasks share an output device (usually a text or binary com pipe), the
multitasking nature of the DAPL operating system becomes apparent. An example of
this is an application that has several FORMATFORMATFORMATFORMAT tasks active at one time. In this sort of
application, it normally happens that one FORMATFORMATFORMATFORMAT statement sends several lines of data
before using up its time allocation, and then another FORMATFORMATFORMATFORMAT statement sends several
lines of data. There is no way to predict the order in which the Data Acquisition
Processor sends its data. In order to distinguish the data from different FORMATFORMATFORMATFORMAT tasks,
each FORMATFORMATFORMATFORMAT task can send a string to the PC as part of each line. This allows a
program in the PC to determine the source of the data for each line of text.

Note: A FORMATFORMATFORMATFORMAT task sends only full lines; DAPL prevents interleaving parts of
two or more lines of output.

When sending binary data from a Data Acquisition Processor to the PC, an identifying
number must be used rather than an identifying text string. MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, BMERGEBMERGEBMERGEBMERGE,
and BMERGEFBMERGEFBMERGEFBMERGEF allow interleaving of binary data from several sources without loss of
information.

Memory Allocation

The DAPL operating system has efficient algorithms for allocating RAM memory for
all of the data structures in DAPL. Some structures are allocated once during their
definition phase and de-allocated when their life cycles end. Others grow and shrink
dynamically as required by the flow of data. A memory allocation fails only when
there is no contiguous memory in the RAM to satisfy the request.

Chapter 10 Processor and Memory Allocation 61

16-bit Custom Command Stack Memory Allocation

16-bit custom commands created with older versions of the Developer�s Toolkit for
DAPL require space in a special region of memory called heap memory. The size of
heap memory expands dynamically, up to a maximum of 64K bytes. The actual
amount of available heap memory may vary among different Data Acquisition
Processor models and among different DAPL versions. To determine the exact size,
run the command DISPLAYDISPLAYDISPLAYDISPLAY HMEM.

A typical custom command requires about 1.5K bytes of stack memory. The size of
heap memory available on any Data Acquisition Processor model is sufficient for all
but the largest applications. If the heap memory capacity is exceeded, the following
error message is printed:

*** Error 2222: out of 16-bit custom command stack memory

This typically occurs if a DAPL application has more than 30 custom commands
running simultaneously.

The best way to eliminate heap memory problems is to convert the custom command
to 32-bit custom module form. 32-bit tasks are not subject to stack or dynamic
memory size limitations.

Chapter 11 Optimizing Processor Performance 63

11. Optimizing Processor Performance

This chapter provides suggestions for getting the maximum performance from the
Data Acquisition Processor.

Reducing Processor Load

DAPL 2000-compatible Data Acquisition Processors have high-speed processing
power, optimized software, and a large RAM buffer. In some applications, the Data
Acquisition Processor is pushed to its limits; in others the Data Acquisition Processor
spends most of its time waiting for data. Dynamic performance of the Data
Acquisition Processor depends upon the input data stream, the number of tasks, the
types of tasks, communications overhead, CPU clock speed, host PC speed, and other
factors.

The Data Acquisition Processor loses a small amount of time each time it moves a
value into a pipe or takes a value out of a pipe. Operations that process large amounts
of data take more time than operations that process small amounts of data. If large
amounts of data are reduced to smaller amounts early, that saves processing power. If
an application requires averaging, for example, it is best to perform the averaging on
the raw data so that further processing is performed on a reduced number of points.

In most cases it is faster to process and reduce data in the Data Acquisition Processor
than it is to transmit the data to the PC and then process and reduce the data in the PC.

Digital Signal Processing

Digital signal processing is possible with all Data Acquisition Processor models, but it
is necessary to take into account the limitations of the processor. FIRFILTERFIRFILTERFIRFILTERFIRFILTER, FFTFFTFFTFFT,
and other digital signal processing tasks are highly optimized, but are computationally
intensive. To speed these tasks, try to limit the number of computations that the Data
Acquisition Processor must perform. When using a low pass digital filter, for
example, consider computing averages of small blocks before applying the filter.
Averaging reduces the number of taps required, as well as reducing the number of
data points. When computing FFTs, try to reduce the number of points required. If the
data are to be plotted on the PC�s screen, for example, it usually is possible to limit
the size of the transform according to the screen resolution.

64 Chapter 11 Optimizing Processor Performance

Communication Formats

To speed communication from the Data Acquisition Processor to the PC, use binary
format instead of ASCII format. This eliminates the time consuming format
conversion from binary to ASCII. Binary format also requires transmission of fewer
bytes from the Data Acquisition Processor to the PC.

Channel Pipe Efficiency

The configuration of input and output channel pipes affects the efficiency of tasks that
read and write channel pipe data. The following list shows possible channel pipe
configurations in decreasing order of efficiency:

1. task with a channel pipe list of all channel pipes
2. task with a single channel pipe
3. task with a channel pipe list of some, but not all, channel pipes

Scheduling Options

The scheduling control options BUFFERING, SCHEDULING, and QUANTUM provide
additional means for speed optimization. Most tasks are more efficient when they
work on larger blocks of data, and when they are allowed to run to completion rather
than being interrupted frequently. The default values of the scheduling control
parameters provide moderate sized memory buffers and a moderate sized scheduling
quantum appropriate for moderate buffer sizes. See the OPTIOOPTIOOPTIOOPTIONSNSNSNS command reference
for more information.

Note The scheduling options for most efficient processing are not necessarily the
best to obtain a quick real-time response. See Chapter 13 for more details.

Chapter 11 Optimizing Processor Performance 65

Streaming Data to the PC

Some applications require high-speed data acquisition without real-time data
processing. The BPRINTBPRINTBPRINTBPRINT and COPYCOPYCOPYCOPY commands stream raw data to the PC in binary
format. Microstar Laboratories DAPlog Plus program logs data to disk or RAM disk
at high speed in real-time.

Trigger Performance

Tasks that involve triggers are especially sensitive to their input data streams. A WAITWAITWAITWAIT
task, for example, throws out data until a trigger occurs; then it transfers a block of
data from one pipe to another. Discarding blocks of unwanted data is very efficient,
but identifying and moving data blocks when a trigger is asserted takes more
computing overhead than an ordinary data transfer. If trigger events are frequent, it is
more efficient to have a processing task that analyzes a continuous data stream, rather
than using a trigger. On the other hand, if trigger events occur rarely (for example, less
than once per 100 samples), triggering is typically more efficient.

66 Chapter 11 Optimizing Processor Performance

High-Speed Triggering

The Data Acquisition Processor allows hardware triggering up to the maximum input
sampling rate. By using a COUNTCOUNTCOUNTCOUNT command with hardware triggering, it is possible to
acquire large blocks of data without risk of overflow.

Software triggering is more flexible than hardware triggering and also allows capture
of pretrigger data. Software triggering can perform up to the maximum speed of the
Data Acquisition Processor, but limits the amount of CPU capacity available for other
processing. When using software triggering at high data rates, the task that asserts the
trigger may need to process only a part of the raw data, and can skip unnecessary
processing to save time. This is true even though the WAITWAITWAITWAIT command can wait for data
at the maximum speed of the Data Acquisition Processor.

The following command list illustrates a typical high-speed triggering application. In
this application, the Data Acquisition Processor samples one pin at 200,000
samples/second, and transfers a block of data, including pretrigger data, each time the
input signal passes through a specified region. The WAITWAITWAITWAIT task can process data at the
maximum speed of the Data Acquisition Processor, but the LIMITLIMITLIMITLIMIT task is limited to a
slower rate. To increase the performance of the Data Acquisition Processor, the input
signal is read into six input channel pipes. The LIMITLIMITLIMITLIMIT task is configured to read just
one of the input channel pipes, so it processes one sixth of the raw data. The WAITWAITWAITWAIT
reads data from a list of input channel pipes, so it processes all the raw data.

TRIGGER T
PIPE P1
IDEF A 6
 SET IPIPE0 D0
 SET IPIPE1 D0
 SET IPIPE2 D0
 SET IPIPE3 D0
 SET IPIPE4 D0
 SET IPIPE5 D0
 TIME 5
 END
PDEF B
 LIMIT (IPIPE0,INSIDE,100,200,T)
 WAIT (IPIPE(0,1,2,3,4,5),T,100,100,P1)
 END

Note: In this example, the trigger event must span at least six sample times to
guarantee recognition.

Chapter 11 Optimizing Processor Performance 67

Benchmarking an Application

For fast applications, it is useful to perform a benchmark to find how much processing
capability is available. Benchmarks can determine if there is a comfortable overhead
of processing power for the application, or if the input rate is too high for the
processing being done. Benchmarks also aid in determining how to optimize an
application.

Chapter 12 Overflow and Underflow 69

12. Overflow and Underflow

When sampling occurs faster than data can be processed and transmitted to the host,
buffer overflow eventually must occur. When this happens, the Data Acquisition
Processor halts gracefully. Sampling stops without loss of data, and the Data
Acquisition Processor continues processing the valid acquired data.

Even at the highest speed, the Data Acquisition Processor correctly buffers the
acquired data in its onboard memory. An overflow of buffer memory never results in
any loss or corruption of buffered data.

Overflow can be prevented by specifying a COUNTCOUNTCOUNTCOUNT option, using a hardware trigger,
reducing the sampling rate, or making processing tasks more efficient.

When overflow occurs, input sampling stops. The Data Acquisition Processor
continues normal processing of the data stored in memory.

Overflow usually occurs at the input channel pipes. If the Data Acquisition Processor
is unable to remove data from input channel pipes fast enough, DAPL expands the
input channel pipes. If there continues to be too much data to remove from the input
channel pipes, the pipes expand until they fill buffer memory.

DAPL automatically discards data from input channel pipes that do not have any tasks
reading from them. Unused input channel pipes usually don�t contribute to memory
overflow.

70 Chapter 12 Overflow and Underflow

Overflow Messages

The Data Acquisition Processor determines the sample count at which overflow
occurs. The Data Acquisition Processor response to overflow is determined by the
OVERFLOWQ option. If this option is set to OFF, the following overflow message is sent
to the host PC:

*** Warning 1530: channel pipe overflow at sample #xxxxx

If the OVERFLOWQ option is set to ON, the overflow message is suppressed, so that it is
not inserted into the data stream. At any time, the PC can send the command:

DISPLAY OVERFLOWQ

The Data Acquisition Processor responds by sending a line containing a single 32-bit
integer. If this number is zero, overflow has not occurred. Otherwise, the number
indicates the sample number at which overflow occurred.

The sample number in the overflow message is the analog-to-digital converter�s
sample count at overflow. If overflow occurs after sampling each pin of a six channel
pipe input procedure 100,000 times, for example, the overflow sample number is
600,000.

Chapter 12 Overflow and Underflow 71

Preventing Overflow

The first step in preventing overflow is to determine where data values are backing up.
This can be accomplished by sampling until just before overflow occurs and issuing a
DISPLAY PIPESDISPLAY PIPESDISPLAY PIPESDISPLAY PIPES command. This command prints the names of all the user-defined
pipes, as well as the number of data values in each pipe. Check this list for pipes that
contain large amounts of data � typically over 1000 values.

If no user-defined pipe contains excessive data, overflow is occurring in the input
channel pipes. This means that the tasks reading from input channel pipes cannot keep
up with the sampling rate. Solutions include reducing the sampling rate, using SKIPSKIPSKIPSKIP to
reduce the amount of data processed, using a hardware or software trigger to extract
relevant data, or performing more efficient processing in processing procedures.

If a pipe contains many data values, data backup probably is occurring at the task that
reads from the pipe. To prevent buffer overflow from a task, it is best to do as much
data reduction as possible in the tasks that read from input channel pipes and to
minimize the number of times data are moved in and out of pipes.

Another overflow analysis strategy is to use the STATISTICSSTATISTICSSTATISTICSSTATISTICS command to determine
which tasks are using large amounts of processor time.

The COUNTCOUNTCOUNTCOUNT command can prevent overflow by specifying the number of values to be
sampled. Input sampling stops when the sample count is satisfied. Note that overflow
still can occur if the count is larger than available memory. In this case it is necessary
to test the application to verify that tasks are able to process the extra input data
before memory overflow.

In rare cases, channel pipes that have no tasks reading from them can contribute to
channel pipe overflow. Data in these unused channel pipes are temporarily stored in
memory. The data from unused channel pipes are discarded as data from used channel
pipes are read. If processing is delayed, unneeded values use up part of the available
storage capacity.

72 Chapter 12 Overflow and Underflow

Underflow Messages

When output procedure updates occur faster than the Data Acquisition Processor can
place data into output channel pipes, channel pipe underflow eventually must occur.
When underflow occurs, output updating stops.

The Data Acquisition Processor response to underflow is determined by the
UNDERFLOWQ option. If this option is set to OFF, the following underflow message is
sent to the host PC:

*** Warning 1531: channel pipe underflow at sample #xxxxx

If the UNDERFLOWQ option is set to ON, the underflow message is suppressed so that it
is not inserted into the data stream to the PC. At any time, the PC can send the
command:

DISPLAY UNDERFLOWQ

The Data Acquisition Processor responds by sending a line containing a single 32-bit
integer. If this number is zero, underflow has not occurred. Otherwise, the number
indicates the sample number at which underflow occurred.

The sample number in the underflow message is the output procedure�s update count
at the time of underflow. If underflow occurs after updating each channel pipe of a
two-channel pipe output procedure 100,000 times, for example, the underflow sample
number is 200,000.

Chapter 12 Overflow and Underflow 73

Preventing Underflow

If output channel pipe data are repetitive, a cyclical output procedure should be used.
Cyclical output procedures are configured using the CYCLECYCLECYCLECYCLE command. Cyclical output
procedures never underflow, even at the highest update rate of the Data Acquisition
Processor.

The maximum update rate of a noncyclical output procedure is limited by the rate at
which values are placed into output channel pipes. This depends on the speed of tasks
used to send data to the output channel pipes. In some instances, increasing an output
procedure�s initial startup delay allows faster update rates. An output procedure�s
initial startup delay is increased using the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT command.

Other options are available for avoiding underflow. The UPDATE BURST option of an
output procedure allows output updating to stop when no data are available and
automatically restart when more data are ready. The COUNTCOUNTCOUNTCOUNT command also controls
underflow�COUNTCOUNTCOUNTCOUNT forces an output procedure to stop output updating after a
specified number of updates.

Chapter 13 Low Latency Operation 75

13. Low Latency Operation

A Data Acquisition Processor acquires data and processes data concurrently. Because
many tasks share one processor, there is a delay from the time an input is sampled
until a task can act upon the sample data. This delay is called latency.

There is a tradeoff between throughput efficiency and latency. To optimize the
processing of large amounts of data, the most effective strategy is to dedicate as much
CPU power as possible to computation, and as little as possible to other system
activities such as task scheduling. To optimize the speed at which a task can respond
to a real-time event, the most effective processing strategy is to divide tasks into very
small time intervals, or scheduling quanta, and switch tasks frequently so that each
task has an opportunity to respond. Switching tasks more frequently increases system
overhead, reducing the volume of data that can be processed.

The two goals of high throughput and fast response are clearly in conflict. Each
application should evaluate whether its goal is fast processing or minimal latency, and
select options accordingly. For example, most disk logging applications capture and
transfer data at very high speeds, but they are not sensitive to delays of a second or
more. In contrast, delays of a couple of milliseconds in a closed loop control
application could cause the controlled system to oscillate in a chaotic fashion.

The DAPL operating system provides three system options for controlling the tradeoff
between latency and efficiency. These options are: BUFFERING, SCHEDULING and
QUANTUM. See the OPTIONSOPTIONSOPTIONSOPTIONS command for more information on setting system
options.

76 Chapter 13 Low Latency Operation

Buffering Control

When optimizing for throughput, each processing task will maintain possession of the
CPU for longer periods of time. Because each task runs more efficiently but less often,
data will tend to collect into larger blocks. Larger buffers can also be used for moving
the data.

On the other hand, when optimizing for fast response, each processing task will
maintain possession of the CPU for shorter periods of time, so that fewer samples
accumulate.

The BUFFERING option specifies the strategy that DAPL should use for moving data
into and out of pipes. For most applications, MEDIUM is a good choice, providing good
efficiency for moving moderate amounts of data into and out of tasks. Some small
gains in processing efficiency are available by changing this option to LARGE. For
systems optimized for fastest response, there is no time for data to accumulate, and
BUFFERING=OFF can be specified. This informs the DAPL system that it is not
necessary to wait for blocks of data to accumulate.

Another consideration is the MAXSIZE parameter on the PIPESPIPESPIPESPIPES command. Pipes will
allocate memory as required, up to the specified MAXSIZE. This parameter can be set
lower for tasks that receive or generate small blocks of data, and larger for tasks that
receive or generate large blocks of data.

Chapter 13 Low Latency Operation 77

Task Scheduling Control

The SCHEDULING and QUANTUM options affect the multitasking strategy employed by
the DAPL system.

The SCHEDULING option allows applications to control the task switching strategy.
DAPL provides two algorithms for task switching: fixed (also known as round-robin)
and adaptive.

With a fixed task switching algorithm, DAPL gives each task the same amount of
CPU time. In most time-critical applications, this is a small amount of time, but
sufficient to generate a required response to a real-time event. A task that does not
need the entire time quantum can release unused CPU capacity for other tasks to use,
without penalty.

With the adaptive algorithm, DAPL observes the amount of CPU time consumed by
each task. Those tasks that use greater amounts of time are scheduled more often.
Those that use less time are scheduled less often. The effect of the adaptive strategy is
that tasks are given opportunities to execute in proportion to the work that they need
to do to maintain data flow through the system. Equalizing the data flow among tasks
causes data to accumulate into relatively uniform blocks that can be processed
efficiently. While this strategy works well for equalizing data flow, it makes
scheduling of any one task less predictable. For example, a task that processes
sporadic real-time events will seldom have much data to process, hence it is scheduled
less often, and its responses are correspondingly delayed. Adaptive scheduling can
also have adverse effects when processing is not steady and continuous.

The QUANTUM option sets the rate at which the CPU switches among tasks without
affecting the task scheduling algorithm or the buffering strategy. The quantum can be
set to any desired number between 100 µs and 5000 µs. Most real-time applications
will set this number small so that no single task can delay the response time too much.
In other cases, a real-time application might choose a longer quantum. For example,
suppose that a real-time system has tasks to detect sporadic events, select data
associated with those events, perform a small FFT transform on the collected data, and
generate a real-time response on the basis of each transform result. The transform is
most efficient if allowed to run to completion without interruption by other tasks. The
QUANTUM option can be adjusted to allow completion of the transform without
interruption by task switching. Other tasks have relatively little to do, so they release
the CPU quickly regardless of the QUANTUM option.

78 Chapter 13 Low Latency Operation

A careful selection of BUFFERING, SCHEDULING and QUANTUM options allows an
application to create an environment that best satisfies both its latency and efficiency
requirements.

The following options would allow higher data volumes and shorter sampling
intervals at the expense of larger buffering delays.

OPTIONS BUFFERING=LARGE, SCHEDULING=ADAPTIVE
OPTIONS QUANTUM=4000

This is optimized for acquisition applications with moderate processing requirements,
aimed primarily at efficient throughput.

The following options would provide shorter real-time delays at the expense of data
throughput capacity.

OPTIONS BUFFERING=OFF, SCHEDULING=FIXED, QUANTUM=200

This is optimized for individual samples or very small data blocks, guaranteed
periodic scheduling of all tasks regardless of CPU activity history, and rapid task
switching for quick response.

At power up, the options for the Data Acquisition Processor are set to a default
compromise that works well for most applications.

OPTIONS BUFFERING=MEDIUM, SCHEDULING=FIXED, QUANTUM=2000

Chapter 13 Low Latency Operation 79

Evaluating Task Latency

The STATISTICSSTATISTICSSTATISTICSSTATISTICS command is useful for evaluating expected task latency. This
command will show all active tasks in the system and the amount of time they
consume. Under a fixed scheduling strategy, an absolute bound can be placed on the
scheduling quanta, and thus a bound on the latency of real-time response can be
estimated.

For systems with so-called �soft� real time requirements, the absolute bound is not
very useful, because actual system latency rarely approaches the computed bound. The
STATISTICSSTATISTICSSTATISTICSSTATISTICS command will report the CPU utilization of each active task, and the
latency of the entire scheduling sequence. This information is useful for estimating
expected latency, which is typically much better than the worst-case bound.

Low Latency Commands

Some DAPL commands have special logic that detects the BUFFERING=OFFBUFFERING=OFFBUFFERING=OFFBUFFERING=OFF option
and selects an appropriate algorithm specialized for that case. The AVERAGEAVERAGEAVERAGEAVERAGE and SKIPSKIPSKIPSKIP
commands fall into this category. Other DAPL commands such as LCOPYLCOPYLCOPYLCOPY and SCANSCANSCANSCAN
guarantee a low-latency behavior under any system options.

Many process control programs take the following form:

1. Read input data from all input channel pipes.
2. Process the data for the set.
3. Wait until another complete set of data is available, then repeat.

SCANSCANSCANSCAN is an efficient command for implementing this sort of control program. SCANSCANSCANSCAN
normally is used with a input channel pipe list. It forms a block of data from all input
channel pipes in the channel pipe list before placing any data in its output pipe. When
a channel list is completed, the data block is released immediately for other tasks to
process. Since SCANSCANSCANSCAN releases a data block as quickly as possible, it is more responsive
than a COPYCOPYCOPYCOPY command.

80 Chapter 13 Low Latency Operation

Using Custom Modules to Reduce Latency

Some latency is inherent in any multitasking operating system. A task can only
respond to an input when the processor is executing the task. Also, there is system
overhead in switching among tasks. One way to minimize latency is to reduce the
number of tasks active at any time. In critical applications, all of the required
processing can be implemented in one custom task. Because the operating system�s
background tasks do not require much of the processor�s time, the custom command
will be running most of the time. This approach yields the lowest possible latencies.

Chapter 14 DAPL Software Triggering 81

14. DAPL Software Triggering

Software triggering is a unique capability of the DAPL operating system. Software
triggering allows applications to select data blocks of interest, ignoring other data. In
many applications, software triggering can replace complicated electronic triggering
circuits. Software triggering can do some things easily that are difficult or impossible
to do any other way.

Consider for example a protective relaying application. Opening a circuit breaker to
drop a large three-phase motor load can be very expensive, but failing to do so could
damage the motor, which is even worse! Phase, timing and sensitivity settings on the
protective relay are important, but optimizing these settings requires measurement of
actual operating conditions. A Data Acquisition Processor can collect data each time a
system disturbance occurs, so that later analysis can verify the proper balance between
safety and economical operation. However, some of the data of interest occur before
relay operation. In other words, by the time a hardware logic signal is available to
initiate data collection, it is already too late to capture some of the required
measurements.

Software triggering solves this problem by monitoring the data continuously. If
nothing happens, and the relay does not activate, extraneous measurements are
discarded automatically. However, if the relay does operate, the required
measurements are extracted from memory.

The continuous data capture and data management cause some additional processing
overhead, but the DAPL operating system is optimized to do these operations with
extreme efficiency. Besides, in most applications, there is plenty of capacity in the
Data Acquisition Processor�s onboard CPU. Why not use it?

Software triggering determines when to trigger by analyzing a data signal. Powerful
analysis techniques can be applied, including digital filtering, operating state logic,
and region-of-interest selection. The logic can include information from more than
one source. Time-sequence analysis can also be performed, to select only a few
relevant events for further analysis. Operations such as these are difficult or
impossible to do with hardware triggering circuits.

82 Chapter 14 DAPL Software Triggering

Defining Software Triggers

To use software triggers, three DAPL elements work in combination: a software
trigger element to coordinate triggering action, a processing task that generates trigger
events, and a processing task that responds to trigger events.

The TRIGGERSTRIGGERSTRIGGERSTRIGGERS command defines a software trigger element. For example, the
following command might be used to define one trigger that responds to pressure
measurements and another trigger that responds to temperature measurements:

TRIGGERS TPRESS, TTEMP

After a software trigger is defined, it is available to processing tasks.

Each DAPL processing configuration that uses software triggering has a processing
task that generates triggering events and one or more tasks that respond to these
events. Most applications use commands built into the DAPL operating system to
generate trigger events. Specialized applications can use custom modules for
generating trigger events, responding to trigger events, or both.

The DAPL operating system provides these commands that generate trigger events:

� CHANGECHANGECHANGECHANGE
� DLIMITDLIMITDLIMITDLIMIT
� LILILILIMITMITMITMIT
� LOGICLOGICLOGICLOGIC
� PCASSERTPCASSERTPCASSERTPCASSERT
� PEAKPEAKPEAKPEAK
� TGENTGENTGENTGEN
� TOGGLETOGGLETOGGLETOGGLE

The DAPL operating system provides these commands that respond to software
trigger events:

� INTEGRATEINTEGRATEINTEGRATEINTEGRATE
� FREQUENCYFREQUENCYFREQUENCYFREQUENCY
� TSTAMPTSTAMPTSTAMPTSTAMP
� WAITWAITWAITWAIT
� TOGGWTTOGGWTTOGGWTTOGGWT

Chapter 14 DAPL Software Triggering 83

There are other tasks that convert one or more streams of trigger events into a new,
modified stream. The DAPL operating system provides the following:

� NTHNTHNTHNTH
� TANDTANDTANDTAND
� TORTORTORTOR
� TRIGSCALETRIGSCALETRIGSCALETRIGSCALE
� TCOLLATETCOLLATETCOLLATETCOLLATE

Three special commands coordinate software triggering applications.

� TRIGSENDTRIGSENDTRIGSENDTRIGSEND
� TRIGRECVTRIGRECVTRIGRECVTRIGRECV
� TRIGARMTRIGARMTRIGARMTRIGARM

84 Chapter 14 DAPL Software Triggering

Applying Software Triggers

Most applications use software triggering for selecting blocks of data. This is
illustrated in the following continuation of the protective relaying example.

Suppose that voltages are monitored on three power phases at 60 Hz. The protective
relay has two signals that can be monitored. A high speed �pickup� signal reports
when the relay detection circuits are active. A delayed circuit breaker control signal
activated by the relay causes a power circuit breaker to operate. The DAPL input
sampling configuration to monitor these five signals might look like the following:

IDEFINE voltages 5
 SET IP0 s0 // phase1
 SET IP1 s1 // phase2
 SET IP2 s2 // phase3
 SET IP3 s3 // breaker activation signal
 SET IP4 s4 // relay pickup signal
 TIME 16.75 // about 200 samples / 60 Hz cycle
END

The following commands define a trigger and begin the processing configuration that
will detect trigger events. The relay pickup and circuit breaker control voltages are
measured on a 0 to 5 volt scale, which is digitized in the range 0 to 32767. Pickup is
indicated by a voltage reading of 3.0 volts (digitized as 19660) or more, and when this
occurs, a trigger event is generated. Subsequent trigger events are allowed after the
control voltage reading drops below 1.0 volt (digitized as 6553):

TRIGGERS Tbreak

PDEFINE capture
LIMIT(IP4, INSIDE,19660,32767, Tbreak, \
 INSIDE,6553,32767)
...

Capturing voltage and breaker control data starts two power cycles before the relay
pickup event. Assume that relay action takes up to five power cycles. At that point,
circuit breaker operation begins. Circuit breaker action takes three more power cycles.
Following breaker operation, collect two more power cycles of data for completeness.
The total is twelve cycles of data to be recorded on four channels, two cycles before,
and ten cycles after relay pickup.

For each event and each phase, 200 samples per cycle are recorded. That means, 1600
samples are retained before the relay pickup event, and 8000 samples after. The

Chapter 14 DAPL Software Triggering 85

following commands continue the processing configuration definition. The WAITWAITWAITWAIT
command retains the data associated with each event, transferring the data to the PC
for storage on a disk drive:

WAIT (IP(0,1,2,3), Tbreak, 1600, 8000, $BINOUT)
END

How Software Triggering Works

A task that generates trigger events is associated with a data source, usually a stream
of data in a pipe. When these data are captured at uniform sampling intervals, as in the
case of input channels, there is a direct correspondence between the arrival of samples
and the passage of time. Numbers representing the positions of data in a data stream
are therefore called timestamps.

As data samples arrive, the trigger-generating task counts them. When a sample
satisfies the triggering conditions, the sample number for that sample is placed into the
trigger. Think of the trigger as a kind of pipe, except that it contains timestamp
information instead of sampled data.

Trigger-reading tasks are also associated with a data stream, which may be a different
data stream than the one that the trigger writer scans. Samples are counted there as
well. When the trigger-reading task receives an event timestamp from the trigger pipe,
it looks for data at that position in its data stream.

86 Chapter 14 DAPL Software Triggering

Equalizing Data Rates

Samples scanned by the trigger reader and writer must appear at the same data rate.
The most common reasons for different data rates are:

� data processing reduces the volume of data. For example, an AVERAGEAVERAGEAVERAGEAVERAGE command

that averages input data in groups of ten also reduces the data rate by a factor of
ten.

� multiple data channels. For the protective relaying example, one data channel is
scanned for triggering conditions, but data are taken from four channels. This
multiplies the data amount by a factor of four.

If the data rates do not match, the timestamps for the two streams do not correspond,
and the software triggering will produce meaningless results.

One way to avoid data rate problems is to avoid commands that affect data rates. The
AVERAGEAVERAGEAVERAGEAVERAGE command changes the data rate because it produces one output value for
each block of values it reads, but RAVERAGERAVERAGERAVERAGERAVERAGE produces one output result for each input
value, leaving the data rate unchanged.

This approach has drawbacks, however. Performing too many computations on a high-
rate data stream can use up too much CPU capacity, forcing the application to operate
at lower sampling rates.

A second option is to compensate for the different data rates. In the power relaying
example, trigger events are determined by analyzing the data from one input channel
pipe:

LIMIT(IP4, INSIDE, 19660, 32767, Tbreak, \
 INSIDE, 6553, 32767)

This trigger is asserted based on scanning data in a single channel, IP4. The following
WAITWAITWAITWAIT command retains data from four data channels using the input channel list
IP(0,1,2,3), which has 4 times as much data as the pipe IP4:

WAIT (IP(0,1,2,3), Tbreak, 1600, 8000, $BINOUT)

Failure does not occur, however. The WAITWAITWAITWAIT command is specially constructed to
detect input channel lists and apply rate adjustments for this case. No special action is
necessary. This allows a trigger writing task to trigger on one input channel while the
trigger reading task takes the corresponding data from any combination of input
channels.

Chapter 14 DAPL Software Triggering 87

Suppose that the samples from the four data channels are first copied into a separate
pipe using the following commands:

COPY (IP(0,1,2,3), P4)
WAIT (P4, Tbreak, 1600, 8000, $BINOUT) // ERROR!

This configuration will fail. The WAITWAITWAITWAIT command receives exactly the same data as
before, but now there is a data rate problem. The WAITWAITWAITWAIT command cannot know that
data from four input channels are multiplexed in one data pipe.

Let�s make the situation even worse. Suppose that the data are noisy, and in an attempt
to reduce the level of the noise the voltage measurements are averaged in groups of
five using a BAVERAGEBAVERAGEBAVERAGEBAVERAGE command.

BAVERAGE (IP(0,1,2,3), 4, 5, Pavg5)

Now the data rate is increased by a factor of four because of the multiple channels, but
immediately reduced by a factor of five because of the data processing.

The TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command can adjust timestamp values to account for rate
differences. It can compensate for multiple channels and data rate changes. A
multiplier factor of four accounts for the four channels, and a division factor of five
accounts for the data processing reduction. After the averaging operation in groups of
five, there are forty samples for each power cycle in each channel. The following is
the modified DAPL configuration:

TRIGGERS Tbreak,Tscaled
PIPES Pavg5

PDEFINE capture
 BAVERAGE (IP(0,1,2,3), 4,5, Pavg5)
 LIMIT(IP4, INSIDE,19660,32767, Tbreak, \
 INSIDE,6553,32767)
 TRIGSCALE (Tbreak, 0,4,5, Tscaled)
 WAIT (Pavg5, Tscaled, 320,1600, $BINOUT)
END

88 Chapter 14 DAPL Software Triggering

Starting and Stopping Triggers

Triggers act much like data pipes when accessed in more than one processing
procedure. When a processing procedure is started, the DAPL system determines the
number of trigger parameter references by task definition commands for that
procedure. One of these references must be a trigger writing task, and the rest must be
trigger reader tasks. The trigger readers do not have to be in the same procedure as the
trigger writer, but all active readers for one trigger must be in the same processing
procedure. The trigger begins continuous operation, with dynamic allocation and
release of memory, when all reader and writer tasks for the trigger are started.

An important difference between a trigger and a data pipe is that a trigger does not
retain past history when all readers and writers stop using it. Suppose there are two
processing configurations, named A and B, with a task in procedure A writing trigger
information and a task in B reading it. When the following sequence is executed, the
reading tasks in group B will see no trigger events:

START A
STOP A
START B

This occurs because no readers or writers remain active when procedure group A
stops, so the triggers discard all old information.

On the other hand, when the following is executed, the tasks in group B will see the
trigger events:

START A
START B
STOP A

Note that continuous operation is never quite achieved in this example. The only time
that all reader and writer tasks are simultaneously active is for the tiny interval after
the readers start and before the writer stops. Hence, operation of the trigger has a
finite capacity and will eventually terminate.

In the previous example, the following sequence would not be allowed:

START A
START B
STOP A
START A

Chapter 14 DAPL Software Triggering 89

After any tasks using a trigger are stopped, all tasks accessing the trigger must be
stopped to clear the trigger. After that, new tasks can use it.

90 Chapter 14 DAPL Software Triggering

Triggering Modes

Examples in other parts of this chapter concentrate on data capture. There are also
applications that are less concerned about detecting and measuring special events, but
more concerned about limiting the amount of data processed. For these applications,
trigger operating modes are especially useful.

Data display requirements, for example, are very different from the requirements for
data capture. It can often be assumed that the data are already captured and available;
the problem is, which parts are needed for display? Some of the special requirements:

� Too much data transfer activity on the PC bus can interfere with other processing.

Data transfer activity might need to be limited.
� Graphics displays are very slow. Time must be allowed to complete the display

once a data block is accepted.
� Time must be allowed for the user to see and perhaps respond to the display.
� The display might need an occasional refresh even when nothing important occurs.

Trigger modes are very useful for coordinating data displays and process control
applications. Trigger operating modes modify the way that trigger events are asserted,
and can also generate events artificially. Operating modes act as filters, accepting
some events, suppressing others. Trigger properties adjust the behaviors of the
operating modes.

The operating modes are as follows:

� NATIVE Respond to all events

The NATIVE mode applies no filtering actions, and the trigger does not use any of the
trigger properties. This mode is optimized for maximum speed when other triggering
features are not needed.

� NORMAL Triggered display operation

The NORMAL mode uses the HOLDOFF property. This mode simulates normal mode
operation of an oscilloscope, in which a display sweep must be completed before
responding to another trigger event.

� DEFERRED Triggered displays for clustered events

This mode is the same as NORMAL mode, except that, instead of ignoring an event that
occurs during the HOLDOFF interval, the event is delayed until just after the HOLDOFF

Chapter 14 DAPL Software Triggering 91

interval. This mode is useful when events tend to arrive in clusters rather than as
isolated incidents.

� MANUAL Respond to single events

This mode is similar to hardware triggering using HTRIGGERHTRIGGERHTRIGGERHTRIGGER ONESHOT. Processing is
the same as NORMAL mode until an event occurs. The trigger responds to only this
event, and then sets its GATE property to DISARMED. The trigger will not assert again
until the GATE property is reassigned an ARMED property. See the discussion of the
ARMED and DISARMED properties below.

� AUTO Triggered displays with self-timer

This mode is similar to NORMAL mode, except that artificial events are inserted at
regular intervals when no events occur otherwise. This simulates the automatic
triggering mode of an oscilloscope. The number of samples between artificial events
is specified by the CYCLE property of the trigger. This mode is useful for applications
where a data display must be refreshed periodically even if no events occur. Note that
if the cycle is too small, real events can be buried in a large number of artificially
generated events.

The operating modes use the following trigger properties to configure their operation:

� GATE Asynchronous enable and disable

Any trigger except native mode can be asynchronously enabled or disabled by
assigning a value to the GATE property. When the GATE property is set to DISARMED,
all trigger events are ignored until the property is set to ARMED. An initial value can be
set when the trigger is defined. The value can be changed later using the TRIGARMTRIGARMTRIGARMTRIGARM
command, or using the EDITEDITEDITEDIT command. The exact sample at which the asynchronous
arming or disarming takes effect is unpredictable, because it is not associated with a
data event. All triggering modes except NATIVE mode respond to the GATE property.
Default is ARMED.

� HOLDOFF Temporary disable after each event

92 Chapter 14 DAPL Software Triggering

This property specifies a number of samples during which no new assertions are
accepted into the trigger pipe after asserting a trigger event. This simulates the holdoff
operation of an oscilloscope, in which a display sweep is completed before responding
to a new trigger event. A non-zero holdoff guarantees a time separation between
consecutive events. The holdoff is applied both to real and artificial events. This
property is most useful for NORMAL and DEFERRED operating modes, but can be used
with all modes except NATIVE. Default is zero.

� STARTUP Temporary disable at initial startup

This property specifies an interval similar to HOLDOFF, except that events are ignored
if they occur during the specified number of initial samples. This property is useful for
systems that require a settling time before measurements can begin. Default is zero.

� CYCLE Automatic interval for artificial events

This property sets the number of samples between artificially generated events for the
AUTO mode.

This is a lot of options, but in most cases it will be clear which is the best operating
mode. Given the operating mode, choosing appropriate property values is usually very
straightforward. Examples in the next section show some typical combinations of
trigger modes and properties.

Chapter 14 DAPL Software Triggering 93

Applying Trigger Operating Modes

Oscilloscope Emulation Application

The PC must display data for events that occur frequently but not at precisely defined
intervals. Triggering is used for two purposes: to extract a useful portion of the
available data, and to �stabilize� the position of the data in a graphical display
window. It is necessary to limit the update rate, so that the screen display is not
chaotic.

For this application, NORMAL mode is selected. NORMAL mode uses a HOLDOFF
property. When a block of data is selected for display, there follows a delay interval
(number of samples) during which no additional trigger events are accepted. This
number can match the data block size, or it can be longer to provide an extra delay.

Suppose that the PC application displays blocks of 500 samples. The display should
show data for the special events only, and each display should remain for at least two
seconds. For a data stream sampled at 50 microsecond intervals, a two-second
HOLDOFF interval corresponds to 40000 samples. Configure the trigger as follows:

 TRIGGERS Tscope MODE=NORMAL HOLDOFF=40000

Process Monitoring Application

For this application, data are again displayed, but special events are relatively rare. In
fact, they are undesirable � they mean product defects. On the other hand, no defects
means that there is little of interest to see in the data. Rather than leave the display
screen empty, the display is occasionally refreshed with current data, interesting or
not.

Suppose that display updates are required about once every five seconds. However, if
a special event occurs, these data should be displayed immediately, but no more than
two screen updates per second. Assume that a sample is taken every 100
microseconds, so that a five second delay corresponds to 50000 samples, and a 1/2
second delay corresponds to 5000 samples. Use a CYCLE property to set up the refresh
interval, and a HOLDOFF property to enforce the two-per-second limit. Configure the
trigger as follows:

 TRIGGERS TMonitor MODE=AUTO CYCLE=50000 HOLDOFF=5000

94 Chapter 14 DAPL Software Triggering

Event Counting Application

For this application, product defects must be detected and counted using information
from a sensor data stream. The defects show up as a disturbance. Very simple
triggering can be used to detect disturbances and eliminate data that obviously contain
nothing of interest. On the other hand, simple triggering is not able to distinguish a
defect from an unrelated disturbance. To analyze the data, and recognize the actual
defects, portions of the signal both before and after a possible defect must be retained.
The NORMAL mode is suitable when defects occur in isolation. But if defects occur in
clusters, the NORMAL mode will lose some of the context for an event near the end of a
data block. So, select the DEFERRED mode.

Suppose that detecting a defect requires a data block with 40 points before and 88
points after each event. Configure a WAITWAITWAITWAIT command to capture this data block. Set up
the trigger in DEFERRED mode, with the property HOLDOFF=128, which covers both
the before-event and after-event samples. Configure the trigger as follows:

 TRIGGERS TOutlier MODE=DEFERRED HOLDOFF=128
 ...
 WAIT (PDATA, TOutlier, 40, 88, $BINOUT)

Destructive Tests and One-Shot Events

Destructive tests are discontinuous � after one test piece is stressed to failure, it must
be scrapped and the next piece mounted. When a test piece is ready, there is one test,
and one data block collected. Data collection must not be allowed until the next test is
ready.

One way to do this is to start and stop the application repeatedly, but the MANUAL
triggering mode is easier.

Suppose for example that each test involves loading a test piece until it fractures. For
this application, start a data acquisition configuration using a trigger operating in
MANUAL mode, with the GATE=DISARMED property. The trigger will not respond to
anything because it is disarmed. Once the test is ready, enable the GATE=ARMED
property by sending a nonzero number to the TRIGARMTRIGARMTRIGARMTRIGARM command through a data pipe.
Actual data collection begins when the trigger is asserted, for example, after a non-
zero force is measured. Once data collection begins, the MANUAL mode trigger
changes its GATE property to DISARMED. The trigger will not respond to another event
until GATE=ARMED is set again.

Chapter 14 DAPL Software Triggering 95

A configuration using the TRIGARMTRIGARMTRIGARMTRIGARM command to control the GATE property is as
follows:

TRIGGERS TDestuct MODE=MANUAL GATE=DISARMED
PIPE PEnable
 ...

// Processing command to control trigger GATE
TRIGARM (PEnable, TDestruct)
 ...
START

When it is time to run the next experiment, activate the trigger. To do this, put a
nonzero value into the pipe monitored by the TRIGARMTRIGARMTRIGARMTRIGARM command:

// Send a command to arm the trigger
FILL PEnable 1
// Trigger is now armed
 ...

96 Chapter 14 DAPL Software Triggering

Timestamp-Modifying Commands

Sometimes triggering is required when a combination of events occurs. The TANDTANDTANDTAND and
TORTORTORTOR commands allow combining trigger events from multiple sources to produce a
new, composite trigger event.

For the protective relaying example, relaying events of interest might be only those
where there is a large voltage imbalance. When a voltage imbalance occurs, voltage
peaks are outside their normal range. Data are recorded if breaker operation and large
voltage disturbance both occur within the same power cycle.

Six software triggers and three extra pipes are defined:

PIPES PA1, PA2, PA3
TRIGGERS Tph1, Tph2, Tph3
TRIGGERS Tpeak, Tpickup, Tcombined

Suppose that 22000 is the nominal digitized peak voltage, so a peak outside the range
17600 to 26400 is more than 20% offset from nominal. The following processing
commands detect the voltage imbalances:

ABS (IP0, PA1)
ABS (IP1, PA2)
ABS (IP2, PA3)
PEAK (PA1, 1, Tph1, OUTSIDE,17600,26400)
PEAK (PA2, 1, Tph2, OUTSIDE,17600,26400)
PEAK (PA3, 1, Tph3, OUTSIDE,17600,26400)

This analysis produces three separate trigger streams, one for each phase. The TORTORTORTOR
command combines these streams into a single event stream that represents voltage
disturbance on any of the three phases:

TOR (Tph1, Tph2, Tph3, Tpeak)

With 200 samples per cycle, any voltage disturbance event occurring within 200
cycles of a circuit breaker event is of interest. These are found using the TANDTANDTANDTAND
command.

TAND (Tpeak, Tpickup, Tcombined, 200)

Chapter 14 DAPL Software Triggering 97

Triggers and Independent ON/OFF Events

The applications so far capture data in fixed time intervals. In the power relaying
example, a circuit-breaker event completes in twelve power cycles, so a fixed-size
data block is appropriate. For other applications, the amount of data may not be
known in advance.

For example, transient disturbances can induce torsional oscillations in the main shaft
of rotating machinery. If these oscillations are large enough, they can lead to
mechanical failure. By monitoring oscillation events, a cumulative assessment of
damage can be made, and preventative maintenance scheduled.

The problem is that damping of the oscillations depends on unpredictable external
conditions such as load characteristics and the presence of voltage compensation
devices. The oscillations might damp out quickly or sustain for a dangerously long
time. There is no way to know in advance whether small or large amounts of data are
necessary.

Toggled trigger operation uses an ON condition to initiate data acquisition and a
second OFF condition to terminate it. In the torsional oscillation example, mechanical
strain measurements can be analyzed continuously by a digital filter tuned to the
dominant oscillatory modes of the machine. If the filter�s output reaches a sufficient
level, an ON event occurs, and data acquisition begins. Once the filtered oscillations
drop to insignificance, an OFF event occurs, and data acquisition is terminated.
Analysis and data logging are performed off-line by the PC host. The point is that
triggering is controlled by two events, rather than just one.

DAPL provides three special commands to support toggled trigger operation.

� TOGGLETOGGLETOGGLETOGGLE
� TOGGWTTOGGWTTOGGWTTOGGWT
� TCOLLATETCOLLATETCOLLATETCOLLATE

The TOGGLTOGGLTOGGLTOGGLEEEE command detects ON and OFF events, enforcing a strict alternating
protocol. The TOGGWTTOGGWTTOGGWTTOGGWT command takes data from an input stream under control of the
events asserted by the TOGGLETOGGLETOGGLETOGGLE command. The TCOLLATETCOLLATETCOLLATETCOLLATE command provides an
alternative means for generating an ON/OFF event stream.

For the torsional monitoring example, the signal from a custom-designed filtering task
is used to detect oscillations. The details of this filter are not discussed here. The
maximum frequency at which damage can occur is presumed to be about 75 Hz, so a
minimum sampling frequency of about 150 Hz is necessary for successful filtering.

98 Chapter 14 DAPL Software Triggering

Assume that 20x oversampling is used, but the digital filtering decimates by a factor
of ten. This leaves a factor of ten difference between the data rates of the filtered data
and the raw strain data. Presume that an engineering analysis has determined that a
filter output of more than 4000 on a scale of 0 to 32767 indicates potential damage,
and that a filter output of less than 2000 indicates that danger is past.

The following DAPL configuration can be used to continuously monitor the strain
data:

IDEFINE samp 1
 SET IP0 s0 // phase1
 TIME 333.30 // 150 Hz x 20 oversample
END

The following DAPL configuration performs the processing. It uses a custom
command CFILT to filter the signal and the TOGGLETOGGLETOGGLETOGGLE command to signal ON and OFF
events depending on the output level of CFILT. The TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command
compensates for the factor of 10 data reduction applied during digital filtering. The
TOGGWTTOGGWTTOGGWTTOGGWT task then sends the selected strain data to the PC for logging and analysis.

PIPE P1
TRIGGERS TOGGLE, SCTOGGLE

PDEFINE detect
 CFILT (IP0, P1) // decimates by 10
 TOGGLE(P1, INSIDE, 4000,32767, \
 OUTSIDE, 2000,32767, TOGGLE)
 TRIGSCALE(TOGGLE,0,10,0,SCTOGGLE)
 TOGGWT(IP0, SCTOGGLE, $BINOUT)
END

Chapter 14 DAPL Software Triggering 99

Triggering with Multiple-Data Acquisition Processors

The TRIGSENDTRIGSENDTRIGSENDTRIGSEND and TRIGRECVTRIGRECVTRIGRECVTRIGRECV commands are useful in applications where there are
many data channels and acquisition must be coordinated among multiple Data
Acquisition Processors. For example, assume that it is necessary to sample 15 analog
channels simultaneously, at 250 kHz. Data capture must begin when a triggering event
is detected on a 16th channel. The 250 kHz rate is too fast for simultaneous sampling
expansion accessory cards. A DAP 5400a/627 can capture up to eight independent
data channels simultaneously, so two DAP 5400a/627 boards configured in a master
and slave connection can meet the sampling requirements. One Data Acquisition
Processor reads eight data channels, and the other reads seven data channels and the
synchronizing signal. However, this leaves a problem. One of the Data Acquisition
Processors does not see the data from the triggering channel. How can that Data
Acquisition Processor know when to retain its data?

The TRIGSENDTRIGSENDTRIGSENDTRIGSEND command encodes triggering information and sends it through
communication pipes to other Data Acquisition Processor boards. The TRIGRECVTRIGRECVTRIGRECVTRIGRECV
command on the receiving board decodes the triggering information, writing it into
triggers where it can be accessed to control data acquisition. This provides the means
for exchange of triggering information.

The command used to generate the trigger signal is not important, as long as it is able
to sustain continuous operation. For a DAP 5400a/627, any of the triggering
commands provided by the DAPL operating system can do this easily. A LIMITLIMITLIMITLIMIT
command is shown as the trigger-generating command for this example. Assume that
the board configured as the MASTERMASTERMASTERMASTER detects triggering events.

Each Data Acquisition Processor must be configured to access communication pipes
for transferring triggering information. Extra communication pipes for this purpose
can be set up using the Accel32 control panel application.

� Select the Browser tab
� In the graphical device tree window, expand the display for the two Data

Acquisition Processors.
� Right click on the Compipes element.
� In the dialog box, select Create.

In this manner, create a Cp2Out pipe for the master Data Acquisition Processor, and a
Cp2In pipe for the slave. Select the long data type for each. Alternatively,
applications can create communications pipes using features of the Accel32

100 Chapter 14 DAPL Software Triggering

programming interface, instead of using a configuration set up by the Accel32 control
panel application.

An application program on the PC will receive the captured data. It is presumed that
this same application is also available to connect the master-to-PC and PC-to-slave
communications. The application simply copies all of the data it receives from the
Tsend pipe into the Treceive pipe.

Now the two Data Acquisition Processors can be configured for input sampling. Since
a DAP 5400a/627 samples channel groups of 8 channels, each Data Acquisition
Processor is configured to sample only one channel group. The master Data
Acquisition Processor is configured as follows:

IDEF A
 GROUPS 1
 SET IP(0..7) SPG0
 TIME 4
 MASTER
END

The slave board is configured similarly, except that the MASTERMASTERMASTERMASTER command is replaced
by SLAVESLAVESLAVESLAVE.

The boards must also be configured for processing. The configuration is almost the
same, except that the master board detects and sends trigger events to the slave, while
the slave receives and responds to the events. Note that the slaves capture 8 data
channels, while the master board captures only 7, so the data blocks transferred to the
PC application from the slave are larger. If this is a problem, the trigger channel could
be used as a source of padding data on the master board, to make the blocks the same
size.

Processing on the master Data Acquisition Processor:

TRIGGER TXF

PDEF B
 // Monitor one channel and generate trigger events
 LIMIT(IP7,INSIDE,LOWLIM,HILIM,TXF)
 // Notify slave of events and progress
 TRIGSEND(TXF, 1000, Cp2Out)
 // Capture 7 data channels
 WAIT (IP(0..6),TXF,0,7000,$BINOUT)
END

Chapter 14 DAPL Software Triggering 101

Processing on the slave Data Acquisition Processor:

TRIGGER TXF

PDEF B
 // Receive trigger events
 TRIGRECV(Cp2In,TXF)
 // Capture 8 data channels
 WAIT (IP(0..7),TXF,0,8000,$BINOUT)
END

A slave board configuration is completed by interaction with the master board. To
prepare for this, the slave board must be started first. The slave will not do anything
until the master is ready.

Start the master Data Acquisition Processor last, to complete the initialization. Both
boards will begin sampling and buffering data simultaneously, but will not retain any
data until the triggering conditions on the master board are satisfied.

102 Chapter 14 DAPL Software Triggering

Asynchronous Events and PCASSERT

PC applications run at bottom priority. A PC application can proceed when computing
resources are available to it. When exactly this will occur is unpredictable and
unmeasurable. The only thing the application knows is that it is running now and
needs data now. Software triggering provides a means of selecting data on an as-
needed basis.

The difficulty is, when the PC asks for data now, what exactly does that mean? The
PCASSERTPCASSERTPCASSERTPCASSERT command provides an answer. It maintains information about the status of
a data stream, as current as possible. When a request arrives, the PCASSERTPCASSERTPCASSERTPCASSERT command
uses the status information to artificially manufacture a trigger event. This event is
then used to select a block of data for the PC.

When there is a single stream of samples, PCASSERTPCASSERTPCASSERTPCASSERT can use the system hardware
sample status to derive a sample number. For example, suppose that the PC needs a
block of 400 samples from a single channel. The PC signals the PCASSERTPCASSERTPCASSERTPCASSERT command
by placing a number into the binary input pipe. When it receives the request, the
PCASSEPCASSEPCASSEPCASSERTRTRTRT command then determines an appropriate timestamp and asserts an event
in trigger TRIGPC.

PCASSERT ($BININ, TRIGPC)
WAIT (IP0,TRIGPC,200,200,$BINOUT)

No reference stream is provided, so the PCASSERTPCASSERTPCASSERTPCASSERT command looks up the current
sample count from the hardware status, and uses that to generate the event timestamp.
The WAITWAITWAITWAIT command responds to the event, takes 200 pre-trigger and 200 post-trigger
samples, and sends them immediately to the PC.

This works because samples are taken from a single data channel. What about the case
when there are multiple channels? The system sample count, which includes all
samples from all channels, is wrong for taking samples from individual channels.

There are several ways to get around this. One easy way is to use the optional third
parameter of the PCASSERTPCASSERTPCASSERTPCASSERT command to specify a data reduction factor. If there are
four input channels, for example, the rate in any data channel is 1/4 of the net system
rate. Thus, we can specify

PCASSERT ($BININ,TRIGPC,4)
WAIT (IP(0,1),TRIGPC,200,200,$BINOUT)

Chapter 14 DAPL Software Triggering 103

Recall that the WAITWAITWAITWAIT command is aware of the number of input data channels in its
input list. Once PCASSERTPCASSERTPCASSERTPCASSERT asserts a meaningful sample number for a single channel,
the WAITWAITWAITWAIT command can read from any number of channels.

Another way is to allow the PCASSERTPCASSERTPCASSERTPCASSERT to monitor one of the data channels.

PCASSERT ($BININ, TRIGPC, IP0)

This is usually not necessary for input channel data. But suppose the WAITWAITWAITWAIT command
takes blocks of processed data, which might result from another triggering process.
Now the system sampler count has no useful relationship to the number of samples
available in the data pipe.

For this situation, we can allow PCASSERTPCASSERTPCASSERTPCASSERT to monitor any appropriate data stream to
maintain its reference count. Suppose that pipe ANYPIPE contains an arbitrary data
stream. The following commands monitor and extract current data from this pipe:

PCASSERT ($BININ, TRIGPC, ANYPIPE)
WAIT (ANYPIPE,TRIGPC,200,200,$BINOUT)

The following example illustrates fetching blocks of 256-point FFT spectrum data to a
PC application. This example uses an alternate means of signaling the PCASSERTPCASSERTPCASSERTPCASSERT
command.

Suppose that FFTFFTFFTFFT computations occur continuously, faster than the PC can use all of
the data.

FFT (5, 9, 0, IP0, SPECTRA)

The PC requests a spectrum block by setting variable VREQ to a nonzero value using a
LET command:

LET VREQ=1

The PCASSERTPCASSERTPCASSERTPCASSERT command monitors the number of samples available in the SPECTRA
pipe.

PCASSERT(VREQ, TRIGPC, SPECTRA)

104 Chapter 14 DAPL Software Triggering

The data appear in blocks of 256 samples, but this means that PCASSERTPCASSERTPCASSERTPCASSERT will always
detect the last sample in a data block. We want the beginning of a block, not the end.
We correct this problem by modifying the event timestamps, using the TRIGSCALETRIGSCALETRIGSCALETRIGSCALE
command as described earlier in this chapter.

TRIGSCALE(TRIGPC, 0, 256, 256, TRIGSP)

This operation produces trigger timestamps in trigger TRIGSP that indicate the
starting locations of completed spectrum blocks in storage. The WAITWAITWAITWAIT command takes
each block beginning at the sample indicated. Data that are not requested are silently
discarded.

WAIT(SPECTRA, TRIGSP, 0, 256, $BINOUT)

This technique of pre-computing values and having them ready to go upon request
provides extremely fast response.

Chapter 15 Digital Filtering 105

15. Digital Filtering

Digital filtering removes unwanted frequency components from digital data. This
chapter describes digital filtering commands available in DAPL.

Average and Running Average

AVERAGEAVERAGEAVERAGEAVERAGE and RAVERAGERAVERAGERAVERAGERAVERAGE implement two of the simplest digital filters. AVERAGEAVERAGEAVERAGEAVERAGE reads
blocks of �n� data values and returns the averages of the blocks. RAVERAGERAVERAGERAVERAGERAVERAGE maintains
a moving block of �n� data values, and returns averages of the moving block.
RAVERAGERAVERAGERAVERAGERAVERAGE starts by reading in enough data values to fill one block and returning one
average value. Then, it repeats a sequence of throwing out the oldest value in the
block, reading a new value into the block, and returning the average of the block.

It is important to note that AVERAGEAVERAGEAVERAGEAVERAGE reduces the data rate, where RAVERAGERAVERAGERAVERAGERAVERAGE does not.
AVERAGEAVERAGEAVERAGEAVERAGE returns one value for each �n� values it reads. After initially filling the block
it maintains, RAVERAGERAVERAGERAVERAGERAVERAGE returns one value for each value it reads.

AVERAGEAVERAGEAVERAGEAVERAGE and RAVERAGERAVERAGERAVERAGERAVERAGE implement simple lowpass filters. These commands should
be considered for some applications, especially for reducing broad-band random
noise. Additional digital filtering commands provided by DAPL implement
specialized frequency-selective filters.

106 Chapter 15 Digital Filtering

Finite Impulse Response Filters

The digital filtering commands FIRFILTERFIRFILTERFIRFILTERFIRFILTER and FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS implement finite
impulse response (FIR) filters. A finite impulse response filter is determined by a
vector v of filter coefficients. The filter output corresponding to a block of data is
calculated by multiplying each entry in the block of data by the corresponding entry in
the vector v and adding the products. This means that the block of data must have the
same length as the length of the vector.

When a digital filtering task starts to process a stream of data, the task first begins by
reading in enough values to produce one sum of products. In a typical filtering
application, FIRFILTERFIRFILTERFIRFILTERFIRFILTER, like RAVERAGERAVERAGERAVERAGERAVERAGE, maintains a block of data. Each time
FIRFILTERFIRFILTERFIRFILTERFIRFILTER reads one data value, it removes the oldest data value from its block of
data and appends the new value to the block. It then calculates one output value. Thus,
after a startup sequence, FIRFILTERFIRFILTERFIRFILTERFIRFILTER returns one filtered value for each input value.

FIRFILTERFIRFILTERFIRFILTERFIRFILTER and FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS can operate either like RAVERAGERAVERAGERAVERAGERAVERAGE, generating one
result for each input sample received, or like AVERAGEAVERAGEAVERAGEAVERAGE, reducing the output data rate
by discarding some of the filtered data. Reducing the amount of data is appropriate for
many applications in which an input is oversampled and then passed through a
lowpass or bandpass filter. After filtering removes the high frequencies, fewer samples
are needed to accurately represent the resulting signal, and there is no need to retain
all of the filtered data.

FIRFILTERFIRFILTERFIRFILTERFIRFILTER has a parameter n called �decimation� that specifies data reduction. After
each calculation, FIRFILTERFIRFILTERFIRFILTERFIRFILTER reads in n-1 values without calculating. Then, after
reading the n-th value, FIRFILTERFIRFILTERFIRFILTERFIRFILTER calculates another value.

FIRFILTERFIRFILTERFIRFILTERFIRFILTER also has optional �take� and �skip� parameters that allow blocks of data
to be alternately retained or rejected, retaining complete signal information locally but
reducing the overall volume of data.

FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS is a variant of FIRFILTERFIRFILTERFIRFILTERFIRFILTER. FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS allows values of 2 through 12
for the decimation factor, and provides predefined symmetric filter vectors
appropriate for lowpass filtering using these levels of decimation.

Generating Filter Coefficients

Filter coefficients may be calculated from the frequency spectrum of an ideal filter.
This procedure is implemented in the program FGEN from Microstar Laboratories.

Chapter 15 Digital Filtering 107

Window Vectors

Most ideal filter characteristics have a filter vector with an infinite number of terms.
Approximating the infinite filter vector with a filter vector having a finite number of
coefficients leads to approximation errors. All FIR filters suffer from this to some
degree. Effects related to the finite filter length are decreased by multiplying the
coefficient values by a window function. This typically is a function whose values
approach zero near the edges of the coefficient block. FGEN allows a window as part
of a filter specification.

Phase Response and Time Delay

All of the filters designed by FGEN have coefficients that are symmetric around the
middle coefficient. A symmetric FIR filter having 2M+1 coefficients has the property
that the output values are delayed by M samples. This delay is sometimes interpreted in
the frequency domain as a phase shift. A pure time delay causes an apparent phase
shift at each signal frequency proportional to the frequency; for this reason symmetric
filters are sometimes called linear-phase filters. For purposes of analysis, the phase-
shift point of view is very important, but in the sampled-data world, the time-delay
interpretation is more immediately useful.

The time delay is of critical importance, for example, when analyzing peaks in a
filtered signal for purposes of triggering, For such applications, a �phase correction�
parameter is provided by the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command. The correction parameter can be
set to the value M, or equivalently, the value -1 can be specified and the FIRFILTERFIRFILTERFIRFILTERFIRFILTER
command will calculate the correct value to use. FIRFILTERFIRFILTERFIRFILTERFIRFILTER makes the correction by
adding extra samples to the output stream. After this correction, features in the filtered
data stream will correspond in time to features of the original unfiltered data stream.

This synchronization of the input and output data streams should not be confused with
real-time response. 2M+1 samples are still required before the first output value can be
computed, and the first computed output corresponds to filter term M+1. There is a
real-time delay of M samples between the most current sample taken and the most
recent filter output generated. This delay cannot be avoided when using a symmetric
filter.

It should be noted that the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command is not restricted to using symmetric
filters. Filters designed using other techniques may have other delay characteristics
and could require a different time shift correction.

Chapter 16 Fast Fourier Transform 109

16. Fast Fourier Transform

The Fourier transform is a mathematical operation that converts data from the time
domain to the frequency domain. Using the Fourier transform, complex signals are
represented in terms of simple signals; each of the simple signals is a �pure�
oscillatory component, either a complex exponential, or a cosine or sine.

The discrete Fourier transform (DFT) is a mathematical operation that approximates
the Fourier transform for blocks of sampled data. The frequencies of the simple
signals in a DFT are harmonics of one frequency, called the fundamental frequency.
The DFT is appropriate for the data derived by sampling a continuous signal with an
analog-to-digital converter. The fast Fourier transform (FFT) is an extremely efficient
algorithm for calculating the DFT.

The DFT has two forms, which are inverse operations. The forward transform goes
from time domain data (a sequence of samples over time) to frequency domain data (a
sequence of frequency harmonics spanning a frequency band); the inverse transform
goes in the other direction, from frequency domain data to time domain data. Because
DAPL is used primarily for computations on acquired data, the forward transform is
used more often than the inverse transform.

Even with real input data, the Fourier transform produces complex-valued output data.
In many cases the interesting information in the output data is contained in the
amplitude, the amplitude and phase, or the square of the amplitude. The square of the
amplitude is called power, because in many applications it can be interpreted as the
power at a specified frequency.

110 Chapter 16 Fast Fourier Transform

FFT Commands

DAPL provides FFTFFTFFTFFT commands that combine a number of mathematical operations
into a convenient package. The operations include window pre-processing, the actual
transform, and post-transform data conversions. Most applications involve signals
containing various degrees of random noise; the effects of random noise typically
dominate any �noise� from numerical roundoff. The FFT algorithms require a block
size that is a power of 2. The two FFTFFTFFTFFT commands accept block sizes from 4 to 16384.

The FFT algorithms require pre-computed tables of coefficients. When FFT sizes are
large, these tables become large. To avoid unnecessary construction of FFT
coefficient tables, these tables are not computed until an FFT task is defined. A small
FFT can work with a large table, but a large FFT cannot work with a small table. If
FFT sizes are mixed, define the tasks with a large FFT size first.

Chapter 16 Fast Fourier Transform 111

FFT Modes

The FFTFFTFFTFFT command provides selected combinations of input, transform, and output
processing operations that cover most application requirements. These combinations
are called modes.

The seven modes of FFTFFTFFTFFT are:

0. forward transform, real input data, complex output data
1. forward transform, complex input data, complex output data
2. inverse transform, complex input data, real output data
3. inverse transform, complex input data, complex output data
4. forward transform, real input data, power spectrum output data
5. forward transform, real input data, amplitude spectrum output data
6. forward transform, real input data, amplitude and phase output data

When the forward fast Fourier transform is applied to real data, half of the output
values are redundant. For blocks of size N, for example, the (N-n)-th term is equal to
the complex conjugate of the n-th term, and the 0-th and the N/2-th terms are real.
Because of this symmetry, modes 4, 5, and 6 return output blocks of half of the size of
the input blocks. Power and magnitude computations take the symmetry into account,
and combine the effects of reflected terms.

112 Chapter 16 Fast Fourier Transform

Window Vectors

The underlying assumption of an FFT is that samples in a data block represent one
period of a periodic signal. Often, this is not actually the case, and a transform is
applied to a data block extracted from a continuous data stream. In this case, the
computed FFT exhibits both the frequency components present in the data and
artificial frequency components caused by isolating the data block. It is possible to
minimize the data blocking effects by multiplying the values in the input data block,
term-by-term, by a vector of coefficients called a window vector. The coefficients in a
window vector usually decay to zero at the ends of the block.

Using a window has some drawbacks. Information near the ends of the block is
reduced or lost. Statistical interpretation of the transform result is less clear, because
errors in the original data are weighted rather than uniform. A window vector
generally changes the output spectrum, altering the zero-frequency component, and
smoothing peaks in the frequency domain so that they are somewhat broader and less
distinct.

DAPL provides the five most common non-parametric window types: Rectangular,
Hanning, Hamming, Bartlett and Blackman. The Rectangular window has all
coefficients equal to 1.0; this window is equivalent to applying no window operation.

The other windows are given by:

1.Hanning(k) = 0.5 - 0.5 cos(2pk/N)
2.Hamming(k) = 0.54 - 0.46 cos(2pk/N)
3.Bartlett(k) = 2k/N for k < N/2,
 (2 - 2k/N) for k >= N/2
4.Blackman(k) = 0.42 - 0.50 cos(2pk/N) + 0.08 cos(4pk/N)

where N is the block size.

All of the FFT modes accept a window. A window is usually meaningful only for
forward transforms. A predefined window vector is specified in the task definition by
setting the window parameter to a numeric constant in the range 0 to 4, corresponding
to the window types.

Customized windows can also be specified. For these windows, the coefficients are
specified by a DAPL VECTORVECTORVECTORVECTOR, and the name of the vector rather than a numeric
constant is specified in the task definition parameter list.

Chapter 16 Fast Fourier Transform 113

Scaling in the FFT

The easiest way to describe the scaling of the various FFT modes is to give the results
of applying the FFT to a sine wave of the maximum amplitude 10000, at the
fundamental frequency or at any harmonic frequency less than half of the sampling
frequency. The transform of this sine wave has two components, one at the frequency
of the sine wave and one at the sampling frequency less the frequency of the sine
wave.

FFT modes 0 and 1 are scaled so that each component of the output has magnitude
10000/2. Mode 4 is scaled so that the output is the square of the RMS value
corresponding to the amplitude of the input; the output has magnitude
(10000*10000)/2. Mode 5 is scaled so that the amplitude of the output is the RMS
value corresponding to the amplitude of the input; the output has magnitude
10000/sqrt(2). Mode 6 returns the amplitude along with the phase angle.

Modes 2 and 3 are inverse FFT modes. These modes are scaled so that applying the
FFT, followed by the inverse FFT, returns the original data.

The scaling used by DAPL is different from the conventions used in many (but not all)
DSP textbooks. Most books represent a forward DFT as an unscaled sum of terms,
and a reverse DFT as a similar sum of terms scaled by an a factor of 1/N. The 1/N
multiplier derives from the transform theory, and must be applied to either the forward
direction or the reverse direction transform for the transform pair to restore the
original data. However, there is no essential reason for applying the 1/N factor to the
reverse transform. In fact, there are distinct advantages to applying it to the forward
transform. A DFT computation involves summing a large number of terms, and this
summation is subject to arithmetic overflow conditions. Overflow leads to loss of
information about frequency peaks. In most cases, this is the information that is of the
most value. Applying the 1/N factor during the forward transform yields the well-
scaled transform previously described, without exposure to overflow and without loss
of information at frequency peaks.

114 Chapter 16 Fast Fourier Transform

Representing Sampled Data

The input for the fast Fourier transform is a block of samples of a time-dependent
signal u(t). For the fast Fourier transform, values in the input data must be sampled
at equally spaced times. Denote the time between samples by τ; then the sampling
frequency is 1/τ. If time zero denotes the time at which the first sample is taken, then
the k-th sample is taken at time

t[k] = kτ.

The samples form a block

z = (z[0], z[1] ..., z[N-1]),

where z[k] = u(t[k]) denotes the k-th sample of the signal u(t).

If the block length is denoted by N, the time per block is

T = Nτ.

The Fourier transform represents the sampled signal u(t) in terms of signals that are
periodic in t with period T = Nτ. The fundamental frequency F is given by

F = 1/T
 = (1/N)(1/τ)

The n-th harmonic has frequency f[n], where

f[n] = nF
 = n/T
 = (n/N)(1/τ).

The 0-th harmonic is a special case; its frequency is f[0] = 0. This corresponds to a
constant term whose size is proportional to the average value of the sampled signal
u(t).

When sampling a real-valued signal at an input pin at 1024 samples per second and
calculating a 2048-point fast Fourier transform, for example, the fast Fourier
transform returns information about input frequencies up to 512 Hz in steps of 1/2 Hz.
Non-redundant frequency information is contained in FFT output components 0
through 1023. Component 0 represents the DC component of the input signal,
component 1 represents the (1/2048)*1024 Hz = 0.5 Hz component of the input

Chapter 16 Fast Fourier Transform 115

signal, component 2 represents the (2/2048)*1024 Hz = 1.0 Hz component of the
input signal, etc.

Nyquist Frequency

The Nyquist frequency is f[N/2], half the sampling frequency. The n-th frequency and
the (N-n)-th frequency are symmetrically placed with respect to the Nyquist
frequency.

In a typical example, the Data Acquisition Processor takes samples at 100,000
samples per second and computes 1024-point FFTs. Then the sampling time τ equals
10 microseconds, N = 1024, and T = 0.01024 seconds. The Nyquist frequency is
50 kHz, and the frequencies corresponding to the FFT output are 0, 97.7 Hz,
195.3 Hz, �, 99.9 kHz.

Through the phenomenon of aliasing, the FFT cannot distinguish frequencies above
the Nyquist frequency from frequencies below the Nyquist frequency. Frequencies
above the Nyquist frequency should be considered equivalent to their symmetric
frequencies below the Nyquist frequency. Because of aliasing, the components at
frequencies

f[(N/2)+1], f[(N/2)+2], ..., f[N-1]

appear to have frequencies

f[(N/2)-1], f[(N/2)-2], ..., f[1]

To eliminate aliasing, the input signal for the FFT must be filtered to remove all
components at or above the Nyquist frequency. Frequencies above half of the
sampling frequency must be removed.

There are two common approaches to eliminating unwanted high frequencies. The
first uses hardware anti-aliasing filters. The second uses digital filters. Digital filtering
may be used when the noise spectrum is sufficiently band-limited so that it is possible
to represent both the desired frequencies and the high frequency noise by sampling at
a rate much higher than required by the FFT. (This is called oversampling). A lowpass
digital filter (such as a DAPL FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS task) eliminates all high frequencies
above the FFT�s Nyquist frequency and then decimates the data to the sampling rate
required by the FFT.

116 Chapter 16 Fast Fourier Transform

Representing Sample Data with Complex Exponentials

The remainder of this chapter explains the use and interpretation of the Data
Acquisition Processor FFT commands. Some of the mathematical details should be
skipped on a first reading.

For sampled data, the Fourier transform represents a sample block z in terms of
periodic functions of sample number k. The standard representations use either
complex exponentials or cosines and sines. For computational purposes, the most
useful form of the Fourier representation involves complex numbers and complex
exponentials. This representation eliminates many trigonometric identities; it also
simplifies phase computations.

In terms of the sample time t = t[k], the complex exponentials are given by

E[n](t) = cos(2π(nt/Nτ)) + i sin(2π(nt/Nτ))

In terms of the sample number k, the complex exponentials are given by

E[n](k) = cos(2πnk/N) + i sin(2πnk/N)

The Fourier transform represents the sample block z in terms of the special blocks
given by

E[n] = (E[n](0), E[n](1), ... , E[n](N-1))

Because of the periodicity of the sines and cosines, there are only N distinct blocks En.
For N = 4, for example, the 4 distinct blocks are:

E[0] = (1, 1, 1, 1)
E[1] = (1, i, -1, -i)
E[2] = (1, -1, 1, -1)
E[3] = (1, -i, -1, i)

Notice that E[3] is the complex conjugate of E[1]. More generally, E[N-n] is the
complex conjugate of E[N] for all n.

A short computation may clarify the Fourier transform representation. Consider a
signal u(t), which is sampled four times, yielding the samples 1000, 3000, 4000, and
1000 at time 0, τ, 2τ, and 3τ. The Fourier transform represents u(t) as

u(t) = a[0] E[0](t) + a[1] E[1](t)
 + a[2] E[2](t) + a[3] E[3](t)

Chapter 16 Fast Fourier Transform 117

The coefficients a[0],�, a[3] can be determined from the values u(τ) at times 0, τ, 2τ,
and 3τ. This leads to the equations

(1000, 3000, 4000, 2000) = a0 (1, 1, 1, 1)
 + a1 (1, i, -1, -i)
 + a2 (1, -1, 1, -1)
 + a3 (1, -i, -1, i)

A short matrix calculation gives

a0 = 2500
a1 = -750 - i 250
a2 = 0
a3 = -750 + i 250

After some algebraic simplifications, this leads to the following representations:

u(t) = 2500 - 1500 cos(2πt/4t) + 500 sin(2πt/4t)
u(kt) = 2500 - 1500 cos(2πk/4) + 500 sin(2πk/4)

Care is required in interpreting this result, as the formula for the signal u(t) gives
u(t) exactly at only the four discrete values 0, τ, 2τ, and 3τ.

118 Chapter 16 Fast Fourier Transform

Representing Sampled Data with Cosines and Sines

In the previous computation, the imaginary terms canceled out to give a real
representation of a real signal in terms of cosines and sines. The cancellation must
occur whenever the Fourier transform is applied to real data, so there is an alternate
Fourier representation in terms of cosines and sines. In terms of the sample time
t = t[k], the Fourier transform represents a signal in terms of

c[n](t) = cos(2π(nt/Nτ))
s[n](t) = sin(2π(nt/Nτ))

In terms of k, the corresponding discrete values are

C[n](k) = cos(2πnk/N)
S[n](k) = sin(2πnk/N)

Because the cosines and sines are periodic, only certain values of n give distinct data
blocks. For example, for N = 4, there are 4 distinct standard data blocks:

C[0] = (1, 1, 1, 1)
C[1] = (1, 0, -1, 0)
C[2] = (1, -1, 1, -1)
S[1] = (0, 1, 0, -1)

and for N = 8, there are 8 distinct blocks:

C[0] = (1, 1, 1, 1, 1, 1, 1, 1)
C[1] = (1, r, 0, -r, -1, -r, 0, r)
C[2] = (1, 0, -1, 0, 1, 0, -1, 0)
C[3] = (1, -r, 0, r, -1, r, 0, -r)
C[4] = (1, -1, 1, -1, 1, -1, 1, -1)
S[1] = (0, r, 1, r, 0, -r, -1, -r)
S[2] = (0, 1, 0, -1, 0, 1, 0, -1)
S[3] = (0, r, -1, r, 0, -r, 1, -r)

where r represents sin(π/4) = cos(π/4) = 0.707. . .

Chapter 16 Fast Fourier Transform 119

Symmetry Around the Nyquist Frequency

Because k and n always are integers, and the sines and cosines are periodic, the
following formulas hold:

E[N-n](k) = cos(2π(N-n)k/N) + i sin(2π(N-n)k/N)
 = cos(2πnk/N) - i sin(2πnk/N)
 = E[-n](k)

for all n and k. This means that the complex exponentials at frequencies that are
symmetric about the Nyquist frequency are complex conjugates. In particular, all of
the components at frequencies above the Nyquist frequency can be represented as
sines and cosines at frequencies below the Nyquist frequency. The representation of
frequency components above the Nyquist frequency in terms of frequency components
below the Nyquist frequency is called aliasing.

From the previous formulas,

E[n](k) + E[-n](k) = 2 cos(2πnk/N)
E[n](k) - E[-n](k) = 2i sin(2πnk/N)

Using these formulas, real data are represented later in this chapter in series of sines
and cosines with real coefficients.

120 Chapter 16 Fast Fourier Transform

Interpreting the FFT

The FFT acts on blocks of N complex values

z[k] = x[k] + i y[k]

where k = 0, 1, � , N-1. The FFT returns blocks of N complex coefficients

X[n] + i Y[n]

where n = 0, 1, � , N-1. The k-th term in the original block of data equals the sum
from n = 0 to N-1 of the terms

Z[n](k) = (X[n] + i Y[n]) E[n](k)

up to computational accuracy. Because the complex exponentials are periodic in k, the
complex coefficients can be interpreted as the frequency components of the original
data.

Note: If the original data are multiplied by a window function before the FFT is
computed, the FFT gives a representation of the modified data, rather than a
representation of the original data.

Chapter 16 Fast Fourier Transform 121

Interpreting the FFT for Real Data

If the input data for the FFT are real, then the coefficients satisfy the symmetry
relationship

X[n](k) = X[N-n](k)
Y[n](k) = -Y[N-n](k)

for all k. From these formulas, the n-th coefficient and the (N-n)-th coefficient are
complex conjugates, and the 0-th and N/2-th terms are real. The n-th term of the
Fourier series is

(X[n] + i Y[n]) E[n](k)

and the (N-n)-th term of the Fourier series is

(X[N-n] + i Y[N-n]) E[N-n](k)

Adding these terms gives

2 X[n] cos(2πnk/N) - 2 Y[n] sin(2πnk/N)

This gives the representation of the original data in sines and cosines. Note that the 0-
th term and the N/2-th term are real and do not have symmetric terms. The 0-th term is
the average of the original data block, and should not be multiplied by 2. The N/2-th
term corresponds to the Nyquist frequency. For sampled input data, this term should
be very close to zero.

In a sense, half of the computations are unnecessary when an FFT is applied to real-
valued data because half of the computed results are redundant. For real-valued data,
DAPL takes advantage of symmetry properties to compute an FFT of size N in
approximately the same amount of time as an FFT of size N/2. The modified algorithm
is applied automatically for real-valued data. Further attempts to obtain speed
advantages using symmetry properties will not improve performance, and are not
advised.

122 Chapter 16 Fast Fourier Transform

Errors in the FFT

The FFT must be interpreted with care. Errors are introduced by sampling at discrete
times, by sampling for only a finite interval of time, by rounding, and by truncation.

An FFT is a multistage algorithm performed using fixed-point arithmetic. Even though
great care is applied to maintaining the accuracy of intermediate results, the smallest
rounding errors can propagate from stage to stage, affecting low-order bits in many
locations of the final result. The larger the FFT, the more likely that errors will
accumulate. Do not expect transforms to be exact to the very last bit.

The algorithms used to compute transforms for real-valued data require a special final
stage that collects and reconstructs symmetric transform results. This process is
subject to rounding error, as is any other computation, and can introduce errors into
the low-order bit.

Accumulation of errors is particularly apparent in the reverse transforms. The 1/N
factor of the forward transform tends to hide most of the truncation and rounding
error, but the reverse transform does not have a 1/N factor. As a rule of thumb, if the
size parameter for the FFT is m, the last m/2 bits in a reverse transform are noisy. For
example, in a 256 point transform, m=8, so do not attach significance to differences
less than 16. The error in the reverse transform usually is well modeled by �white
noise.� Averaging can sometimes cancel some of the noise, yielding additional
significant bits.

Scaling effects are much more evident in the reverse transform. Because the reverse
transform is not scaled by 1/N like the forward transform, an arbitrary frequency
spectrum is likely to produce saturated time-domain peaks. An inverse transform
applied to data derived from a forward transform is less likely to be affected by
saturation because the 1/N factor is already in effect. On the other hand, because of the
1/N factor, the forward transform loses some of the information originally present in
the low order bits of the original samples, and the difference appears as various small
non-random artifacts in the reverse transform.

Error accumulation, truncation, and scaling considerations always apply to some
degree, depending on the number representation. If speed is less important than
preserving precision, consider using floating point data types. Floating point data
types have automatic internal scaling that is very effective for avoiding precision-
related error accumulation. Better precision does not remove any noise present in the
original input signal, however, so do not confuse precision with accuracy.

Chapter 16 Fast Fourier Transform 123

Even if the Data Acquisition Processor receives a periodic analog signal at its input
pins, the sampled data typically are not periodic with period equal to the block length
of the FFT. Windowing compensates for data blocking errors, but introduces other
errors. Windowing artificially makes the data look periodic, but the transform of the
windowed data may differ substantially from the transform of the original data.

An FFT analyzes the frequency content of a signal in terms of harmonics of the
fundamental frequency. If the signal contains a pure oscillatory wave at one of the
harmonic frequencies, only one complex term of the resulting FFT is nonzero. If the
original signal is a pure oscillatory wave, but does not coincide exactly with one of the
harmonics in the transform, the signal appears �smeared� into neighboring locations,
as if the signal were not pure. This phenomenon is known as �leakage.� Do not
interpret a nonzero value in a spectrum as meaning that a signal of precisely that
frequency is actually present in the original signal. Note that the presence of a signal
that is not a harmonic of the fundamental frequency also implies that the FFT block
does not exactly represent one period of the original waveform, hence leakage and
windowing are related. Windowing often reduces the effects of leakage, but alters the
frequency spectrum in different ways.

Noise is present in most real-world data. The act of digitally sampling the signal
immediately introduces some amount of error. To the extent that this error is truly
random and has constant statistical properties over time, noise tends to appear as a
uniform noise band, or �fuzz�, in the FFT spectrum. This noise affects every value in
the spectrum, though it is often more apparent where the spectrum is flattened. Most
real phenomena will stand out clearly from the random noise.

Remember that arithmetic errors such as truncation and rounding also appear as noise
in the computed transform.

Section II. Reference 125

Section II. Reference

Chapter 17 DAPL Commands: EXAMPLE 127

17. DAPL Commands

This chapter provides detailed descriptions for all DAPL commands. See the
Applications Manual for application examples.

Some commands are available only for certain hardware models. Others have variant
forms that are specific to certain hardware models. Look in the descriptions for each
individual command for information about hardware dependencies, or check the
separate �Features of DAPL dependent on DAP model� document.

DAPL allows certain specific abbreviations for its system commands, the ones that
execute immediately and are most likely to be typed in �live.� The abbreviated forms
are shown in each relevant command.

The following syntax notation is used to describe DAPL commands:

� Parameters representing numbers or symbol names are enclosed in

angle brackets <>.
� Optional parameters are enclosed in square brackets [].
� If a parameter or sequence of parameters can be repeated, it is followed by

a star *.
� If several possible command alternatives exist, the alternatives are separated by

vertical bars |. The vertical bar should be read as �or.�
� Other notations and explicit keywords are shown as literal text.

The following page uses a fictitious sample command EXAMPLE to display the format
used to describe the DAPL 2000 commands.

128 Chapter 17 DAPL Commands: EXAMPLE

EXAMPLE

A brief command description appears here.

Note: EXAMPLE is a fictitious command used to illustrate how the DAPL 2000
commands are described in this manual. In this sample, the abbreviated form EX
may be used instead of EXAMPLE.

EXAMPLE (<param1>, <param2>)

EX (<param1>, <param2>)

Parameters
<param1>

Description of this parameter.
DATA TYPE FOR PARAM1

<param2>
Output data pipe.
WORD PIPE

Description
This section provides a comprehensive description of what the command does, and
the roles served by parameters <param1> and <param2>.

Example

EXAMPLE (P1,P2)

The command is illustrated with an instance shown exactly as it would be delivered
to the DAPL system, with a detailed description of the specific options selected,
input data, and output results.

See Also
Related commands

Chapter 17 DAPL Commands: ABS 129

ABS

Define a task that computes the absolute value of data values.

ABS (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Source data pipe.
WORD PIPE | LONG PIPE

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE

Description
ABSABSABSABS reads data from <in_pipe>, computes absolute values, and places the results
in <out_pipe>.

Example

ABS (P1, P2)

Read data from pipe P1 and place the absolute values into pipe P2.

See Also
CABSCABSCABSCABS

130 Chapter 17 DAPL Commands: ALARM

ALARM

Define a task that detects values within a region and sets an output bit of the digital
output port.

ALARM (<in_pipe>, <region>, <output_bit>, [<reset>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<region>
The region of detection for values.
REGION

<output_bit>
A number representing the bit of the digital output port.
WORD VARIABLE | WORD CONSTANT

<reset>
A nonnegative integer specifying a time in milliseconds
WORD CONSTANT

Description
ALARMALARMALARMALARM reads data values from <in_pipe> and determines whether a value is inside
<region>. If a value inside <region> is detected, bit <output_bit> of the
digital output port is set to one.

Bit 0 is the least significant bit and bit 15 is the most significant bit. <output_bit>
is a number in the range from 0 to the maximum digital output number supported by
the Data Acquisition Processor. When digital output expansion is used,
<output_bit> is in the range 0 to 15 for digital port B0, in the range 16 to 31 for
digital expansion port B1, etc.

If <reset> is present, the digital output bit is reset at least <reset> milliseconds
after the data values leave the region. The exact time depends on system latency. If
<reset> is omitted, the output bit is not reset when the data values leave the region
and the bit remains set.

During the <reset> time, an ALARMALARMALARMALARM task flushes data from <in_pipe>.

Chapter 17 DAPL Commands: ALARM 131

Example

ALARM (P1, OUTSIDE,0,100, 5)

If a value from pipe P1 is outside the range 0 to 100, bit 5 of the digital output port
is turned ON.

See Also
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT, LIMITLIMITLIMITLIMIT

132 Chapter 17 DAPL Commands: AVERAGE

AVERAGE

Define a task that computes the arithmetic mean values for groups of samples.

AVERAGE (<in_pipe>, <count>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE, LONG PIPE, FLOAT PIPE, DOUBLE PIPE

<count>
The number of samples in each group.
WORD CONSTANT, LONG CONSTANT

<out_pipe>
Output pipe for the average values.
WORD PIPE, LONG PIPE, FLOAT PIPE, DOUBLE PIPE

Description
AVERAGEAVERAGEAVERAGEAVERAGE computes the arithmetic mean for groups of <count> samples. Groups of
samples are received from <in_pipe> and results are sent to <out_pipe>.
AVERAGEAVERAGEAVERAGEAVERAGE is useful for data compression, noise reduction, and computing statistics
from measurements.

The internal summation uses a 64-bit representation. This is large enough that
ordinary computations cannot produce an overflow condition. For DOUBLE floating
point data with exceptionally large values, an intermediate summation exceeding the
range representable by the 64-bit DOUBLE type results in special numbers +INF or
-INF.

Examples

AVERAGE (IPIPE0, 100, P1)

Average groups of 100 values from input channel pipe 0 and send the averages to
pipe P1.

AVERAGE (PF4, 4, PFAVG)
Average groups of 4 floating point values from pipe PF4 and send the averages to
floating point pipe PFAVG.

Chapter 17 DAPL Commands: AVERAGE 133

See Also
BAVERAGEBAVERAGEBAVERAGEBAVERAGE, FIRFILTERFIRFILTERFIRFILTERFIRFILTER, RAVERAGERAVERAGERAVERAGERAVERAGE

134 Chapter 17 DAPL Commands: BAVERAGE

BAVERAGE

Define a task that computes multiple arithmetic means for multiplexed data.

BAVERAGE (<in_pipe>, <n>, <m>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<n>
The number of values in a block.
WORD CONSTANT

<m>
The number of blocks of data to be averaged.
WORD CONSTANT

<out_pipe>
Output pipe for averaged data blocks.
WORD PIPE | LONG PIPE

Description
<n> and <m> are positive nonzero integers. <n> indicates the number of values in
the block. BAVERAGEBAVERAGEBAVERAGEBAVERAGE reads <m> blocks, averages corresponding points in the blocks,
and puts one block of averages into <out_pipe>. For every <n>*<m> values read,
<n> values are put into <out_pipe>. The maximum size of <n> is 8192.

Some common applications of BAVERAGEBAVERAGEBAVERAGEBAVERAGE are

� reducing noise in repetitive waveforms,
� averaging data from multiple channels in parallel,
� and reducing noise in FFT power spectra.

Chapter 17 DAPL Commands: BAVERAGE 135

Example

BAVERAGE (P1, 100, 5, P2)

Read 5 blocks of 100 values, average corresponding values in the blocks, and send
the 100 averages to pipe P2.

See Also
RAVERAGERAVERAGERAVERAGERAVERAGE, WAITWAITWAITWAIT

136 Chapter 17 DAPL Commands: BINTEGRATE

BINTEGRATE

Define a task that uses the trapezoidal method to compute the block integral of data.

BINTEGRATE (<in_pipe>, <out_pipe>, <blocksize>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<out_pipe>
Output pipe for the value of the integral.
WORD PIPE | LONG PIPE

<blocksize>
A number that represents the blocksize.
WORD CONSTANT

Description
BINTEGRATEBINTEGRATEBINTEGRATEBINTEGRATE computes the block integral of data in <in_pipe> by the trapezoidal
method. After each value is used in the integration, the value of the integral is sent to
<out_pipe>. Each group of <blocksize> values is processed independently. The
value of the integral is reset after each block.

The value of the integral is computed as half of the first value from <in_pipe> plus
half of the most recent value from <in_pipe>, plus the sum of the other values
from <in_pipe>. The first data value is consumed from each data block to
initialize the integration. To maintain equal input and output data rates, the value
zero, corresponding to the lower limit of integration, is placed in <out_pipe>,
followed by <blocksize> - 1 running integral values.

If the integral ever exceeds a signed 31-bit number, BINTEGRATEBINTEGRATEBINTEGRATEBINTEGRATE produces
erroneous results. In other words, the absolute value of the integral must never
exceed approximately 1 billion.

Chapter 17 DAPL Commands: BINTEGRATE 137

Example

BINTEGRATE (P1, P2, 100)

Integrate over groups of 100 values from pipe P1 and reset the integral value to zero
after every 100 values.

See Also
INTEGRATEINTEGRATEINTEGRATEINTEGRATE

138 Chapter 17 DAPL Commands: BMERGE

BMERGE

Define a task that merges equal-sized blocks of similar data.

BMERGE (<in_pipe_0>, ... , <in_pipe_n-1>, <blocksize>,
 <out_pipe>)

Parameters
<in_pipe_0>, ... <in_pipe_n-1>

Input data pipes.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<blocksize>
A number specifying the length of the data blocks.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output pipe for merged data blocks.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
BMERGEBMERGEBMERGEBMERGE reads blocks of length <blocksize> sequentially from pipes
<in_pipe_0>, <in_pipe_1>, � , <in_pipe_n-1>, and writes the blocks to
<out_pipe>. For data that occurs naturally in blocks, such as the outputs of WAITWAITWAITWAIT
or FFTFFTFFTFFT tasks, BMERGEBMERGEBMERGEBMERGE is more efficient than MERGEMERGEMERGEMERGE.

The data types must be the same for all input and output pipes. The maximum value
of <blocksize> is 8192.

BMERGEBMERGEBMERGEBMERGE should be used only when <in_pipe_0>, <in_pipe_1>, � ,
<in_pipe_n-1>, are filled at the same rate. If different volumes of data arrive in
different pipes, data will backlog in the pipes having higher data traffic, causing
processing to stall when a pipe has no capacity to accept more data. The BMERGEFBMERGEFBMERGEFBMERGEF
command should be used when data block arrivals are unbalanced or unpredictable.

Chapter 17 DAPL Commands: BMERGE 139

Example

BMERGE (P1, P2, P3, P4, 1024, $BINOUT)

Read blocks of 1024 WORD data values sequentially from pipes P1, P2, P3, and P4,
and send the blocks to the PC through $BINOUT.

See Also
BMERGEFBMERGEFBMERGEFBMERGEF, MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, NMERGENMERGENMERGENMERGE, SEPARATESEPARATESEPARATESEPARATE, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

140 Chapter 17 DAPL Commands: BMERGEF

BMERGEF

Define a task that merges blocks of data, adding a flag before each block.

BMERGEF (<in_pipe_0>, ... , <in_pipe_n-1>, <blocksize>,
 <out_pipe>)

Parameters
<in_pipe_0>

First input data pipe.
WORD PIPE | LONG PIPE

<in_pipe_n-1>
Last input data pipe.
WORD PIPE | LONG PIPE

<blocksize>
A number that represents the length of the data blocks.
WORD CONSTANT

<out_pipe>
Output pipe for merged blocks of data.
WORD PIPE | LONG PIPE

Description
BMERGEFBMERGEFBMERGEFBMERGEF merges blocks of data from <in_pipe_0>, <in_pipe_1>, � ,
<in_pipe_n-1> to <out_pipe>, adding an identifying flag before each block. For
blocked data, such as the outputs of WAITWAITWAITWAIT or FFTFFTFFTFFT tasks, BMERGEFBMERGEFBMERGEFBMERGEF is more efficient
than MERGEFMERGEFMERGEFMERGEF.

BMERGEFBMERGEFBMERGEFBMERGEF scans through <in_pipe_0>, <in_pipe_1>, � , <in_pipe_n-1>
sequentially. If a pipe contains at least <blocksize> values, BMERGEFBMERGEFBMERGEFBMERGEF writes an
identifying flag to <out_pipe>, then reads <blocksize> values and writes those
values to <out_pipe>. The identifying flag is a number from 0 to n-1.

When BMERGEFBMERGEFBMERGEFBMERGEF sends data to $BINOUT, a PC program should read the first item to
determine the source pipe and then read <blocksize> values. The size of
<blocksize> should not exceed 8192 for word pipes and 4096 for long pipes.

Chapter 17 DAPL Commands: BMERGEF 141

Example

BMERGEF (P1, P2, P3, P4, 1024, $BINOUT)

Read blocks of 1024 data values from pipes P1, P2, P3, and P4. As blocks are
available, add identifying flags, and send the blocks to the PC.

See Also
BMERGEBMERGEBMERGEBMERGE, MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

142 Chapter 17 DAPL Commands: BPRINT

BPRINT

Define a task that sends raw data to the PC in binary format.

BPRINT [(<in_pipe>)]

Parameters
<in_pipe>

Optional input data pipe.
WORD PIPE, LONG PIPE, FLOAT PIPE, DOUBLE PIPE

Description
BPRINTBPRINTBPRINTBPRINT sends data to the PC through communication pipe $BINOUT. The command
BPRINTBPRINTBPRINTBPRINT is used primarily when raw sample data must be transferred to the PC
without processing.

When no <in_pipe> is specified, BPRINTBPRINTBPRINTBPRINT transfers data for all channels sampled
by the currently active input sampling configuration. If only a subset of the data
channels are needed, <in_pipe> can specify an input channel pipe with a limited
channel range.

Data of any type can be transferred in this manner, but the $BINOUT pipe must be
configured to have the same data type as <in_pipe> . For the case of raw sample
data, the $BINOUT pipe requires no configuration changes.

Examples

BPRINT

Transfer all data sampled by the currently active IDEFINEIDEFINEIDEFINEIDEFINE configuration to the PC
in binary format.

BPRINT(IPIPES(0..5))
Transfer to the PC the data from the first six input channels sampled by the currently
active IDEFINEIDEFINEIDEFINEIDEFINE configuration.

See Also
FORMATFORMATFORMATFORMAT, MERGEMERGEMERGEMERGE, PRINTPRINTPRINTPRINT

Chapter 17 DAPL Commands: CABS 143

CABS

Define a task that computes the sum of the squares of complex data values.

CABS (<in_pipe1>, <in_pipe2>, <out_pipe> [, <val>])

Parameters
<in_pipe1>

First input data pipe for real-valued terms.
WORD PIPE

<in_pipe2>
Second input data pipe for imaginary-valued terms.
WORD PIPE

<out_pipe>
Output data pipe.
WORD PIPE

<val>
A value for scaling the sum of the squares.
WORD CONSTANT

Description
CABSCABSCABSCABS is an abbreviation for Complex ABsolute value Square. This is different from
the complex absolute value function without squaring found in most standard
mathematical libraries. If <in_pipe1> and <in_pipe2> contain the real and
imaginary parts of a complex number, <out_pipe> contains the scaled square of
the amplitude of the complex number.

CABSCABSCABSCABS reads one word value from <in_pipe1> and one word value from
<in_pipe2>. The sum of the squares is placed in <out_pipe>. If the <val>
parameter is specified, the sum of squares is divided by <val> before being sent to
<out_pipe>. This can be used to prevent the sum of squares from overflowing a
16-bit number. <val> must be positive.

Note: Mode 4 of FFTFFTFFTFFT is more efficient than mode 1 of FFTFFTFFTFFT followed by CABSCABSCABSCABS.

144 Chapter 17 DAPL Commands: CABS

Example

CABS (P1,P2,P3,1000)

Read complex values from pipes P1 and P2, compute the sum of squares, divide by
1000, and place the result in pipe P3.

See Also
ABSABSABSABS, FFTFFTFFTFFT, POLARPOLARPOLARPOLAR

Chapter 17 DAPL Commands: CALIBRATE 145

CALIBRATE

Calibrate the Data Acquisition Processor input sampling hardware.

CALIBRATE [<option>]

Parameter
<option>

Optional keyword to indicate storage mode for calibration results. May be STORE
or NOSTORE.

Description
For Data Acquisition Processor models that support self-calibration, the CALIBRATECALIBRATECALIBRATECALIBRATE
system command issues a DAPL RESETRESETRESETRESET and then initiates a Data Acquisition
Processor hardware calibration session. The calibration session may last a few
seconds. While the calibration is in progress, the DAPL interpreter is suspended
until the calibration is complete.

When the DAPL operating system is loaded, calibration values are loaded from the
onboard nonvolatile memory. If you want to store a new set of calibration values,
specify the option STORE on the CALIBRATECALIBRATECALIBRATECALIBRATE command line. This stores calibration
values to onboard nonvolatile memory. After calibration, the Data Acquisition
Processor will use the computed range and offset adjustments until the next time the
Data Acquisition Processor is powered up, or the next time that the DAPL operating
system is loaded. If you do not specify any option, the default option is NOSTORE.
Calibration values will not be stored in onboard nonvolatile memory.

As shipped from the factory, calibration values are already stored on the onboard
nonvolatile memory.

The onboard nonvolatile memory allows a limited number of write cycles, on the
order of a million. For repeated calibrations, use the NOSTORE option.

Example

CALIBRATE NOSTORE

Perform a self-calibration process, leaving calibration data in active memory but not
updating the calibration data image stored in nonvolatile memory.

146 Chapter 17 DAPL Commands: CALIBRATE

See Also
RESETRESETRESETRESET

Chapter 17 DAPL Commands: CHANGE 147

CHANGE

Define a task that scans input data for changes.

CHANGE (<in_pipe>, <trigger> [, <delta>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<trigger>
The trigger that is asserted when a change is detected.
TRIGGER

<delta>
An optional number that represents the minimum value of the change.
WORD CONSTANT

Description
CHANGECHANGECHANGECHANGE scans input data for changes in numeric value. Every time a change is
detected, <trigger> is asserted. If the optional numeric parameter, <delta>, is
present, the absolute value of the change must be greater than <delta> before
<trigger> is asserted.

The default value for <delta> is zero, meaning that any change is detected.

Examples

CHANGE (IPIPE5, T1)

Assert trigger T1 when the data from input channel pipe 5 change.

CHANGE (P1, T2, 1000)
Assert trigger T2 when consecutive data values in pipe P1 differ by more than 1000.

See Also
DLIMITDLIMITDLIMITDLIMIT, LIMITLIMITLIMITLIMIT, LOGICLOGICLOGICLOGIC

148 Chapter 17 DAPL Commands: CHANNELS

CHANNELS

Define the number of input channels in an input sampling configuration.

CHANNELS <nchannels>

Parameters
<nchannels>

The number of input channels to receive data.
WORD CONSTANT

Description
The CHANNELSCHANNELSCHANNELSCHANNELS command configures the number of input channels that will receive
input samples for a Data Acquisition Processor that samples individual signal pins
sequentially. An IDEFINEIDEFINEIDEFINEIDEFINE configuration needs to know the number of channels
before other configuration information can be processed, so the CHANNELSCHANNELSCHANNELSCHANNELS
command should appear as one of the first commands following the IDEFINEIDEFINEIDEFINEIDEFINE
command.

Ordinarily, all channels are assigned to signal pins by specifying <nchannels>
number of SETSETSETSET commands. Channels reserved by the CHANNELSCHANNELSCHANNELSCHANNELS command are
sampled and occupy memory whether or not an external signal pin is assigned by a
SETSETSETSET command.

The GROUPSGROUPSGROUPSGROUPS command is similar to the CHANNELSCHANNELSCHANNELSCHANNELS command, except that the
GROUPSGROUPSGROUPSGROUPS command configures sampling for Data Acquisition Processor models that
sample multiple signal pins simultaneously.

Examples

IDEFINE INP4
 CHANNELS 4
 SET IP0 D0
 SET IP1 D1
 SET IP2 D0
 SET IP3 D2
 TIME 25
END

Chapter 17 DAPL Commands: CHANNELS 149

Configure the input sampling to capture data for 4 channels, on a Data Acquisition
Processor model that samples signal pins individually. The total number of input
data channels is 4. Two channels sample the same signal source.

See Also
SETSETSETSET, GROUPSGROUPSGROUPSGROUPS, IDEFINEIDEFINEIDEFINEIDEFINE

150 Chapter 17 DAPL Commands: CLCLOCKING

CLCLOCKING

Set the channel list clocking mode of an input or output configuration.

CLCLOCKING <switch>

Parameters
<switch>

A keyword, either ON or OFF.

Description
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING sets the channel list clocking mode of an input configuration or an
output configuration. <switch> is ON or OFF. If the mode is ON, a positive clock
edge initiates a sampling sequence for a complete channel list. If the mode is OFF,
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING converts a single channel or channel group on the positive edge of the
clock. The default value is ON. See the Data Acquisition Processor hardware
documentation for more information about channel list clocking.

Note: For Data Acquisition Processor models that have simultaneous sampling, all
four samples in an input channel group are sampled simultaneously.

Example

CLCLOCKING OFF

Turn channel list clocking off.

See Also
CLOCKCLOCKCLOCKCLOCK, HTRIGGERHTRIGGERHTRIGGERHTRIGGER

Chapter 17 DAPL Commands: CLOCK 151

CLOCK

Select the source of the input or output configuration sample clock.

CLOCK <source>

Description
CLOCKCLOCKCLOCKCLOCK specifies the clock source used by an input configuration or an output
configuration. <source> is INTERNAL or EXTERNAL. The default <source> is
INTERNAL. The clock options are described in the hardware documentation.

Example

CLOCK EXTERNAL

Specify that the clock source is the external clock input pin.

See Also
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING, HTRIGGERHTRIGGERHTRIGGERHTRIGGER

152 Chapter 17 DAPL Commands: COMPRESS

COMPRESS

Define a task that encodes data in which changes occur infrequently.

COMPRESS (<in_pipe>, <n> [, <threshold>]*, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<n>
A positive constant, less than or equal to 16, specifying the number of data
streams read from <in_pipe>.
WORD CONSTANT

<threshold>
A vector, single number or sequence of numbers that represents the threshold
values for reporting changes.
WORD VECTOR | WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for encoded data blocks.
WORD PIPE

Description
COMPRESSCOMPRESSCOMPRESSCOMPRESS encodes sample data in which changes occur infrequently. COCOCOCOMPRESSMPRESSMPRESSMPRESS
can monitor a single data stream or a multiplexed data stream such as an input
channel pipe list. COMPRESSCOMPRESSCOMPRESSCOMPRESS takes data from <in_pipe> one value at a time, and
compares that value to the corresponding value previously reported for the same
channel. If the absolute difference is greater than or equal to the <threshold>
parameter value for that channel, a data block containing the new value is placed
into <out_pipe>. Otherwise the data value is discarded. Output data blocks are
always generated to report the first value from each input channel.

Chapter 17 DAPL Commands: COMPRESS 153

The first parameter <in_pipe> provides the data. The first parameter typically is an
input channel pipe with a channel list, but it can be a user-defined data pipe with a
single data channel, or any data pipe with multiplexed WORD data in the manner of
the MERGEMERGEMERGEMERGE command.

The second parameter <n> is a positive constant, less than or equal to 1024,
specifying the number of data channels to read from <in_pipe>. If <in_pipe> is
an input channel pipe list, <n> must be equal to the number of channels in the input
channel pipe list. For a single channel pipe or user-defined pipe with a data stream
that is not multiplexed, <n> must be 1. The data streams from the input pipe are
numbered 0 through <n>-1.

The threshold levels can be specified by a single WORD threshold value to be applied
to every channel, a vector of WORD values with one term in the vector for each input
channel, or a sequence of WORD constant or variable values with one value for each
input channel. Threshold values are specified in sequence, corresponding to
increasing channel numbers. Specifying a list of constant or variable values limits
the number of channels that the CCCCOMPRESSOMPRESSOMPRESSOMPRESS command can process to 16 or fewer.
Each <threshold> value must be nonnegative.

Each change report written to <out_pipe> contains three values. The first value is
a 16-bit integer from 0 to <n>-1, specifying the channel for which the level change
exceeded the threshold value. A zero indicates the first channel, a 1 indicates the
second channel, and so on. The second value is the new WORD data value for the
indicated channel. The last field is a 32-bit unsigned integer specifying the sample
number (timestamp) of the new value. The timestamp starts from 0 and increases by
one count for each group of <n> sample values read from the input data stream.

Examples

COMPRESS (P1, 1, 100, $binout)

Send a notification to the PC through the $binout pipe each time the level in pipe
P1 changes by more than 100.

VECTOR THRESH WORD = (64, 64, 1000)
COMPRESS (IPIPES(0,1,2), 3, 64, 64, 1000, P1)
COMPRESS (IPIPES(0,1,2), 3, THRESH, P1)

Examine the data from an input channel pipe with three channels, and send a change
information block to pipe P1 each time that the value from input channel 0 or input
channel 1 changes by more than 64 or that the value from input channel 2 changes
by more than 1000.

154 Chapter 17 DAPL Commands: COMPRESS

See Also
AVERAGEAVERAGEAVERAGEAVERAGE, LIMITLIMITLIMITLIMIT, MERGEMERGEMERGEMERGE

Chapter 17 DAPL Commands: CONSTANTS 155

CONSTANTS

Define a shared constant data element.

CONSTANTS <name> <type> = <value>
[, <name> <type> = <value>]*

CONST <name> <type> = <value>
[, <name> <type> = <value>]*

Parameters
<name>

An assigned name.

<type>
Keyword for data type of the new constant symbol.
WORD | LONG | FLOAT | DOUBLE

<value>
The value assigned to the constant.
WORD CONSTANT | WORD VARIABLE |
LONG CONSTANT | LONG VARIABLE |
FLOAT CONSTANT | FLOAT VARIABLE |
DOUBLE CONSTANT | DOUBLE VARIABLE

Description
CONSTANTSCONSTANTSCONSTANTSCONSTANTS creates symbols for representing numbers that have a consistent
meaning in a DAPL configuration. This command can be used to associate an
intuitive name with a number used repeatedly in a DAPL command list, allowing all
occurrences of the number to be reconfigured by changing only the CONSTANTSCONSTANTSCONSTANTSCONSTANTS
declaration.

The assigned <type> determines the numeric format and precision of the constant.
The <value> specifier assigns a value to the named constant. Floating point
variables and constants cannot be used to assign a value to a WORD or LONG constant,
but otherwise, any constant or variable is acceptable if it provides a value in the
representable range.

Unlike VARIABLESVARIABLESVARIABLESVARIABLES, for which values shared by tasks can change at any time, the
values of CONSTANTSCONSTANTSCONSTANTSCONSTANTS do not change while a DAPL configuration runs. While no
configurations are active, a constant symbol value can be reconfigured using the LETLETLETLET

156 Chapter 17 DAPL Commands: CONSTANTS

command. However, this must be done carefully. A constant symbol is evaluated
when items using it are initialized. For tasks, the evaluation occurs at task creation,
as the configuration starts. For other system elements, the evaluation occurs when
the configuration is downloaded to the DAPL system. See the LETLETLETLET command for
more information.

Note: For compatibility with earlier DAPL system versions, this command will also
accept declarations that do not specify a data type. In this case, a WORD or LONG data
type is selected, based on an analysis of the initializer value. The old command form
does not support floating point types, and hexadecimal expressions could be
interpreted in a manner inconsistent with other DAPL commands. Use of the old
command notation should be avoided.

Example

CONSTANT NCHANNELS WORD = 12

Define the symbol NCHANNELS to have the 16-bit value 12.

See Also
VARIABLESVARIABLESVARIABLESVARIABLES, LETLETLETLET, SDISPLAYSDISPLAYSDISPLAYSDISPLAY

Chapter 17 DAPL Commands: COPY 157

COPY

Define a task that transfers data from an input pipe to one or more output pipes.

COPY (<in_pipe>, <out_pipe_1>, ... , <out_pipe_n>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe_1> ... <out_pipe_n>
Output pipes for copied data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
COPYCOPYCOPYCOPY transfers each value from <in_pipe> to one or more output pipes. As many
as 64 output pipes are allowed. Each output pipe receives an independent copy of
the original data stream. There are no conversions applied to the data, hence the data
types of parameters <in_pipe>, <out_pipe_1> � <out_pipe_n> must all
match.

 The COPYCOPYCOPYCOPY command applies various buffering strategies to transfer as much data as
possible with the least overhead. This buffering can result in some increased latency
in configurations requiring fast real-time response.

Using COPYCOPYCOPYCOPY to generate an independent data stream allows different processing
configurations to share the same data. This gets around the restriction that all tasks
reading from a pipe must reside in the same processing procedure.

Example

COPY (P1, P2, P3, P4)

Copy each value from pipe P1 to pipes P2, P3, and P4.

See Also
COPYVECCOPYVECCOPYVECCOPYVEC, LCOPYLCOPYLCOPYLCOPY, MERGEMERGEMERGEMERGE

158 Chapter 17 DAPL Commands: COPYVEC

COPYVEC

Define a task that continuously copies data from a vector to a pipe.

COPYVEC (<vector>, <out_pipe>)

Parameters
<vector>

Input vector.
WORD VECTOR | LONG VECTOR

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE

Description
COPYVECCOPYVECCOPYVECCOPYVEC continuously copies data from a vector to a pipe. This is used to generate
repetitive waveforms for testing or for synchronous output. If the source vector is a
long vector, the output pipe must be a long pipe. If the source vector is a word
vector, the output pipe can be either a word pipe or a long pipe. Word data are sign
extended before being sent to a long output pipe.

Example

VECTOR V=(1,2,3,4)
COPYVEC (V, P)

Continuously place copies of the values 1, 2, 3, 4 into pipe P.

See Also
COPYCOPYCOPYCOPY, VECTORVECTORVECTORVECTOR

Chapter 17 DAPL Commands: CORRELATE 159

CORRELATE

Define a task that computes cross correlation between blocks of data using spectral
methods.

CORRELATE (<p1>, <p2>, <mode>, <n>, <lead>, <lag>, <window>,
 <p3>)

Parameters
<p1>

Input data pipe for the first block of samples.
WORD PIPE

<p2>
Input data pipe for the second block of samples.
WORD PIPE

<mode>
A parameter that is reserved for future expansion, and currently must be zero.
WORD CONSTANT

<n>
A parameter specifying the number of degrees of freedom for the correlation
estimate, and related to data block length.
WORD CONSTANT

<lead>
A parameter specifying the maximum time shift in the position direction, positive
number of samples.
WORD CONSTANT

<lag>
A parameter specifying the maximum time shift in the negative direction,
positive number of samples.
WORD CONSTANT

<window>
A parameter that specifies a window operation.
WORD VECTOR | window ID number

<p3>
Output pipe for correlation values.
WORD PIPE

160 Chapter 17 DAPL Commands: CORRELATE

Description
CORRELATECORRELATECORRELATECORRELATE computes cross correlation between blocks of data from <p1> and
<p2> using spectral methods. Correlation is a way of measuring a degree of
similarity between two data streams.

In general, to compute a value of correlation at a time shift of T samples, a block of
consecutive values are taken from <p1> and an equal sized block of consecutive
values are taken from <p2>, where the samples in the block from <p2> begin T
sampling intervals after the block from <p1>. If T is positive, the data from <p2> is
said to lag the data from <p1>, and if T is negative, the data from <p2> is said to
lead the data from <p1>. Corresponding pairs of values from the two data blocks are
multiplied, and the resulting terms are averaged.

A range for the time shift T is specified by the <lead> and <lag> parameters,
which are both non-negative. The time shift T is adjusted over the range from
<lead> to <lag>, and correlation is computed at each shift. For each block of data
from <p1>, <lead> + <lag> + 1 computed correlation values are placed in <p3>,
starting with the correlation for the greatest lead and continuing to the correlation for
the greatest lag.

For computational efficiency, CORRELATECORRELATECORRELATECORRELATE is calculated using a fast Fourier
transform. For each computation, <lead> + <lag> + <n> values are read from
<p1> and <lead> + <lag> + <n> values are read from <p2>. Because the
computation uses the fast Fourier transform, <lead> + <lag> + <n> must be a
power of two and must not be larger than the maximum FFTFFTFFTFFT size allowed. Also,
<lead> + <lag> must not exceed <n>. A larger value of <n> can improve
statistical significance when important data are spread relatively uniformly through
the data blocks, but introduces unnecessary noise into the computations when
important data occur in small localized groups.

<mode> is reserved for future expansion, and currently must be zero.

<window> specifies a window operation. The CORRELATECORRELATECORRELATECORRELATE command accepts the
same pre-defined window types as the FFTFFTFFTFFT command. A custom window may also
be defined using a VECTORVECTORVECTORVECTOR, except that the binary fractions specified in this vector
must be 32-bit binary fractions. See the description of the FFTFFTFFTFFT command for more
information about Fourier transforms and window operations.

Chapter 17 DAPL Commands: CORRELATE 161

A common application of CORRELATECORRELATECORRELATECORRELATE is finding the propagation time of a signal
through a system. In this case <p1> represents the input to the system, and <p2>
represents the output from the system. The parameter <lead> can be set to zero,
because the signal cannot arrive before it is sent. Then the lag time at which the
correlation is highest represents the time for a signal to propagate from input to
output of the system.

Example

CORRELATE (P1, P2, 0, 257, 127, 128, 0, P3)

Calculate correlations between blocks of 512 points taken from pipes P1 and P2,
producing output blocks of 256 points, with the first 127 results for lead, one result
for no lead or lag, and the last 128 results for lag. 257+127+128 = 512, so 512
points are consumed from each of pipes P1 and P2 to produce each group of 256
output values. Apply no window and place the results in pipe P3.

See Also
FFTFFTFFTFFT

162 Chapter 17 DAPL Commands: COSINEWAVE

COSINEWAVE

Define a task that generates cosine wave data.

COSINEWAVE (<amplitude>, <period>, <out_pipe>
[, <mod_type>, <mod1>[, <mod2>]])

Parameters
<amplitude>

A value that is one half of the peak to peak range of the output.
WORD CONSTANT | WORD VARIABLE

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for cosine wave data.
WORD PIPE

<mod_type>
A value that selects amplitude and/or frequency modulation of the output wave.
WORD CONSTANT

<mod1>
Pipe for first modulation signal.
WORD PIPE

<mod2>
Pipe for second modulation signal.
WORD PIPE

Description
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE generates cosine wave data and places the data in <out_pipe>.
<period> is the number of sample values in each wave cycle. The <amplitude> is
one half the peak to peak distance of the output wave and has a maximum value of
32767.

Note: The COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE is identical to SINEWAVESINEWAVESINEWAVESINEWAVE except for the phase of the
signal.

Chapter 17 DAPL Commands: COSINEWAVE 163

Three optional modulation parameters may be specified. <mod_type> selects
amplitude and/or frequency modulation of the output wave. The value of
<mod_type> must be one of the following:

1. amplitude modulation controlled by the data in <mod1>
2. frequency modulation controlled by the data in <mod1>
3. amplitude and frequency modulation controlled by the data in <mod1> and
<mod2>, respectively

<mod1> and <mod2> are pipes. One value is read from the pipe(s) for each value
output by COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE. Modulation values are interpreted as signed binary
fractions; they are multiplied by the base amplitude or frequency to obtain the
effective amplitude or frequency.

An alternative method for changing the amplitude or frequency of COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE
during execution uses a DAPL variable as the <amplitude> or <period>
parameter of COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE. This variable can be changed during execution using a
LETLETLETLET command. This is efficient, but cannot adjust the amplitude or frequency
continuously, and changes are detected and applied asychronously.

Example

COSINEWAVE (1000, 100, P2)

Generate a cosine wave with values ranging from -1000 to 1000, with a period of
100 samples.

See Also
SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE, TRIANGLETRIANGLETRIANGLETRIANGLE, WAVEFORMWAVEFORMWAVEFORMWAVEFORM

164 Chapter 17 DAPL Commands: COUNT

COUNT

Establish a fixed data block length for an input or output configuration.

COUNT <sample_count>

Parameters
<sample_count>

An integer that specifies the number of sampling or updating operations.
WORD CONSTANT | LONG CONSTANT

Description
A COUNTCOUNTCOUNTCOUNT command in an input configuration definition sets the number of input
samples the input configuration acquires. A COUNTCOUNTCOUNTCOUNT command in an output
configuration definition sets the number of output updates that the output
configuration provides. After the specified number of operations, the input or output
configuration suspends operation.

<sample_count> specifies the number of samples or updates in a block. Divide
<sample_count> by the number of input or output channel pipes to obtain the
number of times each pin is sampled or updated. <sample_count> must be an
integral multiple of the number of channel pipes, and must be at least 2. For Data
Acquisition Processor models that provide simultaneous sampling of multiple signal
lines, the <sample_count> must be an integral multiple of the number of channel
groups times the sampling group size.

Example

COUNT 100000

When the input configuration is started, the Data Acquisition Processor acquires
100000 samples and then stops.

See Also
CYCLECYCLECYCLECYCLE, HTRIGGERHTRIGGERHTRIGGERHTRIGGER

Chapter 17 DAPL Commands: CROSSPOWER 165

CROSSPOWER

Define a task that computes a crosspower spectrum for blocks of data.

CROSSPOWER (<p1>, <p2>, <mode>, <m>, <window>, <p3>, <p4>
 [, <p5>])

Parameters
<p1>

An input pipe that represents the input signal from the device under test.
WORD PIPE

<p2>
An input pipe that represents the output signal from the device under test.
WORD PIPE

<mode>
A parameter that is reserved for future expansion, and must be set to zero.
WORD CONSTANT

<m>
A value that represents the size of the transform.
WORD CONSTANT

<window>
A value that represents the window vector specification.
WORD CONSTANT | LONG VECTOR

<p3>
A output pipe that contains the real part of the crosspower spectrum.
LONG PIPE

<p4>
A output pipe that contains the imaginary part of the crosspower spectrum.
LONG PIPE

<p5>
An optional pipe that contains the autopower spectrum of <p1>.
LONG PIPE

Description
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER computes a crosspower spectrum and autopower spectrum for blocks
of data. At each frequency, the crosspower spectrum of <p1> and <p2> is computed

166 Chapter 17 DAPL Commands: CROSSPOWER

by multiplying the complex conjugate of the value of the FFT of <p1> and the value
of the FFT of <p2>. At each frequency, the autopower spectrum of <p1> is
computed by multiplying the complex conjugate of the value of the FFT of <p1>
and the value of the FFT of <p1>. The autopower spectrum is just the power
spectrum of <p1>; this also can be calculated using FFTFFTFFTFFT.

Pipes <p1> and <p2> are inputs to CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER and typically represent the input
signal and the output signal from a device under test. Pipes <p3> and <p4> are
outputs of CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER and contain the real and imaginary parts of the crosspower
spectrum of <p1> and <p2>. <p5> is an optional pipe. This is an output from
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER that contains the autopower spectrum of <p1>. The autopower
spectrum always is real.

<mode> is reserved, and must be set to zero.

<m> and <window> have the same meaning as for the FFTFFTFFTFFT command. <m> is the size
of the transform. <window> is the window vector specification. See the FFTFFTFFTFFT
command for details. A custom window vector may be specified, but the binary
fractions must be in 32-bit binary fraction.

CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER is used in conjunction with TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 for calculating the transfer
function of a �black box.� The advantage of using crosspower spectrum and
autopower spectrum is that these may be averaged to reduce noise.

Example

CROSSPOWER (P1, P2, 0, 10, 0, P3, P4, P5)

Calculate crosspower spectrum and autopower spectrum of P1 and P2 on blocks of
1024 points with a rectangular window. Returns the real and imaginary parts of the
crosspower spectrum in P3 and P4, and the autopower spectrum of P1 in P5.

See Also
FFTFFTFFTFFT

Chapter 17 DAPL Commands: CTCOUNT 167

CTCOUNT

Define a task that extends a 16-bit event count to 32 bits.

CTCOUNT (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Input pipe for word data.
WORD PIPE

<out_pipe>
Output pipe for long data.
WORD PIPE | LONG PIPE

Description
CTCOUNTCTCOUNTCTCOUNTCTCOUNT is used with the Counter Timer Board to convert the 16-bit count provided
by a Counter Timer Board into a 32-bit count. This allows DAPL to provide 32-bit
counter capabilities using 16-bit counter hardware.

CTCOUNTCTCOUNTCTCOUNTCTCOUNT converts word data to long data, assuming that the input values represent
the low-order words of a sequence of non-decreasing long word values. For correct
operation, the input to the Counter Timer Board is limited to a frequency with less
than 65535 pulses in every period of length T, where T is the time between
successive acquisitions of a counter/timer input.

If <out_pipe> is a word pipe, CTCOUNTCTCOUNTCTCOUNTCTCOUNT is equivalent to COPYCOPYCOPYCOPY.

Example

CTCOUNT (IPIPE5, P1)

Read data from a Counter Timer Board from input channel pipe 5, convert it to long
word counts, and write the results to long pipe P1.

See Also
CTRATECTRATECTRATECTRATE

168 Chapter 17 DAPL Commands: CTRATE

CTRATE

Define a task that computes the arrival rate of timed events.

CTRATE (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<out_pipe>
Output data pipe
WORD PIPE | LONG PIPE

Description
CTRATECTRATECTRATECTRATE is used with the Counter Timer Board to convert the 16-bit count provided
by the Counter Timer Board into differences that represent rate or frequency data.

CTRATECTRATECTRATECTRATE calculates differences of successive event counts, assuming that the input
values represent the low-order words of a sequence of non-decreasing long word
values. For correct operation, the input to the Counter Timer Board is limited to a
frequency that allows the Data Acquisition Processor to determine the correct 32-bit
count. This means that the input must have less than 32767 or 65535 pulses in every
period of length T, depending on whether pipe <out_pipe> is a word pipe or a long
pipe, where T is the time between successive acquisitions of a counter/timer input.

Example

CTRATE (IPIPE5, P1)

Read data from a Counter Timer Board from input channel pipe 5, convert to
frequency data, compute the number of events in each block, and write the results to
word pipe P1.

See Also
CTCOUNTCTCOUNTCTCOUNTCTCOUNT

Chapter 17 DAPL Commands: CYCLE 169

CYCLE

Specify that an output configuration generates a repetitive pattern.

CYCLE <n>

Parameters
<n>

A value that specifies the number of output values sent to each output channel
pipe before repeating.
WORD CONSTANT | LONG CONSTANT

Description
CYCLECYCLECYCLECYCLE specifies that an output configuration defines a repetitive pattern. <n>
specifies the number of output values sent to each output channel pipe before
repeating.

<n> can take any value greater than 0 up to the maximum memory space available.

The units of CYCLECYCLECYCLECYCLE are different from the units of other output configurations
commands, such as COUNTCOUNTCOUNTCOUNT. CYCLECYCLECYCLECYCLE specifies the number of channel lists processed
while COUNTCOUNTCOUNTCOUNT specifies the number of channels processed.

Important: A task that writes to an output channel pipe will suspend when the number
of samples required for an output CYCLECYCLECYCLECYCLE values have been written to the pipe.

Example

CYCLE 1024

Specify that output waveforms repeat after 1024 values.

See Also
WAVEFORMWAVEFORMWAVEFORMWAVEFORM

170 Chapter 17 DAPL Commands: DACOUT

DACOUT

Define a task that writes data asynchronously to a digital-to-analog converter.

DACOUT (<source>, <dac_number>)

Parameters
<source>

Source pipe or variable.
WORD PIPE | WORD VARIABLE

<dac_number>
A value that represents the selected digital-to-analog converter.
WORD CONSTANT | WORD VARIABLE

Description
DACOUTDACOUTDACOUTDACOUT reads from <source> and writes to a digital-to-analog converter.
<dac_number> selects a digital-to-analog converter. Valid numbers for onboard
DACs are zero and one. If analog output expansion hardware is connected,
<dac_number> is two for analog output expansion port 0, three for output
expansion port 1, and so on.

DACOUTDACOUTDACOUTDACOUT updates digital-to-analog converters asynchronously, so updates do not
occur at evenly spaced intervals. Synchronous output updating is provided by output
configurations. Note that DACOUTDACOUTDACOUTDACOUT must not be used on an output that is actively
being used for synchronous output.

Note: The voltages on the digital-to-analog converters remain unchanged after
STOPSTOPSTOPSTOP and RESETRESETRESETRESET commands.

Chapter 17 DAPL Commands: DACOUT 171

Examples

DACOUT (P1, 0)

Read values from pipe P1 and send these values to DAC 0.

DACOUT (V, 1)

Send the value of V to DAC 1 repeatedly so that the output voltage of DAC 1 tracks
the value of V.

See Also
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT, ODEFINEODEFINEODEFINEODEFINE

172 Chapter 17 DAPL Commands: DECIBEL

DECIBEL

Define a task that converts data into decibel units.

DECIBEL (<in_pipe>, <reference>, <scale>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<reference>
An input value corresponding to 0 dB.
WORD CONSTANT | LONG CONSTANT

<scale>
An integer that represents the scale factor for the output.
WORD CONSTANT

<out_pipe>
Output pipe for decibel data.
WORD PIPE

Description
DECIBELDECIBELDECIBELDECIBEL converts data from <in_pipe> to decibel units. <reference> is the
input value corresponding to 0 dB. In many applications, this is 32767 for word
pipes and 2147483647 for long pipes.

<scale> is a scale factor for the output. <scale> must be an integer between 1 and
100, and normally is 1, 10, or 100. With <scale> equal to 100, for example, 3.25
dB is output as the number 325. <scale> can be used with the decimal point
specification of FORMATFORMATFORMATFORMAT to produce formatted decibel output with zero, one, or two
decimal places of accuracy.

The output of a DECIBELDECIBELDECIBELDECIBEL task is given by

20 * <scale> * log10 (X/<reference>),

where X is the value of the input. Note that the output range over all possible inputs
and all possible decibel reference values is approximately -186.6 to +186.6 decibels.

Chapter 17 DAPL Commands: DECIBEL 173

Even when <scale> equals 100, the computed output always fits into a word output
pipe.

The decibel computation is defined only for positive input values. The DECIBELDECIBELDECIBELDECIBEL
command generates a special output value of -32768 for a negative or zero input
value.

Example

DECIBEL (P1, 32767, 100, P2)

Read values from pipe P1, convert data to decibel units (a value of 32767 is 0 dB),
multiply decibel units by 100, and write results to pipe P2.

174 Chapter 17 DAPL Commands: DELTA

DELTA

Define a task that computes differences between successive data values.

DELTA (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<out_pipe>
Output pipe for difference data.
WORD PIPE | LONG PIPE

Description
DELTADELTADELTADELTA reads from <in_pipe>, computes the forward differences of the data, and
puts the result values into <out_pipe>. The difference is computed by subtracting
the previous value from <in_pipe> from the current value from <in_pipe>. One
difference value is generated for each data value read from <in_pipe>, with the
exception of the first value.

Differences can be considered a low order approximation for a derivative, under
suitable scaling to account for the length of the sampling intervals.

Note: Differences between corresponding values in two separate data streams can
be computed using DAPL expressions.

Example

DELTA (P1,P2)

Read data from P1, compute the forward difference, and place the result in P2.

See Also
INTEGRATEINTEGRATEINTEGRATEINTEGRATE

Chapter 17 DAPL Commands: DEXPAND 175

DEXPAND

Define a task that encodes multiple channels for synchronized output expansion.

DEXPAND (<in_pipe>, <output_vector>, <out_pipe> [, <type>])

Parameters
<in_pipe>

Input word pipe.
WORD PIPE

<output_vector>
A vector containing a list of the output pins to which data should be sent.
VECTOR

<out_pipe>
Output channel pipe.
WORD PIPE

<type>
A parameter specifying the type of output expansion board.
WORD CONSTANT

Description
DEXPANDDEXPANDDEXPANDDEXPAND encodes data and address information for transfer to a digital or analog
expansion board through the Data Acquisition Processor digital port.
<output_vector> is a vector containing a list of the expanded output ports to
which data should be sent. <in_pipe> is a word pipe that contains data to be sent.
Data must appear in the order of the list in <output_vector>. For each data value
read from <in_pipe>, four encoded words specifying the output pin number and
the data are written to <out_pipe>, which is typically an output channel pipe
assigned to digital output port B0.

The <output_vector> specifies a list of output ports. The port numbers must be
within the range 0 through 63 as supported by the expansion boards. See the
expansion board manual for more information about port addressing.

The <type> parameter specifies the type of output expansion board, either digital or
analog. A value of 0 specifies a digital output expansion board. A value of 1
specifies an analog output expansion board. DEXPANDDEXPANDDEXPANDDEXPAND responds to the OPTIONSOPTIONSOPTIONSOPTIONS
BPOUTPUT setting by encoding analog data streams differently for unipolar and

176 Chapter 17 DAPL Commands: DEXPAND

bipolar operation. If the parameter is omitted, both digital and analog output
expansion cards will work correctly under the default BPOUTPUT=ON option. For
safety, the recommended practice is to always specify the <type> parameter.

DEXPANDDEXPANDDEXPANDDEXPAND is used only for synchronous output expansion. The OUTPORTOUTPORTOUTPORTOUTPORT command
configures asynchronous output expansion. Asynchronous output to the digital
output port is not available when DEXPANDDEXPANDDEXPANDDEXPAND is used.

Chapter 17 DAPL Commands: DEXPAND 177

Note: The encoding generates a data stream in groups of four WORD values. It is
possible to stop an output configuration in the middle of a four word output
expansion sequence. If another output configuration then is started, the first value
written to the expanded output port may be incorrect.

Example

OPTIONS BPOUTPUT=ON
...
DEXPAND(P1, (4, 5, 6, 7), OPIPE0, 1)

Prepare multiplexed data from pipe P1 for synchronized analog updating. Encode
the data to send it through the digital port to converter ports 4, 5, 6, and 7 on the
expansion card. Transfer the data to the Data Acquisition Processor�s digital
connector through output channel pipe OPIPE0. Specify that the expansion is analog
so that the encoding properly takes the bipolar output mode into account.

See Also
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT, DACOUTDACOUTDACOUTDACOUT, ODEFINEODEFINEODEFINEODEFINE, OPTIONSOPTIONSOPTIONSOPTIONS, OUTPORTOUTPORTOUTPORTOUTPORT

178 Chapter 17 DAPL Commands: DIGITALOUT

DIGITALOUT

Define a task that sends data asynchronously to a digital output port.

DIGITALOUT (<source>, <port_number>)

Parameters
<source>

Source pipe or variable.
WORD PIPE | WORD VARIABLE

<port_number>
The digital output port.
WORD CONSTANT | WORD VARIABLE

Description
DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT reads data from <source> and sends the data to a digital output port.
<port_number> specifies the digital output port. This parameter should be set to
zero to access a Data Acquisition Processor onboard digital output port. If digital
output expansion hardware is connected, <port_number> may be greater than
zero.

DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT updates the digital output port asynchronously, so updates do not
occur at evenly spaced intervals. Synchronous output is provided by output
configurations. Note that DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT must not be used when synchronous digital
output is active.

Note: The values of the digital outputs remain unchanged after STOPSTOPSTOPSTOP and RESETRESETRESETRESET
commands.

Chapter 17 DAPL Commands: DIGITALOUT 179

Examples

DIGITALOUT (P2,0)

Read data from pipe P2 and send the data to the digital output port.

DIGITALOUT (V, 0)

send the value of word variable V to the digital output port repeatedly, so that the
output of the digital output port tracks the value of V.

See Also
DACOUTDACOUTDACOUTDACOUT, ODEFINEODEFINEODEFINEODEFINE

180 Chapter 17 DAPL Commands: DISPLAY

DISPLAY

Display selected system information.

DISPLAY <item>

DISP <item>

D <item>

Parameters
<item>

One of the following keywords:

ALLSYMBOLSALLSYMBOLSALLSYMBOLSALLSYMBOLS | COMMANDSCOMMANDSCOMMANDSCOMMANDS | CPIPESCPIPESCPIPESCPIPES | DVARIANTDVARIANTDVARIANTDVARIANT |
EMSGEMSGEMSGEMSG | ENUMENUMENUMENUM | HMEMORYHMEMORYHMEMORYHMEMORY | ICOUNTICOUNTICOUNTICOUNT |
MEMORYMEMORYMEMORYMEMORY | OCOUNTOCOUNTOCOUNTOCOUNT | OEMIDOEMIDOEMIDOEMID | OPTIONSOPTIONSOPTIONSOPTIONS |
OUTPORTOUTPORTOUTPORTOUTPORT | OVERFLOWQOVERFLOWQOVERFLOWQOVERFLOWQ | PIPESPIPESPIPESPIPES | PROCEDURESPROCEDURESPROCEDURESPROCEDURES |
SYMBOLSSYMBOLSSYMBOLSSYMBOLS | TMEMORYTMEMORYTMEMORYTMEMORY | TRIGGERSTRIGGERSTRIGGERSTRIGGERS | UNDERFLOWQUNDERFLOWQUNDERFLOWQUNDERFLOWQ |
VARIABLESVARIABLESVARIABLESVARIABLES | VECTORSVECTORSVECTORSVECTORS | WMSGWMSGWMSGWMSG | WNUMWNUMWNUMWNUM |

Description
DISPLAY prints system information by formatting a brief report and transmitting it
through the $SYSOUT communication pipe. The <item> parameter selects the
information to display. Some item names have abbreviations, typically two or three
characters.

The following list provides additional information about each of the display options.

ALLSYMBOLS
 DISPLAY ALLSYMBOLS lists information about all user-defined and reserved

system names, such as the names assigned to variables and pipes.

COMMANDS
 DISPLAY COMMANDS lists information about the custom commands that have been

loaded.

CPIPES
 DISPLAY CPIPES lists information about user-defined and pre-defined

communication channel pipes.

Chapter 17 DAPL Commands: DISPLAY 181

DVARIANT
 DISPLAY DVARIANT displays the variant of the DAPL software system. Most

software systems will display DAPL2000/STANDARD. Special OEM configurations
will display DAPL2000/KERNEL.

EMSG
 DISPLAY EMSG displays the last error message. An empty line is generated if

there are no errors recorded in the system error queue. Displaying a software error
message clears the error queue, but displaying hardware error messages does not
clear it.

ENUM
 DISPLAY ENUM prints a number indicating whether a system error has occurred

since the last DISPLAY ENUM command. If the number is zero, no error has
occurred. If the number is nonzero, an error has occurred. Nonzero numbers are
error codes, which are described in Chapter 18. Displaying the value of ENUM
resets the error flag to zero. The occurrence of a buffer overflow or underflow
does not affect the error flag.

HMEMORY
 DISPLAY HMEMORY displays the number of bytes of shared heap memory and total

available data memory.

ICOUNT
 DISPLAY ICOUNT prints the current input configuration sample count.

MEMORY
 DISPLAY MEMORY prints the number of bytes currently in use and the total

memory available.

OCOUNT
 DISPLAY OCOUNT prints the current output configuration update count.

OEMID
 DISPLAY OEMID displays an OEM identification number. This option is used only

for custom OEM versions of DAPL.

OPTIONS
 DISPLAY OPTIONS prints the state of all of the configuration options selectable

using the OPTIONSOPTIONSOPTIONSOPTIONS command. The options are displayed in a variable number of
lines, as a sequence of expressions in the form �keyword=value� separated by a
variable number of blanks. The keywords can appear in any order.

OUTPORT

182 Chapter 17 DAPL Commands: DISPLAY

 DISPLAY OUTPORT prints the current configuration of the output ports.

OVERFLOWQ
 DISPLAY OVERFLOWQ indicates whether a sampling overflow has occurred. The

command prints a long integer. If the number is zero, no loss of data has occurred.
If the number is nonzero, it is the sample number of the first sample that was lost
when the internal buffers overflowed. The number is the sample count from the
input configuration most recently started by a STARTSTARTSTARTSTART command. See Chapter 12.

PIPES
 DISPLAY PIPES prints the status of all the defined pipes including each pipe�s

type and number of items currently stored in the pipe. Note that if several tasks
read from a pipe, the number of entries indicates the number of samples that have
not yet been processed by all tasks reading data from the pipe.

PROCEDURES
 DISPLAY PROCEDURES lists the names, type, and activity of all input, output, and

processing configurations that are defined.

SYMBOLS
 DISPLAY SYMBOLS prints all user-defined names known to the system.

TMEMORY
 DISPLAY TMEMORY (terse memory) gives a condensed version of the
DISPLAY MEMORYDISPLAY MEMORYDISPLAY MEMORYDISPLAY MEMORY information. This command prints a single integer representing
the percentage of memory currently in use. If this number is close to 100, almost
all available memory is allocated for buffer and data sample storage.

TRIGGERS
 DISPLAY TRIGGERS displays the names, operating modes, and properties of all

defined software triggers.

UNDERFLOWQ
 DISPLAY UNDERFLOWQ indicates whether an updating underflow has occurred.

The command prints a long integer. If the number is zero, underflow has not
occurred. If the number is nonzero, the number is the sample number at which
underflow occurred. The number is the update count from the output configuration
most recently started by a STARTSTARTSTARTSTART command. See Chapter 12.

VARIABLES
 DISPLAY VARIABLES displays the names, data types and current values of all

shared variables.

VECTORS

Chapter 17 DAPL Commands: DISPLAY 183

 DISPLAY VECTORS displays the names, data types and lengths of user-defined
vectors.

WMSG
 DISPLAY WMSG prints the last warning message. The message is cleared after it is

displayed.

WNUM
 DISPLAY WNUM prints a number indicating whether a system warning has occurred

since the last DISPLAY WNUM command. If the number is zero, no warning has
occurred. If the number is nonzero, a warning has occurred. Nonzero numbers are
warning codes, which are described in Chapter 18. Displaying the value of WNUM
resets the warning flag to zero. The occurrence of a buffer overflow or underflow
does not affect the warning flag.

See Also
SDISPLAYSDISPLAYSDISPLAYSDISPLAY

184 Chapter 17 DAPL Commands: DLIMIT

DLIMIT

Define a task that detects data change events.

DLIMIT (<in_pipe>, <region1>, <trigger> [,<region2>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<region1>
A specification for the triggering condition.
REGION.

<trigger>
The trigger that is asserted whenever a slope difference satisfying <region1> is
found.
TRIGGER

<region2>
An optional parameter that provides trigger hysteresis.
REGION

Description
DLIMITDLIMITDLIMITDLIMIT computes differences between consecutive data values. When a difference
satisfies the <region1> condition, <trigger> is asserted.

<region2> is an optional region specification that provides trigger hysteresis. After
the trigger is asserted, no subsequent trigger events are reported while differences
between consecutive values satisfy the <region2> condition.

Specifying <region2> prevents multiple triggering on single events when a signal
change covers more than one sample; this is required in most applications.
<region1> usually is the same as <region2>, although this is not required. See
Chapter 14 for more details about regions.

The two limit values for a REGION can be variable. The location within a data
stream where change to a REGION variable takes effect is indeterminate because
variable changes are not synchronized with task processing. The variable change can
appear to be shifted either forward or backward in time by an unpredictable number
of sample positions.

Chapter 17 DAPL Commands: DLIMIT 185

Examples

DLIMIT (IP5, INSIDE,100,200, T2, INSIDE,100,200)

Scan input pipe 5 for differences between 100 and 200; once a trigger is asserted, no
triggers are reasserted until a difference not between 100 and 200 is detected.

DLIMIT (P1, OUTSIDE -20,20, T1, OUTSIDE -20,20)

Scan P1 for differences less than -20 or greater than 20; after a trigger is asserted,
the trigger is not reasserted until a difference less than the range -20 to 20 is
detected.

See Also
CHANGECHANGECHANGECHANGE, LIMITLIMITLIMITLIMIT, LOGICLOGICLOGICLOGIC, PEAKPEAKPEAKPEAK

186 Chapter 17 DAPL Commands: EDIT

EDIT

Modify input configurations and output configurations.

EDIT <proc_name> <proc_command>

ED <proc_name> <proc_command>

Modify com pipes.

EDIT <cpipe_name> <cpipe_parameters>

ED <cpipe_name> <cpipe_parameters>

Parameters
<proc_name>

The name of the input or output configuration to change.

<proc_command>
A configuration command as it would appear in an input configuration or output
configuration.

<cpipe_name>
The name of the communications pipe to change.

<cpipe_parameters>
Communications pipe configuration parameters as they would appear in a CPIPECPIPECPIPECPIPE
command.

Description
EDITEDITEDITEDIT modifies an input configuration, output configuration, or communications
pipe.

For input or output configurations, the <proc_command> has the same form as a
configuration command in the original input or output configuration. For input
configurations, <proc_command> can be a SETSETSETSET, TIMETIMETIMETIME or COUNTCOUNTCOUNTCOUNT command. For
output configurations, <proc_command> can be a SETSETSETSET, TIMETIMETIMETIME, COUNTCOUNTCOUNTCOUNT, CYCLECYCLECYCLECYCLE or
OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT command. See the command references pages for information about
these individual command types.

Chapter 17 DAPL Commands: EDIT 187

For a communications pipe, <cpipe_parameters> can be BLOCKING = <num> or
WIDTH=LONG|WORD|BYTE|FLOAT. See the CPIPECPIPECPIPECPIPE command for more information
about these specifications.

The EDITEDITEDITEDIT command can only change a configuration or com pipe when it is
inactive. In particular, the data type of a communications pipe can be changed only
when the pipe is empty.

Examples

EDIT INPR SET IP4 S3 10

Change input pipe 4 of configuration INPR to input S3 with a gain of 10.

EDIT A TIME 1000

Change the update time of output configuration A to 1 millisecond per update.

EDIT $BINOUT WIDTH=LONG

Change the width of $BINOUT to long for sending long values to the PC.

See Also
CPIPECPIPECPIPECPIPE, ERASEERASEERASEERASE, IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE, RESETRESETRESETRESET

188 Chapter 17 DAPL Commands: EMPTY

EMPTY

Flush all data from one or more pipes.

EMPTY <pipe_name> [, <pipe_name>]*

Parameters
<pipe_name>

The pipe from which data are flushed.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
EMPTYEMPTYEMPTYEMPTY flushes all data from one or more pipes.

Only user-defined pipes and output communications pipes can be emptied. Input
communications pipes like $SYSIN and $BININ cannot be emptied.

Example

EMPTY P1,P2

Flush pipes P1 and P2.

See Also
ERASEERASEERASEERASE, RESETRESETRESETRESET, STOPSTOPSTOPSTOP

Chapter 17 DAPL Commands: END 189

END

Terminate an input, output, or processing configuration definition.

END

Description
The ENDENDENDEND command terminates a group of statements that define an input sampling,
output updating, or processing configuration.

Example

PDEFINE A
 ...
END

End the definition mode for defining the processing procedure A.

See Also
IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE, PDEFINEPDEFINEPDEFINEPDEFINE, STOPSTOPSTOPSTOP

190 Chapter 17 DAPL Commands: ERASE

ERASE

Delete user-defined symbols.

ERASE <symbol> [, <symbol>]*

Parameters
<symbol>

User-defined symbol or list of symbols.

Description
ERASEERASEERASEERASE deletes a user-defined symbol or list of symbols so that the symbol or
symbols can be redefined. ERASEERASEERASEERASE accepts any named symbols except those for
communication pipes. When a symbol is deleted, it is removed from memory.

Erasing the symbol for a downloaded command makes the command unavailable.
Erasing the module containing one or more downloaded commands removes all
commands within that module from memory.

Example

ERASE TCOM

Remove the trigger pipe named TCOM.

See Also
RESETRESETRESETRESET, EDITEDITEDITEDIT

Chapter 17 DAPL Commands: EXTRACT 191

EXTRACT

Define a task that extracts a single bit from input data.

EXTRACT (<in_pipe>, <bit_num>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<bit_num>
A value that selects the bit to extract.
WORD CONSTANT

<out_pipe>
Output pipe for the extracted data bit.
WORD PIPE

Description
EXTRACTEXTRACTEXTRACTEXTRACT extracts a single bit from the input data. <bit_num> selects the bit to
extract. Bit 0 is the least significant bit and bit 15 is the most significant bit. Zero or
one is placed in <out_pipe>, depending whether the extracted bit is zero or one.

<input_pipe> typically contains data from the digital input port.

Similar results can be obtained using a DAPL expression � shift the contents of the
input pipe right by <bit_num> values and �AND� the result with the number 1. For
example, the following DAPL expression extracts the fifth binary bit from data in
pipe P1:

P2 = (P1 >> 4) & 1

Example

EXTRACT (IPIPE5, 7, P1)

Read data from input channel pipe 5, extract bit 7 of from each value, and write the
result to pipe P1.

192 Chapter 17 DAPL Commands: FFT

FFT

Define a task that calculates fast Fourier transforms of blocks of data.

FFT (<mode>, <m>, <window>, <pipeinR> [, <pipeinI>] ,
 <pipeoutR> [, <pipeoutI>])

Parameters
<mode>

A number in the range 0 to 6 that selects the operating mode of the transform.
WORD CONSTANT

<m>
A number that determines the size of a block of input data.
WORD CONSTANT

<window>
A constant or a vector specifying the window operation used by the transform.
WORD CONSTANT |
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<pipeinR>,<pipeinI>,<pipeoutR>,<pipeoutI>,
Data input and output pipes, according to the operating mode.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
An FFTFFTFFTFFT task calculates a Discrete Fourier Transform of data blocks using a Fast
Fourier Transform algorithm.

The internal precision of the calculations depends on the type of input data
provided:

� 16-bit fixed point (WORD) 32 bit internal
� 32-bit fixed point (LONG) 64 bit internal
� 32-bit floating point (FLOAT) 64 bit internal
� 64-bit floating point (DOUBLE) 64 bit internal

The floating point unit (FPU) of the processor is used extensively for LONG, FLOAT
and DOUBLE data types. Most applications that need transforms for these data types
will need a Data Acquisition Processor model with hardware FPU support. The
FLOAT and DOUBLE data types use the same internal representation, and apply the

Chapter 17 DAPL Commands: FFT 193

same methods, so they differ only in the representation and transfer of their input
and output data.

The <mode> parameter determines the manner in which the command operates: data
requirements for input and output pipes, transform direction, and the post-transform
processing applied to the output data. The first four operating modes provide
transforms without post-processing operations. The transforms can be applied in the
forward direction (time domain to frequency domain) or in the reverse direction
(frequency domain to time domain). The differences affect the phase and scaling of
terms.

The following table summarizes these modes and their requirements for input and
output data pipes.

FFT Modes without Data Post-Processing
Description <pipeinR> <pipeinI> <pipeoutR> <pipeoutI>

Mode 0
 (Forward
 Real in, complex
 out)

WORD
LONG
FLOAT
DOUBLE

 WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

Mode 1
 (Forward
 Complex in,
complex out)

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

Mode 2
 (Reverse
 Complex in, real
 out)

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

Mode 3
 (Reverse
 Complex in,
complex out)

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

The input data are provided in one or two data pipes, <pipeinR> and <pipeinI>.
For most applications, the data derive from measurements of real processes, so only
the real-valued data from pipe <pipeinR> are needed. For some other applications,
<pipeinI> is needed to provide imaginary or quadrature terms. Omit parameter
<pipeinI> when it is not needed.

194 Chapter 17 DAPL Commands: FFT

These modes produce complex output for either real or complex input, with the
resulting data blocks equal in length to the input data blocks. However, it is possible
that the resulting imaginary terms contain no information when certain data
symmetries are present in the complex input data. For this special case, the
imaginary output terms can be suppressed with no loss of information using
<mode>=2. Omit parameter <pipeoutI> from the parameter list when it is not
needed.

The remaining three operating modes apply post-processing operations that combine
terms to make analysis easier. Processed results are returned, rather than the raw
transform data. The post-processing operations are meaningful only for the case of
forward transforms of real valued inputs, so the parameter <pipeinI> is not used.
Transforms of real data result in output blocks with symmetry properties such that
no new information appears in the second half of the data. To save time and storage,
the redundant data are omitted during post processing, and the processed output
blocks are half as long as the original input blocks. The output processing options
are:

� Magnitude. Terms for each frequency are squared and summed, then the square
root of this sum is taken. The magnitude is represented at the same precision as the
original data.

� Magnitude and angle. The magnitude term is the same as above. In addition, the
ratio of the real and imaginary terms is analyzed to determine the phase angle
associated with the frequency.

� Power. Basically, the same thing as magnitude but leaving off the square root
operation. Until support for 64 bit integer data is available, special care must be
taken to scale LONG data so that results are representable in a 32-bit fixed point
form.

Chapter 17 DAPL Commands: FFT 195

FFT Modes with Data Post-Processing
Description <pipeinR>

(signal)
<pipeinI> <pipeoutR>

(power or
magnitude)

<pipeoutI>
(angle)

Mode 4
 (Forward, real in
 Output = power
 density)

WORD
LONG
FLOAT
DOUBLE

 LONG
LONG *
FLOAT
DOUBLE

Mode 5
 (Forward, real in
 Output =
magnitude)

WORD
LONG
FLOAT
DOUBLE

 WORD
LONG
FLOAT
DOUBLE

Mode 6
 (Forward, real in
 Outputs =
magnitude
 and angle)

WORD
LONG
FLOAT
DOUBLE

 WORD
LONG
FLOAT
DOUBLE

WORD
LONG
FLOAT
DOUBLE

* Use caution to avoid saturated large values.

For all operating modes, parameter <m> indirectly specifies the size of the input data
blocks. The lengths of the data blocks are a power of 2, and the actual size is 2 to the
power of <m> as summarized below.

<m> block size
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384

The <window> parameter is a constant or a vector specifying the window operation
used by the transform. A window operation is represented by a vector that multiplies

196 Chapter 17 DAPL Commands: FFT

input data term-by-term. For the most common window types, a code number can be
entered instead of a vector, and the corresponding vector is constructed
automatically. The code numbers for predefined window types are:

0 do not use a window (equivalently, use a Rectangular window).
1 use a von Hann window.
2 use a Hamming window.
3 use a Bartlett window.
4 use a Blackman window.

When the <window> parameter specifies a named VECTOR that explicitly defines a
window vector, that vector can be coded in any of the supported data types for any
input data type. The data types will be converted internally to the appropriate type
for run-time processing. For WORD window terms, the upper bound integer value
32768 represents the real number 1.0, and smaller integer values proportionally
represent fractions. LONG window terms are similar, except that the upper bound
integer value is 2147483647. For floating point data types, the upper bound value is
1.0, and fractions are represented in a natural notation.

A window is typically used with forward transforms and real-valued data, to reduce
stray effects introduced by breaking a continuous sequence of data samples into
discrete blocks. Each window type has different effects on spectral resolution,
magnitudes of narrow-band peaks, and local power densities. If these distortions are
important, they must be taken into account when analyzing the resulting spectrum.

To avoid aliasing, the sampling rate must be chosen so that frequencies of all
relevant phenomena are below the Nyquist frequency at term <n> / 2 . The spectrum
of a real-valued input signal has some special symmetry properties. The term at
location 0 is always real-valued, and represents a constant offset (zero frequency)
component. For all other terms, the term at <n> / 2 + k is equal to the term at <n> / 2
- k except for the sign on the imaginary part. In other words, the terms beyond the
Nyquist frequency provide no additional spectral information and can be ignored,
which is why the post-processing modes return only half-length blocks.

The symmetry phenomenon can lead to some surprises. For example, suppose the
input signal is a cosine wave with peak value 10000 and frequency 2 * π * 6 / 256
radians per second, sampled at 1/256 second intervals, and analyzed in a 256 term
FFT. One would expect to see a frequency peak of magnitude 10000 in location 6 of
the raw transform data, right? Well, one might be in for a surprise. Half of the
energy of the cosine wave appears at location 6, but the other half appears in the
symmetric image at location 256-6. Each peak would have a value of 7071,
representing half of the signal power in the original wave.

Chapter 17 DAPL Commands: FFT 197

Examples

FFT (0, 8, 0, P1r, P2r, P2i)

Mode 0, forward transform of real data. Read blocks of 256 data values from pipe
P1r, perform a forward transform, and place the complex results in pipes P2r and
P2i. No window vector is used.

FFT (1, 8, 2, P1r, P1i, P2r, P2i)

Mode 1, forward transform of complex data. Read blocks of 256 complex data
values from pipe P1r and P1i, perform a forward transform, and place the complex
results in pipes P2r and P2i. A Hamming window is applied to the signal data
before the transform.

FFT (2, 10, 0, P1r, P1i, P2r)

Mode 2, reverse transform of complex data preserving only real terms. Read blocks
of 1024 data values from pipes P1r and P1i, where these data have special
symmetry properties. Perform an inverse transform, and place the real results in pipe
P2r, discarding the meaningless imaginary terms. No window vector is used.

FFT (3, 12, 0, P1r, P1i, P2r, P2i)

Mode 3, reverse transform of complex data. Read blocks of 4096 data values from
pipes P1r and P1i. Perform an inverse transform, placing the complex results in
pipe P2r and P2i. No window vector is used.

FFT (4, 9, 3, P1r, PPow)

Mode 4, forward transform of real data converted to power spectrum. Read blocks
of 512 data values from pipe P1r, perform a forward transform, and place the 256
power spectral density terms in pipe PPow. Apply a Blackman window before
applying the transform.

FFT (5, 8, 1, P1r, PMag)

Mode 5, forward transform of real data converted to magnitude spectrum. Read
blocks of 256 data values from pipe P1r, perform a forward transform, and place
the 128 magnitude terms in pipe PMag. Apply a von Hann window before applying
the transform.

FFT (6, 10, 0, P1r, PMag, PPhase)

198 Chapter 17 DAPL Commands: FFT

Mode 5, forward transform of real data converted to polar form. Read blocks of
1024 data values from pipe P1r, perform a forward transform, and place the 512
magnitude and phase terms in pipes PMag and PPhase. No window vector is used.

See Also
See Chapter 16 �Fast Fourier Transform� for more information about frequency
spectra, sampling, and window operators.

Chapter 17 DAPL Commands: FILL 199

FILL

Add data from a data list to a specified pipe.

FILL <pipe_name> <data> [[,] <data>]*

F <pipe_name> <data> [[,] <data>]*

Parameters
<pipe_name>

The pipe to be filled.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<data>
Data to be added to the specified pipe.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT

Description
FILLFILLFILLFILL adds the data in its data list to a specified pipe. FILLFILLFILLFILL typically is used to fill a
pipe with known data. It can be used for time-shifting a data stream, establishing
initial conditions, or to build a known signal waveform.

For FILLFILLFILLFILL commands that would exceed the maximum line length, use a sequence of
FILLFILLFILLFILL commands.

Examples

FILL P1 35 70 105 140

Place four values into word pipe P1.

FILL PF1 35 70.5 105.25 14.0175e-12
Place four values into floating point pipe PF1.

See Also
EMPTYEMPTYEMPTYEMPTY

200 Chapter 17 DAPL Commands: FINDMAX

FINDMAX

Define a task that determines the maximum value in a data range.

FINDMAX (<in_pipe>, <n>, <region>, <out_pipe1>
 [, <out_pipe2>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<n>
The number of values in each block read from <in_pipe>.
WORD CONSTANT

<region>
The region that determines which data values are scanned.
REGION specifier

<out_pipe1>
Output data pipe for the maximum value.
WORD PIPE

<out_pipe2>
An optional pipe to which the index of the maximum value is written.
WORD PIPE

Description
FINDMAXFINDMAXFINDMAXFINDMAX reads <n> values from the <in_pipe>. Values are indexed by 0 to n-1.
All values whose indices are in <region> are scanned. The maximum value in this
region is placed in <out_pipe1>. If <out_pipe2> also is specified, the index of
the maximum value is placed in <out_pipe2>.

Note: While a REGION specification is normally applied to data values, in the
FINDMAXFINDMAXFINDMAXFINDMAX command it is applied to the index of the data values.

This command can be used after an FFTFFTFFTFFT to extract frequency components.

Chapter 17 DAPL Commands: FINDMAX 201

Examples

FINDMAX (P1, 128, INSIDE, 50, 100, P2)

Read blocks of 128 values from pipe P1 and send the largest value between
locations 50 and 100 to pipe P2.

FINDMAX (P1, 128, INSIDE, 50, 100, P2, P3)

Read blocks of 128 values from pipe P1 and send the index of the largest value
between locations 50 and 100 to pipe P3 and the largest value to pipe P2.

See Also
BAVERAGEBAVERAGEBAVERAGEBAVERAGE, FFTFFTFFTFFT

202 Chapter 17 DAPL Commands: FIRFILTER

FIRFILTER

Define a task to calculate filtered values using a finite impulse response filter.

FIRFILTER (<in_pipe>, <coeffs>, <length>, <scale>, <decim>,
 <phase>, <out_pipe> [,<take>, <skip>])

Parameters
<pipein>

A data pipe providing a stream of samples to be filtered.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<coeffs>
A vector specifying the filter characteristic.
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<length>
The number of terms in the coefficient vector.
WORD CONSTANT

<scale>
A scaling factor applied to each output value.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE
CONSTANT

<decim>
A number that specifies one-out-of-n decimation.
WORD CONSTANT

<phase>
A number specifying a time-shift correction.
WORD CONSTANT

<out_pipe>
A data pipe where samples of the filtered data stream are placed.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<take>
Number of data values to retain.
WORD CONSTANT

<skip>
Number of data values to skip.
WORD CONSTANT

Chapter 17 DAPL Commands: FIRFILTER 203

Description
FIRFILTERFIRFILTERFIRFILTERFIRFILTER applies a finite impulse response digital filter with <length> number
of taps to input data from <in_pipe>. The vector <coeffs> defines the filter
characteristic. The elements of <coeffs> are multiplied with successive values
from <in_pipe>, the products are added, and the final sum is divided by <scale>
to produce each result. One result is retained for each sequence of <decim> input
values. Optionally, the number of retained results can be further reduced by applying
the <take> and <skip> parameters. Each remaining result is placed into
<out_pipe>.

The maximum values for the <length> parameter depend on the input data type.

� For WORD data, it must be no larger than 1024.
� For LONG, FLOAT, or DOUBLE data, it must be no larger than 32767.

The <length> value must correspond exactly to the number of elements in
<coeffs>. If the special value 0 is used for the <length> parameter, the filter
length is automatically set equal to the length of the vector. Otherwise, any
inconsistency is diagnosed.

The filter produces an output data stream of the same data type as the stream that it
receives. The values in the <coeffs> vector represent signed binary fractions in a
numeric notation appropriate for the input and output data type.

� For WORD data, the coefficient vector must be WORD type. The number 32768
represents the value 1.0, and the filter coefficients in the range �32767 to +32767
proportionally represent fractions less than 1.0 in absolute value. As a rule of
thumb, to normalize the filter for unity gain at zero frequency, scale the
coefficients so that their sum equals 32767 times the <scale> factor. To
guarantee freedom from overflow errors, scale the sum of the absolute values of
the coefficients to be less than 32767 times <scale>.

� For LONG data, the coefficient vector must be LONG type. The number 2147483648
(2 to the 31st power) represents the value 1.0, and the filter coefficients in the
range -2147483647 to +2147483647 proportionally represent fractions less than
1.0 in absolute value. As a rule of thumb, to normalize the filter for unity gain at
zero frequency, scale the coefficients so that their sum equals 2147483647 times
the <scale> factor. To guarantee freedom from overflow errors, scale the sum of
the absolute values of the coefficients to be less than 2147483647 times <scale>.

� For FLOAT or DOUBLE data, the coefficient vector must be matching type. Specify
the coefficients in natural decimal notation. Normalize the filter for unity gain at
zero frequency by scaling the coefficients so that their sum equals 1.0 times the
<scale> factor.

204 Chapter 17 DAPL Commands: FIRFILTER

Scaling is specified by the <scale> factor. When <length> is relatively small, a
<scale> factor equal to 1 is appropriate for all data types. The special value 0
means �use no scaling� and is equivalent to specifying the scale factor 1. When the
scale factor is 1, some optimizations are applied for the case of WORD data to achieve
the highest filtering rate. For relatively large fixed-point filters, there tend to be
many very small terms and rounding errors tend to become significant, so a
<scale> factor greater than 1 allows the retention of more intermediate precision,
provided that all coefficient terms remain representable in the precision used. There
are some restrictions on the range of the <scale> parameter depending on the input
data type.

� For WORD data, <scale> must be a power of two no larger than 512, and it should
never exceed the first power of two less than <length>.

� For LONG data, <scale> must be a power of two no larger than 16384.
� For FLOAT or DOUBLE data, <scale> can be any appropriate FLOAT or DOUBLE

constant.

The decimation factor <decim> is a non-negative number less than <length>.
When <decim> is 0 or 1, no decimation is applied, and FIRFILTERFIRFILTERFIRFILTERFIRFILTER returns one
calculated value for each input sample. When <decim> is greater than 1,
FIRFILTERFIRFILTERFIRFILTERFIRFILTER computes one value and then omits the next <decim>-1 values.
Normally, decimation is used with lowpass and bandpass filters, because fewer
samples are required to represent a signal after high frequencies are removed by
filtering.

The optional parameters <take> and <skip> apply further data reduction. If used,
parameters <take> and <skip> must both be specified. When <take> and <skip>
are specified, FIRFILTERFIRFILTERFIRFILTERFIRFILTER retains <take> output values, placing them into
<out_pipe>, and then skips <skip> output values. When decimation is specified,
<take> and <skip> are applied to the data remaining after decimation is
performed. In a typical application of the <take> and <skip> parameters, an input
signal must be sampled at a very high rate to preserve high frequency information,
but the results of the filtering analysis are needed less frequently, for example, to
update a Fourier Transform display in a PC graphing program. The data reduction
allows the PC to keep up with the data sent by the Data Acquisition Processor, even
though the filtering is very fast and could send the PC host everything. Note that
equivalent results can be obtained without the <take> and <skip> parameters,
using a separate SKIPSKIPSKIPSKIP command, but the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command is more efficient
because it avoids performing calculations that would eventually be discarded.

When the <phase> parameter is specified, the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command will replicate
the first computed filter value an additional <phase> number of times prior to
applying decimation. Most but not all applications of the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command use

Chapter 17 DAPL Commands: FIRFILTER 205

symmetric filters. These filters have desirable phase properties, but they also have
the effect of time-shifting the output. The delay is (<length>-1)/2 samples for an
odd-length filter, or <length>/2 samples for an even-length filter. (Sometimes this
is described as �linear phase� or �group delay� using terminology from linear
filtering theory.) For example, when using a symmetric filter with 41 taps, the first
output value calculated by the filter corresponds to the twenty-first input sample,
sample number 20. If it is important to maintain sample count synchronization for
this example, the <phase> parameter should be set to 20. The FIRFILTERFIRFILTERFIRFILTERFIRFILTER
command automatically computes the appropriate correction for a symmetric filter if
the <phase> parameter is set to the special number -1. If a time shift adjustment is
not important, the <phase> parameter should be set to 0. For filter designs that are
not symmetric, some other appropriate <phase> value can be specified to
compensate for the time delay to the nearest sample position. The phase corrections
do not make results appear any sooner in real time, but they make identification of
features in time sequences easier, because positions in the input and output data
streams correspond.

An alternative to using a non-zero <phase> parameter is to use the FILLFILLFILLFILL command
to place the required number of extra samples into the <out_pipe> prior to starting
the configuration that defines the FIRFILTERFIRFILTERFIRFILTERFIRFILTER task. Arbitrary fill values, such as
zeros, can be used.

The program FGEN can be used to generate symmetric filter data for common filter
types. FGEN has an option for calculating scaled or unscaled filter vectors of all
data types.

The filtering algorithms in the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command apply special optimizations
when the filter has a symmetry property, when there is no scaling, and when
decimation or data reduction operations are applied. The selected options will affect
the maximum throughput rate.

206 Chapter 17 DAPL Commands: FIRFILTER

Examples

PIPE P1 WORD
FIRFILTER (IPIPE5, VEC1, 41, 0, 0, -1, P1)

Apply the symmetric filter defined by vector VEC1 to data from input channel pipe
5, with 41 stages in the filter; apply no scaling factor or decimation; apply an initial
time shift correction computed automatically from the filter length; and send all
results to WORD pipe P1.

PIPE PF1 FLOAT, PF2 FLOAT
FIRFILTER (PF1, FVEC2, 0, .7071, 4, 0, PF2, 1024, 4096)

Apply a filter of arbitrary length to data from floating point pipe PF1, using filter
coefficients provided by the FLOAT vector FVEC2; apply a scaling factor of 0.7071
to each result, retain every fourth result; use no initial time-shift correction; send
1024 of the retained results to floating point pipe PF2, then ignore the next 4096
results, and repeat.

See Also
FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS, RAVERAGERAVERAGERAVERAGERAVERAGE

Chapter 17 DAPL Commands: FIRLOWPASS 207

FIRLOWPASS

Define a command that applies a pre-defined lowpass FIR filter with decimation.

FIRLOWPASS (<in_pipe>, <d>, <out_pipe>)

Parameters
<in_pipe>

The pipe from which data values are read.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<d>
A number that selects the filter vector and decimation factor used.
WORD CONSTANT

<out_pipe>
The pipe to which filtered data values are written.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
The FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS command combines high-precision lowpass filtering with a
decimation operation. FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS is a special case of the FIRFILTERFIRFILTERFIRFILTERFIRFILTER command
using pre-defined filter characteristics. The filtering is applied to the sampled signal
stream from <in_pipe>, and the filtered data stream is placed into <out_pipe>.
The value of decimation factor<d> must be in the range 2 through 12. An
appropriate filter characteristic is provided automatically according to the signal
data type and the decimation factor. Data types of the input and output data pipes
must match.

FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS is useful when filtering must completely eliminate high frequency
noise, while exactly preserving low frequency information. It is suitable for anti-
aliasing applications, but the aggressive elimination of high frequencies is
sometimes more than is strictly necessary for anti-aliasing alone.

After the FIRLOWPASSFIRLOWPASSFIRLOWPASSFIRLOWPASS filtering operation is applied, the original sampling rate is
higher than necessary to completely represent the filtered signal. Decimation
eliminates part of this redundancy, retaining one sample from each group of <d>
samples. The decimation causes no loss of information.

The filtering accuracy depends on the data type.

� WORD data stream: accuracy to 14 bits.

208 Chapter 17 DAPL Commands: FIRLOWPASS

� LONG, FLOAT, or DOUBLE data stream: accuracy to 18 bits.

For example, 14 bit accuracy means that for a bipolar converter spanning the input
range -8192 counts to +8192 counts, the output value is off by at most one
converter count. When represented in the form of a 16 bit number, each 14-bit
converter count yields an increment of 4. Stopband output levels of +4 peak for
input levels of 32768 peak correspond to 78.3 dB rejection. A passband peak output
level 32764, differing from the correct peak input level of 32768 by one converter
count, corresponds to a passband gain error of 0.00104 dB.

The predefined filter characteristics are optimized to have the following properties:

� The magnitudes of frequencies up to 25% of the new Nyquist frequency (through
12.5% / <d> of the new sampling frequency) are preserved to full filtering
accuracy.

� The magnitudes of frequencies beyond 75% of the new Nyquist frequency (beyond
37.5% / <d> of the new sampling frequency) are eliminated to full filtering
accuracy.

When perfect filter gain is not critical, useful signal information can be obtained
past the 25% absolute flat band. For example, the signal loss is 0.1 dB (about 1%) at
approximately 30% of the Nyquist frequency, and the �3 dB cutoff frequency is at
approximately 42% of the Nyquist frequency.

Because of the symmetry property of the FIR filtering characteristic, phase shift is
exactly zero for all frequencies, but there is a time lag for the delivery of the filtered
results. This can be interpreted in the frequency domain as a constant group delay.

The following table provides information about filter bands and delays for each
decimation level and data type.

Chapter 17 DAPL Commands: FIRLOWPASS 209

Deci-
mation

Passband
Limit
(% Nyquist)

Stopband
Limit
(% Nyquist)

Data
Type

Total
taps

Delay samples
(after
decimation)

(after) 50 75 ------ ------

2 25 37.5 Word

Long
Float
Double

37

53

9

13

3 16.67 25 Word

Long
Float
Double

57

79

9.33

13

4 12.5 18.75 Word

Long
Float
Double

75

105

9.25

13

5 10 15 Word

Long
Float
Double

93

129

9.2

12.8

6 8.33 12.5 Word

Long
Float
Double

113

155

9.33

12.83

7 7.14 10.71 Word

Long
Float
Double

131

181

9.28

12.85

8 6.25 9.38 Word

Long
Float
Double

149

207

9.25

12.87

210 Chapter 17 DAPL Commands: FIRLOWPASS

Deci-
mation

Passband
Limit
(% Nyquist)

Stopband
Limit
(% Nyquist)

Data
Type

Total
taps

Delay samples
(after
decimation)

9 5.56 8.33 Word

Long
Float
Double

169

233

9.33

12.89

10 5 7.5 Word

Long
Float
Double

189

259

9.4

12.9

11 4.55 6.82 Word

Long
Float
Double

205

283

9.27

12.81

12 4.17 6.25 Word

Long
Float
Double

225

309

9.33

12.83

Example

FIRLOWPASS (IP3, 10, P)

Apply a lowpass filter to the data in input channel pipe IP3 and decimate by placing
every tenth result into pipe P.

See Also
FIRFILTERFIRFILTERFIRFILTERFIRFILTER, RAVERAGERAVERAGERAVERAGERAVERAGE

Chapter 17 DAPL Commands: FORMAT 211

FORMAT

Define a task that sends formatted text data to the PC.

FORMAT [COUNT=<num>] [OUTPUT=<cpipe>] [HEX]
(<item> [,<item>]*)

<item> = <string> | <operator> | <numeric> [: <precision>]

<operator> = # | ## | /

<numeric> = <pipe> | <variable> | <constant>

Parameters
<num>

A positive decimal number limiting the number of lines to print.
WORD CONSTANT

<cpipe>
Communication text pipe name.

<string>
Arbitrary text enclosed in double-quotes.
STRING

<precision>
Formatting expression (see description below).

<pipe>
Pipe providing data to display.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<variable>
Variable providing data to display.
WORD VARIABLE | LONG VARIABLE | FLOAT VARIABLE |
DOUBLE VARIABLE

<constant>
Named or numeric constant value to display.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT |
DOUBLE CONSTANT

212 Chapter 17 DAPL Commands: FORMAT

Description
FORMATFORMATFORMATFORMAT builds formatted print lines and sends the text to the PC. A binary data
transfer is more efficient and best for most finished applications; but FORMATFORMATFORMATFORMAT is very
useful for quick tabulated listings during application testing and development

FORMATFORMATFORMATFORMAT allows some complicated parameter sequences, but in its simplest form, it
requires only a list of pipe names�for example:

FORMAT (P1, P2)

When a FORMATFORMATFORMATFORMAT task is active, it looks for new data from each data source in
sequence. The values of constants and variables are always available, but FORMATFORMATFORMATFORMAT
must sometimes wait for data to appear in data pipes. FORMATFORMATFORMATFORMAT takes a value from
each data source, then prints the set of values on a single line.

FORMATFORMATFORMATFORMAT is unusual in its handling of data pipes. For all other commands, each
reference to a pipe produces a separate copy of the entire data stream. For the
FORMATFORMATFORMATFORMAT command, multiple references to a data source result in items being taken in
sequence from one stream. If, for example, the data sequence 1, 2, 3, 4, 5 etc. is
loaded into pipe P1, the task

FORMAT(P1, P1, P1, P1)
will yield the display lines

 1 2 3 4
 5 6 7 8
 9 10 11 12

 etc.

and not the display lines

 1 1 1 1
 2 2 2 2
 3 3 3 3

 etc.

Avoid multiple references to an input channel pipe with a channel list. These are
confusing, because each reference extracts data for a different channel.

The COUNT, OUTPUT and HEX options can provide additional control over FORMATFORMATFORMATFORMAT
command operation. Usually these options are omitted.

� If a COUNT option is specified, the FORMATFORMATFORMATFORMAT task delivers <num> lines and then
terminates. If COUNT is omitted, the FORMATFORMATFORMATFORMAT task prints until stopped by a STOPSTOPSTOPSTOP or
RESETRESETRESETRESET command. COUNT is useful for retaining just a few items when otherwise
excessive amounts of data would be generated. Beware, after the COUNT condition
is satisfied, the task suspends and does not read new data. This could result in a
data backlog that forces other processing to stop.

Chapter 17 DAPL Commands: FORMAT 213

� Use the OUTPUT option to send the formatted lines to an alternative
communication pipe <cpipe> rather than the default $SYSOUT pipe.

� If the HEX keyword option is specified, fixed-point values are displayed using a
hexadecimal notation. No <precision> expressions can be applied to hex integer
formats.

There is no formal limit on the number of items in the FORMATFORMATFORMATFORMAT parameter list, but
there is a practical limit. The maximum number of characters in a line is 236. If lines
are too long, they can be split into multiple FORMATFORMATFORMATFORMAT tasks, or use the slash operator
code to break the lines into shorter pieces. The DAPL system will keep print lines
from multiple FORMATFORMATFORMATFORMAT tasks intact, but the order in which these lines are delivered is
unpredictable.

Besides pipes, scalar values can also appear in a FORMATFORMATFORMATFORMAT command parameter list.
The most current value of a variable is fetched as needed. Avoid displaying values
of variables or constants without any pipes. Because there are no delays, a huge
number of lines can be generated.

Strings are sometimes useful for labels or for interjecting separator characters. The
text from the string is copied into the formatted lines in the position where the string
appears in the parameter list. Enclose the text with double-quote characters.

The <operator> notations provide some additional line-formatting options. Place
the #, ##, or / operator into the parameter list in the same manner as other
parameter list items, including the comma separators.

� # causes FORMATFORMATFORMATFORMAT to generate a line number in a 16-bit decimal notation.
� ## causes FORMATFORMATFORMATFORMAT to generate a line number in a 32-bit decimal notation.
� / causes FORMATFORMATFORMATFORMAT to split subsequent items onto a new text line. This new line is

not counted as a separate line for purposes of the COUNT option.

Display of numeric parameter items can be modified using a <precision>
notation. The notation is separated from the pipe, variable or constant parameter by
a colon character. The following precision notations are supported for fixed point
data:

� for WORD values, the precision notation is a decimal integer in the range of 0
through 5.

� for LONG values, the precision notation is a decimal integer in the range of 0
through 14.

The decimal number specifies a position, counting from the right, where a decimal
point is to be inserted in the sequence of digits. If the number is too small, fill zeroes

214 Chapter 17 DAPL Commands: FORMAT

are also inserted. This looks like scaling by a power of 10, but the original value is
not changed.

� for floating point values, the precision notation is a prefix letter followed by a
decimal integer in the range of 0 through 14. The prefix letter E means �display
with a power-of-ten exponent notation.� The prefix letter F means �display with a
fixed fraction notation.� (These codes are similar to the %e and %f formatting
codes in the C programming language.) The number specifies the number of digits
to appear after the decimal point.

Examples
For these examples, presume that VT is a floating point variable containing the value
66.1, P1 is a pipe containing word data sequence 10, 20, 30, etc., and that PF2 is a
pipe containing floating point data sequence 12.345, 23.456, 34.567, etc. The lines
generated by each example are illustrated below the command line.

FORMAT (#,P1,PF2)
 0 10 12.35
 1 20 23.46
 2 30 34.57
...

Display the line number and data values from pipes P1 and PF2 using default
formats and options.

FORMAT COUNT=2 (“ ITEM“,##,P1:3,PF2:F3)
 ITEM 0 .010 12.345
 ITEM 1 .020 23.456

Display line counts and values from pipes P1 and PF2, formatting both values to
show three digits after a decimal point, and ending the listing after two lines.

FORMAT (“ MEASUREMENT “,P1:4,” WITH OFFSET “,VT:F1)
 MEASUREMENT .0010 WITH OFFSET 66.1
 MEASUREMENT .0020 WITH OFFSET 66.1
...

Display labeled word values from pipes P1 with inserted decimal point preceding
four digits, and show corresponding values from variable VT using a fixed fraction
notation.

Chapter 17 DAPL Commands: FORMAT 215

FORMAT HEX (P1, /, “ “, PF2:E5)
 000A
 1.23450E1
 0014
 2.34560E1
 001E
 3.45670E1
...

Display fixed point values using a hexadecimal notation, and floating point values
on a separate offset line using an exponent notation.

See Also
BPRINTBPRINTBPRINTBPRINT, PRINTPRINTPRINTPRINT, MERGEMERGEMERGEMERGE

216 Chapter 17 DAPL Commands: FREQUENCY

FREQUENCY

Define a task that determines the number of trigger assertions per block of samples.

FREQUENCY (<trigger>, <length>, <out_pipe>)

Parameters
<trigger>

The trigger being examined.
TRIGGER

<length>
A value that specifies the size of the sample block.
WORD CONSTANT

<out_pipe>
The pipe to which the number of assertions is written.
WORD PIPE

Description
FREQUENCYFREQUENCYFREQUENCYFREQUENCY determines how many trigger assertions occur in each block of
<length> samples. The number of assertions is sent to <out_pipe>, one number
for each input block.

Example

FREQUENCY (T1, 100, P1)

Send the number of trigger assertions occurring in every block of 100 samples to
pipe P1.

See Also
LIMITLIMITLIMITLIMIT, LOGICLOGICLOGICLOGIC, PULSECOUNTPULSECOUNTPULSECOUNTPULSECOUNT, CTRATECTRATECTRATECTRATE

Chapter 17 DAPL Commands: GROUPS 217

GROUPS

Define the number of channel groups in an input sampling configuration.

GROUPS <ngroups>

Parameters
<ngroups>

The number of input channel groups to receive data.
WORD CONSTANT

Description
The GROUPSGROUPSGROUPSGROUPS command configures the number of input channel groups that will
receive input samples for a Data Acquisition Processor that samples multiple signal
pins simultaneously. The total number of data channels is<ngroups> times the
group size. The group size is determined by each individual Data Acquisition
Processor model. See the Data Acquisition Processor hardware manual for
information about channel group sizes.

The CHANNELSCHANNELSCHANNELSCHANNELS command is similar to the GROUPSGROUPSGROUPSGROUPS command, except that the
CHANNELSCHANNELSCHANNELSCHANNELS command implies single channel input sampling while GROUPSGROUPSGROUPSGROUPS implies
multiple channel simultaneous sampling.

An IDEFINEIDEFINEIDEFINEIDEFINE configuration should include <ngroups> number of SETSETSETSET command
lines, each defining the characteristics of one channel group. Because the IDEFINEIDEFINEIDEFINEIDEFINE
configuration needs to know the number of channel groups before other
configuration information can be processed, the GROUPSGROUPSGROUPSGROUPS command should appear as
one of the first commands following the IDEFINEIDEFINEIDEFINEIDEFINE command.

Examples

IDEFINE INP3
 GROUPS 3
 SET IP(0..3) SPG0
 SET IP(4..7) SPG1
 SET IP(8..11) SPG2
 TIME 20
END

218 Chapter 17 DAPL Commands: GROUPS

Configure the input sampling to capture data for 3 channel groups, on a Data
Acquisition Processor model that samples four pins simultaneously. The total
number of input data channels is 12.

See Also
SETSETSETSET, CHANNELSCHANNELSCHANNELSCHANNELS, IDEFINEIDEFINEIDEFINEIDEFINE

Chapter 17 DAPL Commands: GROUPSIZE 219

GROUPSIZE

Define the number of channels in a programmable input channel group.

GROUPSIZE <size>

Parameters
<size>

The number of input channels in a configurable input channel group.
WORD CONSTANT

Description
The GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE command is available for Data Acquisition Processors that support
software-configurable channel group sizes. The <size> parameter specifies the
number of channels in each input channel group. Only certain restricted sizes are
available, so see the Data Acquisition Processor hardware manual for information
about supported channel group sizes.

If the GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE command is omitted, a default group size is assumed. For
information about default group size, see the Data Acquisition Processor hardware
manual.

Because the IDEFINEIDEFINEIDEFINEIDEFINE configuration needs to know the channel group size before
other configuration information can be processed, the GROUPSIZEGROUPSIZEGROUPSIZEGROUPSIZE command should
appear as one of the first commands following the IDEFINEIDEFINEIDEFINEIDEFINE command.

Examples

IDEFINE INP2X4
 GROUPS 2
 GROUPSIZE 4
 SET IP(0..3) SPG0
 SET IP(4..7) SPG1
 TIME 20
END

Configure the input sampling to capture data for 2 channel groups with configurable
group size 4, on a Data Acquisition Processor model that supports configurable

220 Chapter 17 DAPL Commands: GROUPSIZE

simultaneous sampling in groups of 4 pins. The total number of input data channels
is 8.

See Also
 GROUPSGROUPSGROUPSGROUPS, IDEFINEIDEFINEIDEFINEIDEFINE

Chapter 17 DAPL Commands: HELLO 221

HELLO

Display identification information.

HELLO

Description
Prints Data Acquisition Processor hardware and software information. A single line
is printed in the following format:

*** DAPL2000 Interpreter [2.0 T1/212] Serial# 43000 ***

2.0 is the DAPL version number. T is the Data Acquisition Processor product code.
1 is the hardware version code. 212 is the model number. 43000 is the serial
number of the Data Acquisition Processor.

Note: Other configuration information also may be displayed near the end of the
information line.

222 Chapter 17 DAPL Commands: HIGH

HIGH

Define a task that scans blocks of data for maximum values.

HIGH (<in_pipe>, <count>, <out_pipe1> [,<out_pipe2>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<count>
A value that specifies the size of blocks to be scanned.
WORD CONSTANT

<out_pipe1>
Output data pipe for maximum block values.
WORD PIPE | LONG PIPE

<out_pipe2>
If specified, the pipe to which the sample number of each maximum value is
placed.
WORD PIPE

Description
HIGHHIGHHIGHHIGH scans blocks of size <count> for maximum values. The maximum of each
block is placed in the pipe<out_pipe1>. If pipe<out_pipe2> is specified, the
sample number of each maximum value is placed in <out_pipe2>. The sample
number has a value between 0 and <count>-1.

When there are multiple values equal to the same maximum, the location of the first
maximum is reported.

Examples

HIGH (IPIPE3, 100, P1)

Read blocks of 100 values from input channel pipe 3 and send the maximum data
value in each block to pipe P1.

Chapter 17 DAPL Commands: HIGH 223

HIGH (P2, 1000, P3, P4)
Read blocks of 1000 values from pipe P2, send the maximum data value in each
block to pipe P3 and send the position of the maximum in the block to pipe P4.

See Also
FINDMAXFINDMAXFINDMAXFINDMAX, LOWLOWLOWLOW, PEAKPEAKPEAKPEAK, RANGERANGERANGERANGE, VARVARVARVARIANCEIANCEIANCEIANCE

224 Chapter 17 DAPL Commands: HTRIGGER

HTRIGGER

Specify the operating mode of the hardware trigger.

HTRIGGER <type>

Parameters
<type>

A keyword, either ONESHOT, GATED, or OFF.

Description

HTRIGGERHTRIGGERHTRIGGERHTRIGGER specifies the operating mode of the hardware trigger. Possible values of
<type> are ONESHOT, GATED, and OFF. The default is OFF. The hardware trigger is
described in the hardware documentation.

Example

HTRIGGER GATED

Specify that the hardware trigger allows sampling when the trigger level is high.

See Also
CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING, CLOCKCLOCKCLOCKCLOCK

Chapter 17 DAPL Commands: IDEFINE 225

IDEFINE

Define and configure input sampling.

IDEFINE <name>

IDEF <name>

Parameters
<name>

A unique name assigned to the input configuration.
Alphanumeric character sequence limited to 23 characters.

Description
IDEFINEIDEFINEIDEFINEIDEFINE begins a group of commands that define an input sampling configuration.

IDEFINE <name>
 [input configuration command] *
END

<name> is a unique name given to the input configuration. <name> must be an
alphanumeric sequence with no spaces and is limited to 23 characters or less.

The ENDENDENDEND command completes the configuration started by the IDEFINEIDEFINEIDEFINEIDEFINE command,
making the configuration available for execution.

The complete list of input configuration commands that can appear between the
IDEFINEIDEFINEIDEFINEIDEFINE and the ENDENDENDEND command is given in Chapter 5. These commands establish
the number of channels, configure input gains, specify sample time intervals, and so
forth.

Older notations allow a number on the IDEFINEIDEFINEIDEFINEIDEFINE command line following the
<name> field. This old notation is an alternative to using a GROUPSGROUPSGROUPSGROUPS or CHANNCHANNCHANNCHANNELSELSELSELS
command to configure the number of sampled pins or pin groups. However, various
new hardware and software features will not be available when old notations are
used.

Examples

226 Chapter 17 DAPL Commands: IDEFINE

// A configuration for a DAP 5400a/627
IDEFINE INP16
 GROUPS 2
 SET IP(0..7) SPG0
 SET IP(8..15) SPG1
 TIME 5
END

Begin the definition of an input configuration named INP16 with 2 input channel
groups, for a total of 16 input channels.

// A configuration for a DAP 4000a/212
IDEFINE INP4
 CHANNELS 4
 SET IP0 SP0
 SET IP1 SP1
 SET IP2 SP0
 SET IP3 SP2
 TIME 25
END

Begin the definition of an input configuration named INP4 with 4 individual input
channels sampling three distinct signal sources.

See Also
ENDENDENDEND, SETSETSETSET, VRANGEVRANGEVRANGEVRANGE, CHANNELSCHANNELSCHANNELSCHANNELS, GROUPSGROUPSGROUPSGROUPS, ODEFINEODEFINEODEFINEODEFINE, PDEFINEPDEFINEPDEFINEPDEFINE

Chapter 17 DAPL Commands: INTEGRATE 227

INTEGRATE

Define a task that computes the integral of data by the trapezoidal method.

INTEGRATE (<in_pipe>, <out_pipe> [, <reset>])

Parameters
<in_pipe>

The pipe from which data are read.
WORD PIPE | LONG PIPE

<out_pipe>
The pipe to which the integral values of data are written.
WORD PIPE | LONG PIPE

<reset>
TRIGGER | WORD CONSTANT

Description
INTEGRATEINTEGRATEINTEGRATEINTEGRATE computes the integral of data in <in_pipe> by the trapezoidal method.
After each value is read, the integral value is sent to <out_pipe>.

The integral value is computed as half of the first value from <in_pipe> plus half
of the most recent value from <in_pipe>, plus the sum of the other values from
<in_pipe>. INTEGRATEINTEGRATEINTEGRATEINTEGRATE sends one less value to <out_pipe> than it reads from
<in_pipe> because one value is consumed in the integral computation.

The integral magnitude must never exceed a signed 31-bit number or approximately
2.1 billion to provide accurate results.

An optional parameter, <reset>, can be used to prevent overflow of the 32-bit
integral value. If a trigger is used, the value of the integral is reset to zero whenever
a trigger assertion occurs. If a constant is used, the value of the integral is reset to
zero after every <reset> number of values. Each time the integral is reset,
INTEGRATEINTEGRATEINTEGRATEINTEGRATE uses the last input data value from the previous integration to initialize
the new integration.

228 Chapter 17 DAPL Commands: INTEGRATE

Example

INTEGRATE (P1, P2)

Read data from pipe P1 and place the integral in pipe P2.

INTEGRATE (P1, P2, 100)
Reset the integral value to zero after every 100 values.

See Also
BINTEGRATEBINTEGRATEBINTEGRATEBINTEGRATE, DELTADELTADELTADELTA

Chapter 17 DAPL Commands: INTERP 229

INTERP

Define a task that performs linear interpolation of a function.

INTERP (<in_pipe>, <x_vector>, <y_vector>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<x_vector>
A list of abscissa (input) values.
WORD VECTOR

<y_vector>
A list of ordinate (output) values.
WORD VECTOR

<out_pipe>
Output data pipe.
WORD PIPE

Description
INTERPINTERPINTERPINTERP performs linear interpolation of an arbitrary function represented by a
lookup table. This command is especially useful for sensor linearization.

<x_vector> and <y_vector> represent a set of ordered pairs of WORD numbers
(x,y) that describe a function. The numbers of elements in <x_vector> and
<y_vector> must be the same and the values in the <x_vector> must be in a
strictly ascending sequence. For each value in <in_pipe>, an INTERPINTERPINTERPINTERP task searches
for the nearest values in <x_vector>, interpolates between the corresponding
values of <y_vector>, and places the result in <out_pipe>.

INTERPINTERPINTERPINTERP returns the first <y_vector> value for values from <in_pipe> that are
less than the smallest value in <x_vector>. INTERPINTERPINTERPINTERP returns the last <y_vector>
value for values from <in_pipe> that are greater than the largest value in
<x_vector>.

230 Chapter 17 DAPL Commands: INTERP

Example

VECTOR X WORD = (-32768,0,32767)
VECTOR Y WORD = (-100,0,200)
INTERP (P1, X, Y, P2)

Read data from pipe P1, interpolate according to vectors X and Y, and send the
results to pipe P2.

See Also
THERMOTHERMOTHERMOTHERMO

Chapter 17 DAPL Commands: LCOPY 231

LCOPY

Define a task that transfers data from an input pipe to one or more output pipes.

LCOPY (<in_pipe>, <p1> [, <p2>]*)

Parameters
<in_pipe>

The pipe from which data values are read.
WORD PIPE

<p1>
The first output pipe to which the transferred data are written.
WORD PIPE

<p2>
The second output pipe to which the transferred data are written.
WORD PIPE

Description
LCOPYLCOPYLCOPYLCOPY transfers each value from <in_pipe> to one or more output pipes. As many
as 64 output pipes are allowed.

Unlike COPYCOPYCOPYCOPY, LCOPYLCOPYLCOPYLCOPY guarantees to transfer one value from <in_pipe> to each
output pipe before reading the next value from <in_pipe>. As a result, LCOPYLCOPYLCOPYLCOPY
provides lower latency than COPYCOPYCOPYCOPY does at the expense of a decreased throughput.

See Also
COPYCOPYCOPYCOPY, SKIPSKIPSKIPSKIP

232 Chapter 17 DAPL Commands: LET

LET

Change the value of a variable or constant.

LET <sym_name> = <value>

Parameters
<sym_name>

Name of the variable or constant symbol whose value is being changed.
WORD CONSTANT | WORD VARIABLE |
LONG CONSTANT | LONG VARIABLE |
FLOAT CONSTANT | FLOAT VARIABLE |
DOUBLE CONSTANT | DOUBLE VARIABLE

<value>
The new value to assign to the variable or constant symbol.
WORD CONSTANT | WORD VARIABLE |
LONG CONSTANT | LONG VARIABLE |
FLOAT CONSTANT | FLOAT VARIABLE |
DOUBLE CONSTANT | DOUBLE VARIABLE

Description
LETLETLETLET changes the value of a variable or constant symbol. Floating point variables and
constants cannot be used to assign a value to a WORD or LONG symbol, but otherwise,
any constant or variable is acceptable if it provides a value in the representable
range. The <sym_name> symbol name must be defined previously by a VARIABLESVARIABLESVARIABLESVARIABLES
or CONSTANTSCONSTANTSCONSTANTSCONSTANTS command.

When the LETLETLETLET command is used to change a constant symbol, no configurations can
be active. A LETLETLETLET command can change a variable symbol at any time.

Reconfiguring a constant symbol using the LETLETLETLET command must be done with care. A
constant value assigned by the LETLETLETLET command is evaluated when items using the
symbol are initialized. For tasks, the evaluation occurs at task creation, as the
configuration starts. For other system elements, the evaluation occurs when the
configuration is downloaded to the DAPL system, as the commands are interpreted
and executed. For example, if a downloaded IDEFINEIDEFINEIDEFINEIDEFINE command evaluates the
number of data channels from a named constant, changing the named constant value
later does not change the number of channels in the sampling configuration. An
EDITEDITEDITEDIT command can be used to change configuration parameters for sampling and
update procedures.

Chapter 17 DAPL Commands: LET 233

Examples

LET SPEED=152.5

Set the value of floating point symbol SPEED to 152.5.

LET N = M
Change the value of symbol N to the current value of symbol M.

See Also
CONSTANTSCONSTANTSCONSTANTSCONSTANTS, EDITEDITEDITEDIT, SDISPLAYSDISPLAYSDISPLAYSDISPLAY, VARIABLESVARIABLESVARIABLESVARIABLES

234 Chapter 17 DAPL Commands: LIMIT

LIMIT

Define a task that scans data for values in a specified region.

LIMIT (<in_pipe>, <region1>, <trigger> [,<region2>])

Parameters
<in_pipe>
WORD PIPE

<region1>
The region for detecting trigger events.
REGION

<trigger>
The trigger asserted when values within a specified region are found.
TRIGGER

<region2>
An optional hysteresis region for suppressing subsequent trigger events.
REGION

Description
A LIMITLIMITLIMITLIMIT task scans input data for values that satisfy <region1>. When such a
value is found, <trigger> is asserted.

An optional second region, <region2>, can be specified for trigger hysteresis.
After a <trigger> event is asserted, subsequent data are ignored until <region2>
is satisfied. Then, the scan for values that satisfy <region1> resumes.

Specifying <region2> prevents multiple triggering on slow or tightly-clustered
events; this is required in most applications. <region1> usually is the same as
<region2>, although this is not required.

The two limit values for a REGION can be variable. The location within a data
stream where change to a REGION variable takes effect is indeterminate because
variable changes are not synchronized with task processing. The variable change can
appear to be shifted either forward or backward in time by an unpredictable number
of sample positions.

Chapter 17 DAPL Commands: LIMIT 235

Examples

LIMIT (IPIPE4, INSIDE,5500,5600, T1, INSIDE,5500,5600)

Read data from input channel pipe 4 and scan for values from 5500 to 5600; assert
trigger T1 whenever one of those values is found; after an assertion, do not trigger
again until a value not from 5500 to 5600 is found.

LIMIT (P1, OUTSIDE,-20000,20000, T2, OUTSIDE,-20000,20000)
Scan data in pipe P1 for values less than -20000 or greater than 20000 and assert
trigger T2 when one of those values is found; after an assertion, T2 will not trigger
again until a value from -20000 to 20000 is found.

See Also
CHANGECHANGECHANGECHANGE, DLIMITDLIMITDLIMITDLIMIT, LOGICLOGICLOGICLOGIC, PEAKPEAKPEAKPEAK

236 Chapter 17 DAPL Commands: LOGIC

LOGIC

Define a task that asserts a trigger when data bits match a specified pattern.

LOGIC (<in_pipe>, <xor>, <and>, <select>, <trigger>)

Parameters
<in_pipe>

The pipe from which bits are taken.
WORD PIPE

<xor>
A number identifying bit positions that are active-low.
WORD CONSTANT | WORD VARIABLE

<and>
A number selecting bit positions to test.
WORD CONSTANT | WORD VARIABLE

<select>
This parameter is for future expansion and must be zero.
WORD CONSTANT | WORD VARIABLE

<trigger>
The trigger that is asserted when bits match the specified conditions.
TRIGGER

Description
LOGICLOGICLOGICLOGIC asserts a trigger when bits from <in_pipe> match conditions specified by
the <xor>, <and>, and <select> parameters. The values in <in_pipe> are
typically obtained by sampling the digital input port. There is a built-in hysteresis
behavior, and LOGICLOGICLOGICLOGIC asserts <trigger> only once each time the conditions are
satisfied. The <select> parameter is for future expansion and must be zero.

To check triggering conditions, a LOGICLOGICLOGICLOGIC task computes a Boolean expression for
each input value by:

� inverting each bit whose corresponding <xor> bit is 1,
� masking to 0 each bit whose corresponding <and> bit is 0,
� setting the Boolean value to 1 if the result is equal to the <and> parameter,
� setting the Boolean value to 0 otherwise.

Chapter 17 DAPL Commands: LOGIC 237

If the Boolean value is 1, <trigger> is asserted. After that, the LOGICLOGICLOGICLOGIC task must
receive an input value for which the computed Boolean is 0. The trigger is asserted
again the next time the Boolean value is 1, and so forth. If more than one bit is
tested, LOGICLOGICLOGICLOGIC requires all the selected bits to satisfy the triggering condition.

The following configuration outlines how to compute values for the three LOGICLOGICLOGICLOGIC
parameters:

1. Determine which bits to use for triggering. Set the corresponding bits of the
<and> parameter to 1. Note that bit 0 on the digital port is the least significant bit
and bit 15 on the digital port is the most significant bit.

2. To trigger when a particular bit value is 1, set the corresponding bit of the <xor>
parameter to 0. To trigger when a particular bit value is 0, set the corresponding bit
of the <xor> parameter to 1.

3. Set the <select> parameter to 0.

Note: The behavior of this command is very similar to edge-triggered operation,
but not exactly the same. Edge-triggering uses one sample of past history, but this
command does not. For true edge-triggered operation, use the command with a
TRIGGERSTRIGGERSTRIGGERSTRIGGERS operating mode having a nonzero STARTUP property.

Example

LOGIC (IPIPE3, $0004, $0004, 0, T1)

Assert trigger T1 when bit 2 of the input channel pipe data value is 0.

TRIGGER T2 MODE=NORMAL STARTUP=1
LOGIC (IPIPE3, 0, $5555, 0, T2)

Assert trigger T2 when all data bits in odd-numbered positions are 1, and this
condition was not true for the previous sample.

See Also
CHANGECHANGECHANGECHANGE, DLIMITDLIMITDLIMITDLIMIT, LIMITLIMITLIMITLIMIT, PEAKPEAKPEAKPEAK, TRIGGERSTRIGGERSTRIGGERSTRIGGERS

238 Chapter 17 DAPL Commands: LOW

LOW

Define a task that scans blocks of data for minimum values.

LOW (<in_pipe>, <count>, <out_pipe1> [, <out_pipe2>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<count>
A value that specifies the size of blocks to be scanned.
WORD CONSTANT

<out_pipe1>
Output data pipe for minimum block values.
WORD PIPE | LONG PIPE

<out_pipe2>
If specified, the pipe to which the sample number of each minimum value is
placed.
WORD PIPE

Description
LOWLOWLOWLOW scans blocks of size <count> for minimum values. The minimum of each block
is placed in the pipe <out_pipe1>. If pipe <out_pipe2> is specified, the sample
number of each minimum value is placed in <out_pipe2>. The sample number has
a value between 0 and <count>-1.

When there are multiple values equal to the same minimum, the location of the first
minimum is reported.

Chapter 17 DAPL Commands: LOW 239

Examples

LOW (IPIPE3, 100, P1)

Read blocks of 100 values from input channel pipe 3 and send the minimum of each
block to pipe P1.

LOW (P2, 1000, P3, P4)
Read blocks of 1000 values from pipe P2, send the minimum of each block to pipe
P3, and send the position of the minimum in each block to pipe P4.

See Also
FINDMAXFINDMAXFINDMAXFINDMAX, HIGHHIGHHIGHHIGH, PEAKPEAKPEAKPEAK, RANGERANGERANGERANGE

240 Chapter 17 DAPL Commands: MASTER

MASTER

Configure an input or output configuration�s sampling clock as a master clock.

MASTER

Description
The MASTERMASTERMASTERMASTER command configures an input or output configuration�s sampling clock
as a master clock for other Data Acquisition Processors. The MASTERMASTERMASTERMASTER command is
used in multiple Data Acquisition Processor systems; the master Data Acquisition
Processor supplies a clock signal to all slave Data Acquisition Processors for
synchronized input sampling or output updates.

See Also
CLOCKCLOCKCLOCKCLOCK, SLAVESLAVESLAVESLAVE

Chapter 17 DAPL Commands: MERGE 241

MERGE

Define a task that merges data sequentially from multiple input pipes.

MERGE (<in_pipe_0>, ... , <in_pipe_n-1>, <out_pipe>)

Parameters
<in_pipe_0> ... <in_pipe_n-1>

Input data pipes.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Output pipe for merged data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
MERGEMERGEMERGEMERGE reads data from one or more input pipes and places the data consecutively
into an output pipe.

Data arrival rates in all pipes <in_pipe_0> through <in_pipe_n-1> must be
equal. If different volumes of data arrive in different pipes, data will backlog in the
pipes having higher volumes, causing processing to stall when a pipe has no
capacity to accept more data.

MERGEMERGEMERGEMERGE is useful for merging binary data from several pipes to a single
communication pipe for transmission to the host computer. MERGEMERGEMERGEMERGE is the inverse of
SEPARATESEPARATESEPARATESEPARATE.

When there is a mix of input and output data types, the MERGEMERGEMERGEMERGE command applies a
mix of strategies for converting input data to fit into the output pipe. Conversion
operations can be slow, so it is best to avoid mixed data types. When data types
must be mixed, refer to the following chart to determine how the data
representations are altered. Depending on the type of input and output pipes, the
data are handled in one of five ways:

1. Copy � If the pipes are the same type, MERGEMERGEMERGEMERGE copies the data directly from
<in_pipe> to <out_pipe> with no changes and no inconsistencies.

2. Alias � This is a kind of copy that preserves the bit representation when
values have equal size, but leaves the bit representation inconsistent with the
natural data type of the destination pipe. The values are not directly

242 Chapter 17 DAPL Commands: MERGE

meaningful if interpreted as the data type of the destination pipe. To recover
the data, the SEPARATESEPARATESEPARATESEPARATE command can be used; or the data can be transferred
to the PC host where a software application reinterprets the bits within buffer
storage as the original data type.

3. Convert � A value-preserving type conversion operation can be applied when
the <out_pipe> data type can represent all possible values allowed by
<in_pipe> with no loss of resolution, range or accuracy. The new
representation placed into <out_pipe> is consistent with the type of that
pipe. Conversions from WORD to LONG type are done by sign extension, so
this conversion is easily reversed by ignoring the 16 extension bits.

4. Split � Consistent with previous versions of DAPL, data elements that are too
long to fit into shorter data elements of the destination pipe are split. The
shorter fragments are then sent to the destination pipe. This can be done only
when the destination pipe is a fixed point type, because bit patterns in the
fragments will not always correspond to valid floating point values. The least
significant parts of the bit representations are sent first. To recover split data,
the SEPARATESEPARATESEPARATESEPARATE command can be used; or the data can be transferred to the
PC host where the parts must be arranged in storage so that the software can
properly interpret bit representations as the original type.

5. Not Allowed � If none of the above options can transfer the information
without loss of accuracy, range or resolution, that combination of input and
output types is not allowed. An error will be diagnosed and the command
will terminate.

 The following table shows which operations are applied for each combination of
<in_pipe> and <out_pipe> data types.

<in_pipe> <out_pipe>

 WORD LONG FLOAT DOUBLE

WORD copy convert convert convert

LONG split copy not allowed convert

FLOAT split alias copy convert

DOUBLE split split not allowed copy

Chapter 17 DAPL Commands: MERGE 243

Examples

MERGE (P1,P2,P3,P4)

Read data from pipes P1, P2, and P3 in sequence, and place the data consecutively
into pipe P4.

MERGE (P5,P6,P7,$BINOUT)
Transfer data from pipes P5, P6, and P7 to the host PC through the binary output
communication pipe.

See Also
BMERGEBMERGEBMERGEBMERGE, MERGEFMERGEFMERGEFMERGEF

244 Chapter 17 DAPL Commands: MERGEF

MERGEF

Define a task that merges data from several pipes in arbitrary sequence.

MERGEF (<in_pipe_0>, ... , <in_pipe_n-1>, <out_pipe>)

Parameters
<in_pipe_0>

First input data pipe.
WORD PIPE | LONG PIPE

<in_pipe_n-1>
Last input data pipe.
WORD PIPE | LONG PIPE

<out_pipe>
Output pipe for merged data.
WORD PIPE | LONG PIPE

Description
MERGEFMERGEFMERGEFMERGEF merges data from several pipes into a single pipe. An identifying flag is
included with each value. MERGEFMERGEFMERGEFMERGEF reads a value from any input pipe that has data.
Each time a value is read from a pipe, two values are placed in <out_pipe>. The
first value is a flag identifying the pipe from which the value was read. The
identifying flag is a number from 0 to n-1. The flag is followed by the value.

When transferring a word value to a long pipe, a long flag is placed in the output
pipe followed by a long value that is sign extended. When transferring a long value
to a word pipe, a word flag is placed in the output pipe followed by two words with
the least significant word first.

MERGEFMERGEFMERGEFMERGEF is different from MERGEMERGEMERGEMERGE in that data values are not read sequentially from
the input pipes. Therefore, the data rates from different input pipes need not match,
and the order that data is placed into <out_pipe> is not predictable.

MERGEFMERGEFMERGEFMERGEF is particularly useful for transmitting binary data to the PC when data
values are not written to the pipes at the same rate. Based on the identifying flag
preceding each data value, the PC can process the data correctly.

When using MERGEFMERGEFMERGEFMERGEF with DAPview for Windows, the Binary Prefix of DAPview
for Windows can allow selective logging or display of data originating from a
specific MERGEFMERGEFMERGEFMERGEF input pipe.

Chapter 17 DAPL Commands: MERGEF 245

MERGEFMERGEFMERGEFMERGEF is the inverse of SEPARATEFSEPARATEFSEPARATEFSEPARATEF.

See Also
BMERGEBMERGEBMERGEBMERGE, BMERGEFBMERGEFBMERGEFBMERGEF, MERGEMERGEMERGEMERGE, SEPARATESEPARATESEPARATESEPARATE, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

246 Chapter 17 DAPL Commands: NMERGE

NMERGE

Define a task that merges data in groups.

NMERGE (<n1>, <in_pipe1>, <n2>, <in_pipe2>, ... , <out_pipe>)

Parameters
<n1>

Number of data values to transfer from the first input pipe.
WORD CONSTANT

<in_pipe1>
First input pipe.
WORD PIPE | LONG PIPE

<n2>
Number of data values to transfer from the second input pipe.
WORD CONSTANT

<in_pipe2>
Second input pipe.
WORD PIPE | LONG PIPE

<out_pipe>
Output pipe for merged data.
WORD PIPE | LONG PIPE

Description
NMERGENMERGENMERGENMERGE reads data from one or more input pipes and places the data into an output
pipe. NMERGENMERGENMERGENMERGE transfers <n1> data values from <in_pipe1> to <out_pipe>, then
transfers <n2> data values from <in_pipe2> to <out_pipe>, etc. When
transferring a word value to a long output pipe, the value is sign extended. When
transferring a long value to a word output pipe, two words are placed in the output
pipe, with the least significant word first, followed by the most significant word.

NMERGENMERGENMERGENMERGE is useful for merging different quantities of binary data from several pipes
to a single communication pipe for transmission to the host computer. For instance,
a single trigger time stamp value in one pipe can be merged with many values from a
trigger WAITWAITWAITWAIT in another pipe.

Chapter 17 DAPL Commands: NMERGE 247

Example

NMERGE (1, P1, 1000, P2, $BINOUT)

Transfer one data value from pipe P1 followed by 1000 data values from pipe P2 to
$BINOUT.

See Also
BMERGEBMERGEBMERGEBMERGE, BMERGEFBMERGEFBMERGEFBMERGEF, MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, SEPARATESEPARATESEPARATESEPARATE, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

248 Chapter 17 DAPL Commands: NTH

NTH

Define a task that retains one out of every N trigger events.

NTH (<trigger1>, <n>, <trigger2>)

Parameters
<trigger1>

The trigger containing the original event sequence.
TRIGGER

<n>
Number of trigger assertions.
WORD CONSTANT

<trigger2>
The trigger containing the modified event sequence.
TRIGGER

Description
NTHNTHNTHNTH reads from <trigger1> and passes the last of every <n> trigger assertions to
<trigger2>, ignoring the first <n-1> triggers. <n> must be a positive, nonzero
integer.

Example

NTH (T1, 100, T2)

Pass every hundredth trigger from T1 to T2.

See Also
WWWWAITAITAITAIT

Chapter 17 DAPL Commands: ODEFINE 249

ODEFINE

Begin an output updating configuration.

ODEFINE <name> <n>

ODEF <name> <n>

Parameters
<name>

Assigned output configuration name.
Alphanumeric string limited to 23 characters.

<n>
Number of output channels to be defined.
WORD CONSTANT

Description
ODEFINEODEFINEODEFINEODEFINE begins a group of commands that define an output updating configuration.

ODEFINE <name> <n>
 [output configuration command] *
END

The complete list of output configuration commands is given in Chapter 5. These
command lines configure output channel pipes, specify update intervals, etc.

An output configuration configures the Data Acquisition Processor for isochronous
(clocked) output updates. Use DACOUTDACOUTDACOUTDACOUT or DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT for unclocked output
updates with lower latency.

The ENDENDENDEND command completes the configuration started by the ODEFINEODEFINEODEFINEODEFINE command,
making the configuration available for execution.

<name> is a unique name given to the output configuration. <name> must be an
alphanumeric string with no spaces and is limited to 23 characters.

<n> is the number of output channel pipes. The expansion capacity of the Data
Acquisition Processor board determines the possible range of outputs.

250 Chapter 17 DAPL Commands: ODEFINE

Example

ODEFINE OUTPR 2
 SET OP0 A0
 SET OP1 A1
 TIME 1000
END

Begin the definition of an output configuration named OUTPR with 2 analog output
channel pipes.

See Also
ENDENDENDEND, IDEFINEIDEFINEIDEFINEIDEFINE, PDEFINEPDEFINEPDEFINEPDEFINE, DACOUTDACOUTDACOUTDACOUT, DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT

Chapter 17 DAPL Commands: OFFSET 251

OFFSET

Define a task that adds 16-bit signed numeric offsets to data values.

OFFSET (<in_pipe>, <offset_value>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<offset_value>
A value that specifies the 16-bit signed numeric offset to be added to each data
value.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for modified data.
WORD PIPE

Description
OFFSETOFFSETOFFSETOFFSET reads data from <in_pipe>, adds a 16-bit signed numeric offset to each
value, and sends the results to <out_pipe>. This command is useful for removing
DC offset voltages from analog input channel pipe data.

Example

OFFSET (IPIPES(0,2,4), -20, P1)

Read from input channel pipes 0, 2, and 4, subtract 20 from each value, and send the
results to pipe P1.

252 Chapter 17 DAPL Commands: OPTIONS

OPTIONS

Set various system options.

OPTIONS <name>=<value> [, <name>=<value>]*

OPTION <name>=<value> [, <name>=<value>]*

OPT <name>=<value> [, <name>=<value>]*

O <name>=<value> [, <name>=<value>]*

Parameters
<name>

Option name.

<value>
New system option.

Description

OPTIONSOPTIONSOPTIONSOPTIONS sets various system options. The system option names are:

AINEXPANDAINEXPANDAINEXPANDAINEXPAND Set analog input expansion mode.
BPOUTPUTBPOUTPUTBPOUTPUTBPOUTPUT Set bipolar output.
BUFFERINGBUFFERINGBUFFERINGBUFFERING Set buffering mode.
DECIMALDECIMALDECIMALDECIMAL Set input/output format.
ERRORQERRORQERRORQERRORQ Hold error messages.
FLOATERRORFLOATERRORFLOATERRORFLOATERROR Set floating point error mode.
OVERFLOWQOVERFLOWQOVERFLOWQOVERFLOWQ Hold overflow messages.
PROMPTPROMPTPROMPTPROMPT Control the system prompt character.
QUANTUMQUANTUMQUANTUMQUANTUM Set global time slice quantum.
RESTORERESTORERESTORERESTORE Restore the options from the options stack.
SAVESAVESAVESAVE Push the current options onto a stack.
SCHEDULINGSCHEDULINGSCHEDULINGSCHEDULING Set task scheduling mode.
SYSINECHOSYSINECHOSYSINECHOSYSINECHO Set echo mode for input.
TERMINALTERMINALTERMINALTERMINAL Select input response for interactive programs.
UNDERFLOWQUNDERFLOWQUNDERFLOWQUNDERFLOWQ Hold underflow messages.

Chapter 17 DAPL Commands: OPTIONS 253

Most <names> are set/reset options; they can be assigned ON/OFF or YES/NO
values.

AINEXPAND = ON|OFF
 The connector pinout on some Analog Input Expansion Boards is different than

the Data Acquisition Processor connector pinout. Only older 64-channel input
expansion boards use AINEXPAND; check the �Features of DAPL dependent on
DAP model� document for product numbers. When AINEXPAND is on, DAPL
remaps input pins on an expansion board to match the pinout of the Data
Acquisition Processor analog connector. When AINEXPAND is off, DAPL does not
remap input pins. AINEXPAND defaults to off. See the Analog Input Expansion
Board documentation for more details of input pin mapping using AINEXPAND.

BPOUTPUT = ON|OFF
 If BPOUTPUT is on, numbers sent to the digital-to-analog converters are interpreted

as bipolar voltages. If BPOUTPUT is off, numbers sent to the digital-to-analog
converters are interpreted as unipolar voltages. This option defaults to on; if the
output range of the digital-to-analog converters is changed to unipolar, this option
must be changed to off. See Chapter 8 for more information about how to use
integers with unipolar outputs. See the connector chapters for more information
about output range configuration.

 BPOUTPUT is an abbreviation for BiPolar OUTPUT.

BUFFERING = OFF|MEDIUM|LARGE
 The BUFFERING option helps tasks to optimize their data buffering configuration.

Three modes are available, OFF, MEDIUM and LARGE. MEDIUM is the default mode.
In this mode, tasks use moderate size memory buffers suitable for most operations.
The mode LARGE improves processing efficiency by providing tasks with larger
memory buffers. The mode OFF disables buffering, and tasks use small buffers or
single values for lowest latency.

DECIMAL = ON|OFF
 If DECIMAL is on, numbers sent from the Data Acquisition Processor are in

decimal format, and numbers received from the PC also are interpreted as decimal
numbers. Hexadecimal numbers can be specified with a �$� prefix in either mode.
If DECIMAL is off, all numbers are in hexadecimal format. The default is on.

 Status displays and messages are not affected by the DECIMAL flag. Memory

addresses and register displays always are hexadecimal while other values always
are decimal. Configuration and diagnostic displays generated by DISPLAYDISPLAYDISPLAYDISPLAY and
SDISPLAYSDISPLAYSDISPLAYSDISPLAY commands always show decimal values. The vector length display
always is decimal.

254 Chapter 17 DAPL Commands: OPTIONS

ERRORQ = ON|OFF
 When ERRORQ=ON, DAPL suppresses all warning and error messages. This option

allows a program in the host PC to process data at high speed without allowing for
error messages. The default is on.

 The commands DISPLAY ENUMDISPLAY ENUMDISPLAY ENUMDISPLAY ENUM or DISPLAY EMSGDISPLAY EMSGDISPLAY EMSGDISPLAY EMSG can be used at any time to

determine whether any errors have been suppressed because of the ERRORQ option.
The Data Acquisition Processor retains the first error message that is suppressed
after ERRORQ is set to on; setting ERRORQ to off after an error has occurred causes
the Data Acquisition Processor to print this error message. The error message is
printed only if the error has not already been displayed using DISPLAY ENUM or
DISPLAY EMSG.

 OVERFLOWQ, UNDERFLOWQ, and ERRORQ are useful when the output of the Data

Acquisition Processor is being manipulated by a host computer program. By
turning these flags on, the program can prevent error messages from interrupting
the Data Acquisition Processor output. Errors then can be checked under
controlled conditions using the DISPLAYDISPLAYDISPLAYDISPLAY command.

FLOATERROR = ON|OFF
 The FLOATERROR parameter takes a Boolean value ON or OFF. The default is OFF.

Setting FLOATERROR=ON allows the hardware floating point unit or emulator
software to force an interrupt, generating a diagnostic message and terminating the
task when various floating point errors occur. This feature is most useful during
custom command development and testing. Most finished applications should
select the OFF setting. The OFF setting attempts to provide a fix and continue
processing after a floating point error occurs.

OVERFLOWQ = ON|OFF
 OVERFLOWQ controls whether sampling overflow messages are reported

immediately or queued. If OVERFLOWQ is true, overflow messages are queued and
can be viewed with the command DISPLAY OVERFLOWQDISPLAY OVERFLOWQDISPLAY OVERFLOWQDISPLAY OVERFLOWQ. See Chapter 11 for more
information. The default is on.

 OVERFLOWQ, UNDERFLOWQ, and ERRORQ are useful when the output of the Data

Acquisition Processor is being manipulated by a host computer program. By
turning these flags on, the program can prevent error messages from interrupting
the Data Acquisition Processor output. Errors then can be checked under
controlled conditions using the DISPLAYDISPLAYDISPLAYDISPLAY command.

PROMPT = ON|OFF
 If PROMPT is on, the DAPL command interpreter operating with option
SYSINECHO=ON prints a prompt character at the beginning of any line on which

Chapter 17 DAPL Commands: OPTIONS 255

DAPL is requesting input. Since the prompt character changes when DAPL enters
different modes, this character provides an easy way to determine the type of input
expected. If prompt is OFF, no prompt character is printed. Setting PROMPT=OFF is
convenient when DAPL output is being processed by a computer program other
than DAPview for Windows. The default is OFF.

QUANTUM = <n>
 The QUANTUM option sets DAPL�s global time slice quantum to a given value. A

valid time quantum value ranges from 100 to 5000 (µs), board dependent. The
default time quantum is 2000 µs. A smaller time quantum forces the CPU to
switch among tasks more often. More frequent task scheduling reduces the task
switching latency at the expense of decreased system efficiency. On the other
hand, a larger time quantum improves efficiency by reducing task switching
overhead but at the cost of higher latency. See Chapter 13 for more information.

RESTORE
 Restores the most recent options stored on the options stack. See the description of
SAVE below. RESTORE does not take a <value>.

SAVE
 Pushes the current options onto a stack. The options stack is five levels deep. An
OPTIONS SAVE command beyond five stack entries will cause the oldest entry on
the stack to be lost. SAVE does not take a <value>.

SCHEDULING = ADAPTIVE|FIXED
 The SCHEDULING option sets the task scheduling mode. DAPL supports two

scheduling modes, ADAPTIVE and FIXED. The default scheduling mode is FIXED.
In the ADAPTIVE mode, DAPL schedules some tasks less often than others, based
on the actual data flow. In the FIXED mode, all tasks are scheduled equally often
in a round robin fashion. See Chapter 13 for more information.

SYSINECHO = ON|OFF
 The SYSINECHO option controls the echoing of characters read from the default

text input pipe, $SYSIN. The option SYSINECHO=ON is most useful for interactive
programs such as DAPview for Windows. The default is OFF.

TERMINAL = ON|OFF
 The TERMINAL option determines the Data Acquisition Processor response when it

receives text input while it is sending text output. When TERMINAL is on and the
Data Acquisition Processor receives any character, the output of any active
FORMATFORMATFORMATFORMAT tasks is suspended until an entire line, ending with a carriage return, is
received. The TERMINAL option should be on if the Data Acquisition Processor is

256 Chapter 17 DAPL Commands: OPTIONS

communicating with an interactive program such as DAPview for Windows. The
default is off.

UNDERFLOWQ = ON|OFF
 UNDERFLOWQ controls whether output configuration underflow messages are

reported immediately or queued. If UNDERFLOWQ is true, underflow messages are
queued and can be viewed with the command DISPLAY UNDERFLOWQDISPLAY UNDERFLOWQDISPLAY UNDERFLOWQDISPLAY UNDERFLOWQ. See
Chapter 11 for more information. The default is ON.

 OVERFLOWQ, UNDERFLOWQ, and ERRORQ are useful when the output of the Data

Acquisition Processor is being manipulated by a host computer program. By
turning these flags ON, the program can prevent error messages from interrupting
the Data Acquisition Processor output. Errors then can be checked under
controlled conditions using the DISPLAYDISPLAYDISPLAYDISPLAY command.

Note: When DAPview for Windows starts up, it changes some options to provide
interactive features such as command echoing and automatic error display.

Chapter 17 DAPL Commands: OPTIONS 257

Examples

OPTIONS DECIMAL=OFF

Set all input and output in hexadecimal format.

OPTIONS PROMPT=ON,SYSINECHO=ON,TERMINAL=ON,\
ERRORQ=OFF,OVERFLOWQ=OFF,UNDERFLOWQ=OFF

Set the Data Acquisition Processor in an interactive mode.

OPTIONS BPOUTPUT=OFF
Tell the DAPL interpreter that the DACs are configured to generate unipolar
voltages.

OPTIONS QUANTUM=500
Set the time slice quantum to 500 µs.

OPTIONS SAVE
Save current options.

See Also
DEXPANDDEXPANDDEXPANDDEXPAND, DISPLAYDISPLAYDISPLAYDISPLAY, OUTPORTOUTPORTOUTPORTOUTPORT, SDISPLAYSDISPLAYSDISPLAYSDISPLAY

258 Chapter 17 DAPL Commands: OUTPORT

OUTPORT

Inform DAPL of the types and addresses of output expansion boards in a system.

OUTPORT <x>[..<y>] TYPE=<z> [BPOUTPUT = <bpswitch>]

OUTPORTS <x>[..<y>] TYPE=<z> [BPOUTPUT = <bpswitch>]

Parameters
<x>

A value that specifies the output port number.
WORD CONSTANT

<y>
An optional output port number range.
WORD CONSTANT

<z>
A value that specifies the output port type.
WORD CONSTANT

<bpswitch>
A keyword specifying an analog output mode, ON for bipolar output, OFF for
unipolar output.
WORD CONSTANT

Description
OUTPORTOUTPORTOUTPORTOUTPORT informs DAPL of the types of output expansion boards in a system and
their output port addresses. <x> and <y> are integers between 0 and 63. <z> is 0 or
1.

<x> is an output port number. It optionally is followed by ..<y> to define an output
port number range. The range must be a multiple of four and start from a boundary
that is a multiple of 4. For example, 0..3 and 8..15 are valid address ranges, while
0..4 and 7..15 are not.

<z> is the output port type. Type 0 is for digital output expansion boards. Type 1 is
for analog output expansion boards. For analog output expansion boards the
optional parameter BPOUTPUT=<bpswitch> selects bipolar or unipolar range.
Setting <bpswitch> value OFF selects unipolar operation. Setting <bpswitch>
value ON selects bipolar operation. The default is ON.

Chapter 17 DAPL Commands: OUTPORT 259

The following table summarizes the output behavior of the analog signal for each
mode of operation. The value of Vmax is typically +5V or +10V and is dependent
on the hardware configuration. See your hardware documentation for more
information about voltage ranges.

BPOUTPUT mode -----> Output voltage range

Number Range ON OFF

-32767 to 0 -Vmax to 0 0

0 to +32767 0 to Vmax 0 to Vmax

Example

OUTPORT 0..3 TYPE=1

Set output port address 0-3 to analog output expansion.

See Also
DISPLAYDISPLAYDISPLAYDISPLAY, OPTIONSOPTIONSOPTIONSOPTIONS, DEXPANDDEXPANDDEXPANDDEXPAND, DIGITALOUTDIGITALOUTDIGITALOUTDIGITALOUT, DACOUTDACOUTDACOUTDACOUT

260 Chapter 17 DAPL Commands: OUTPUTWAIT

OUTPUTWAIT

Delay output updating until a specified number of samples are present in output
channel pipes.

OUTPUTWAIT <n>

Parameters
<n>

Number of samples that must be in an output channel pipe before updating.
WORD CONSTANT | LONG CONSTANT

Description
OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT causes DAPL to wait until <n> samples are in an output
configuration�s output channel pipes before output updating begins. <n> must not be
zero and must be a multiple of the number of output channel pipes. OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT
applies to noncyclical output configurations only, and defaults to 100 milliseconds
of output data. For most applications, the default value of OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT should not
be overridden.

Note: Setting <n> less than its default value may result in output underflow.

Example

OUTPUTWAIT 1000

Wait for 1000 values before starting to update the outputs.

See Also
COUNTCOUNTCOUNTCOUNT, CYCLECYCLECYCLECYCLE, UPDATEUPDATEUPDATEUPDATE

Chapter 17 DAPL Commands: PAUSE 261

PAUSE

Cause DAPL command processing to pause for a specified number of milliseconds.

PAUSE <milliseconds>

PA <milliseconds>

Parameters
<milliseconds>

Time in milliseconds that DAPL pauses.
WORD CONSTANT | LONG CONSTANT

Description
PAUSEPAUSEPAUSEPAUSE causes the DAPL command interpreter to pause for a specified number of
milliseconds.

This command can be used when scheduling a sequence of operations, to allow time
for each test in the sequence to finish.

Note: The timing accuracy of PAUSEPAUSEPAUSEPAUSE depends on the timing accuracy of the Data
Acquisition Processor real-time clock. The real-time clock of the Data Acquisition
Processor is derived from the CPU crystal clock and provides good long-term
accuracy.

Example

PAUSE 1000

Pause DAPL for 1 second.

262 Chapter 17 DAPL Commands: PCASSERT

PCASSERT

Define a task that asserts a trigger based on asynchronous input.

PCASSERT (<control>, <trigger> [,<ref_rate>])

Parameters
<control>

A source of data indicating a triggering event.
WORD VARIABLE | LONG VARIABLE | WORD PIPE

<trigger>
The trigger asserted when the variable changes to a nonzero value.
TRIGGER

<ref_rate>
An optional value that specifies the amount of data reduction.
WORD CONSTANT | WORD PIPE | LONG PIPE

Description
PCASSERTPCASSERTPCASSERTPCASSERT asserts a trigger based on asynchronous input from <control>.
<control> may be a variable or a pipe. A trigger is asserted each time the variable
changes to a nonzero value, or each time that a number appears in the input pipe.
PCASSERTPCASSERTPCASSERTPCASSERT automatically resets the variable to zero, or removes the value from the
pipe to clear the trigger request. The <control> is ordinarily used by the PC and
not by internal DAPL operations. Internal DAPL operations should use synchronous
triggering commands for guaranteed synchronization.

PCASSERTPCASSERTPCASSERTPCASSERT differs from other triggering commands in the way it updates the trigger
sample count. Commands such as LIMITLIMITLIMITLIMIT analyze a stream of data. Trigger sample
numbers are based on the number of values that LIMITLIMITLIMITLIMIT scans. PCASSERTPCASSERTPCASSERTPCASSERT, on the
other hand, does not trigger on events from a data stream.

PCASSERTPCASSERTPCASSERTPCASSERT bases its trigger sample numbers on the sample count of the active input
configuration. For an input configuration with a single sampled channel, the
assertion timestamp corresponds to the current sample number of the active input
configuration. When there are multiple input channels in the sampling configuration,
or when a command such as AVERAGEAVERAGEAVERAGEAVERAGE reduces the data rate, this count is too large.
In this case a constant <ref_rate> can be specified. The input configuration
sample count is divided by <ref_rate> before the trigger is updated.

Chapter 17 DAPL Commands: PCASSERT 263

When the number of samples in the data stream does not have a simple relationship
to the sampled data, the <ref_rate> parameter can alternatively specify a data
pipe acting as a reference stream. The contents of this pipe are counted but not
processed, and this count is used for updating the trigger.

PCASSERTPCASSERTPCASSERTPCASSERT is intended for individual, isolated events. PCASSERTPCASSERTPCASSERTPCASSERT will not trigger
multiple times on the same sample. Pipe contents or the variable value can be
monitored to check on completion of the request.

Examples

PCASSERT (V, T)

Assert trigger at current input sample number whenever variable V becomes
nonzero.

PCASSERT (P1, T)
Assert trigger at current input sample number whenever a value is read from pipe
P1.

PCASSERT (V, T, 100)
Assert trigger for a WAITWAITWAITWAIT command that is reading data reduced 100 times by an
AVERAGEAVERAGEAVERAGEAVERAGE command.

See Also
WAITWAITWAITWAIT, LIMITLIMITLIMITLIMIT

264 Chapter 17 DAPL Commands: PCOUNT

PCOUNT

Define a task that counts the number of values placed into a pipe.

PCOUNT (<in_pipe>, <variable>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<variable>
Variable where the counts are incremented.
WORD VARIABLE | LONG VARIABLE

Description
PCOUNTPCOUNTPCOUNTPCOUNT reads values from <in_pipe> and increments the contents of <variable>
each time a value is read. The values are discarded.

<variable> is not reset to zero when a PCOUNTPCOUNTPCOUNTPCOUNT task is started. Consequently,
PCOUNTPCOUNTPCOUNTPCOUNT variables can be used to keep running totals of the number of values placed
in pipes. To reset a variable, use a LETLETLETLET command.

A useful application of this command is temporary removal of data from a pipe
during application development and testing.

Example

PCOUNT (P1,V1)

Count the number of values appearing in pipe P1 and update the value of variable
V1.

See Also
PVALUEPVALUEPVALUEPVALUE

Chapter 17 DAPL Commands: PDEFINE 265

PDEFINE

Create a processing procedure.

PDEFINE <name>

PDEF <name>

Parameters
<name>

Unique processing procedure name.
Alphanumeric string limited to 23 characters.

Description
PDEFINEPDEFINEPDEFINEPDEFINE begins a group of commands that define a processing procedure.

PDEFINE <name>
 [task definition command] *
END

Each task definition can specify one of the pre-defined commands listed in
Chapter 5, a downloaded custom command, or a DAPL expression calculation.

The ENDENDENDEND command completes the procedure started by the PDEFINEPDEFINEPDEFINEPDEFINE command,
making the procedure available for execution.

<name> must be a unique name assigned to the processing procedure. <name> must
be an alphanumeric string with no spaces and is limited to 23 characters.

Example

PDEFINE PR
...
END

Define a processing procedure named PR.

See Also
ENDENDENDEND, IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE

266 Chapter 17 DAPL Commands: PEAK

PEAK

Define a task that detects maxima and minima of data.

PEAK (<in_pipe>, <peak_select>, <trigger> [, <region>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<peak_select>
A numeric parameter that determines the types of peaks to detect.
WORD CONSTANT

<trigger>
The trigger asserted when peaks are detected.
TRIGGER

<region>
An optional parameter that specifies the region for detecting peaks.
REGION

Description
PEAKPEAKPEAKPEAK looks for maxima and minima of data read from <in_pipe>.
<peak_select> determines the types of peaks to detect according to the following
table:

0 Detect minima
1 Detect maxima
2 Detect both minima and maxima

When a peak of the appropriate type is detected, as indicated by a sign change in the
derivative of the input data, PEAKPEAKPEAKPEAK asserts <trigger>.

An optional <region> also can be specified. If this <region> is present, only
peaks with values satisfying <region> are detected; all others are ignored.

Chapter 17 DAPL Commands: PEAK 267

Examples

PEAK (P1, 2, T1)

Assert trigger T1 when any maxima or minima are detected in the data from pipe
P1.

PEAK (P2, 0, T2, INSIDE,8000,9000)
Assert trigger T2 when a minimum is detected with a value from 8000 to 9000.

See Also
DLIMITDLIMITDLIMITDLIMIT, HIGHHIGHHIGHHIGH, LIMITLIMITLIMITLIMIT, LOWLOWLOWLOW, FINDMAXFINDMAXFINDMAXFINDMAX

268 Chapter 17 DAPL Commands: PID1

PID1

Define a task for PID feedback control.

PID1 (<in_pipe>, <set_point>, <pgain>, <igain>, <dgain>
 [<bypass>,] <out_pipe>, [<low_clamp>, <high_clamp>]
 [, <ramp>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<set_point>
WORD CONSTANT | WORD VARIABLE

<pgain>
A value that determines the degree of proportional response.
WORD CONSTANT | WORD VARIABLE

<igain>
A value that determines the degree of integral response.
WORD CONSTANT | WORD VARIABLE

<dgain>
A value that determines the degree of derivative response.
WORD CONSTANT | WORD VARIABLE

<bypass>
An override switch for bypassing automatic control.
WORD VARIABLE

<out_pipe>
Output data pipe for control output values.
WORD PIPE

<low_clamp>
An optional parameter that limits the minimum control output values.
WORD CONSTANT | WORD VARIABLE

<high_clamp>
An optional parameter that limits the maximum control output values.
WORD CONSTANT | WORD VARIABLE

Chapter 17 DAPL Commands: PID1 269

<ramp>
A value that specifies the maximum amount of change in setpoint allowed per
PID update.
WORD CONSTANT

Description
PID1PID1PID1PID1 implements Proportional Integral Derivative closed-loop process control. The
PID1PID1PID1PID1 command reads feedback samples of the controlled system�s output from
<in_pipe> and compares them to the desired system output level specified by
<set_point>. The difference is the control error. The PID1PID1PID1PID1 command computes
control output values to make the controlled system output match the specified
setpoint level, reducing the control error to 0. PID control output values are placed
into <out_pipe>.

The PID strategy uses three correction rules to drive the system output toward the
setpoint:

1. Proportional correction: Use a greater control effort when the system�s output
deviates further from the setpoint.

2. Integral correction: Use gradually increasing control effort when the system�s
output remains away from the setpoint for an extended time.

3. Derivative correction. Decrease the control effort if the system�s output changes
too fast.

This strategy is more formally defined by the following equation:

control output = -(<pgain>*e + <igain>*intgrl(e) +
<dgain>*deriv(e))

where

 e = feedback from <in_pipe> - <setpoint>
 intgrl(e) = integral of e
 deriv(e) = derivative of e

The integral and derivative are estimated using discrete approximations.

A common alternate form of the PID formula expresses the output in terms of a
proportionality constant (P), integral time (TI), and derivative time (TD):

 1
output = P (e +---- * intgrl(e) + TD * deriv(e))
 TI

The parameters of the 2 forms of the PID equation are related by:

270 Chapter 17 DAPL Commands: PID1

 P
P = <pgain> ---- = <igain> P * TD = <dgain>
 TI

The <pgain>, <igain>, <dgain>, <low_clamp> and <high_clamp> parameters
of the PID1PID1PID1PID1 command can be variables. Variable parameters can be changed at any
time, using the PVALUEPVALUEPVALUEPVALUE command or the LETLETLETLET command. The PID1PID1PID1PID1 command checks
for changed variables each update cycle.

The <pgain>, <igain>, and <dgain> parameters may be constants or variables.
These gain parameters determine the degree of proportional, integral, and derivative
response, respectively. The gain coefficients have the following scaling and range
restrictions:

� <pgain> ranges from -10000 to 10000. Each unit of <pgain> represents a step of
0.01, yielding an effective range of -100.00 to 100.00 .

� <igain> ranges from -10000 to 10000. Each unit of <igain> represents a step of
0.0001, yielding an effective range of -1.0 to 1.0 .

� <dgain> ranges from -10000 to 10000. Each unit of <dgain> represents a step of
0.01, yielding an effective range of -100.00 to 100.00 .

When the optional <bypass> variable is specified and has a nonzero value, PID
action is not applied. Instead, the control output directly tracks changes to the
setpoint value, remaining constant otherwise. This feature is useful, for example, in
manually bringing a system from a �cold start� to an operating level near the desired
setpoint. Setting the <bypass> variable to 0 enables PID action from that point.
(Most systems will also need an adjustment to the setpoint value.)

When the optional <low_clamp> and <high_clamp> parameters are specified,
these parameters respectively limit the minimum and maximum control output
values of the PID1PID1PID1PID1 command. While the PID1PID1PID1PID1 command output is being limited, the
error integral is not updated. This improves transient response for large changes in
the setpoint and at initial startup.

The optional <ramp> parameter is useful for systems that require high proportional
gain settings and are sensitive to rapid setpoint changes. The <ramp> parameter
specifies the maximum amount of change in setpoint that is allowed per PID update.
For example, when the <ramp> value is 10 and the <setpoint> is changed from 0
to 1000, the setpoint is increased during the next 100 updates to reach the new
setpoint level. The <ramp> parameter does not have any effect when the <bypass>
option is active.

Variable gain parameters, variable limit parameters, the <ramp> feature and the
<bypass> feature add small amounts of overhead to PID loop operation. These

Chapter 17 DAPL Commands: PID1 271

features should be used only when needed, and should be avoided for high-speed
operation.

Note: The PID1PID1PID1PID1 command is a replacement for the PID command provided in
previous versions of DAPL and DAPL 2000.

Examples

PID1 (P1,12000,VP,VI,VD,P2)

Receive feedback information about system output level in pipe P1. For each value
received, use gains specified in variables VP, VI, and VD to compute control values
for driving the system level to the setpoint level 12000. Send control output values
to pipe P2.

VARIABLE VSET=8000
VARIABLE VLOCK=1
PID1 (P1,VSET,VP,VI,VD,VLOCK,P2,40)
...
START
PAUSE 10000
LET VLOCK=0
LET VSET=12000

Send the controlled system the value 8000 for the first 10 seconds. After this amount
of time, adjust the setpoint level to 12000 and begins normal PID updates. During
the setpoint transition from 8000 to 120000, adjust the setpoint by 40 before each
update, so that the setpoint reaches the 12000 level after 100 update intervals.

PID1 (P1,12000,VP,VI,VD,P2, 0,32767)
Operate the same as the first example, but clamp the output levels so that negative
values of control output are not allowed.

See Also
DACOUTDACOUTDACOUTDACOUT, PVALUEPVALUEPVALUEPVALUE, PWMPWMPWMPWM

272 Chapter 17 DAPL Commands: PIPES

PIPES

Create new pipes.

PIPES <pipe_def> [, <pipe_def>]*

PIPE <pipe_def> [, <pipe_def>]*

P <pipe_def> [, <pipe_def>]*

<pipe_def> = <pipe_name> [MAXSIZE=<max_size>]
[WAIT | NOWAIT] [BYTE | WORD | LONG | FLOAT | DOUBLE]

Parameters
<pipe_name>

Assigned pipe name.

<max_size>
A value that sets the maximum number of values stored in a pipe.
WORD CONSTANT | LONG CONSTANT

Description
The PIPESPIPESPIPESPIPES command creates new pipes. The BYTE, WORD, or LONG keyword
specifies the data type of the pipe. If the data type is omitted, the pipe holds 16-bit
(word) values; if LONG is specified, the pipe holds 32-bit (long) values; if BYTE is
specified, the pipe holds 8-bit (byte) values.

Pipes initially are empty.

<max_size> sets the maximum number of values stored in a pipe. The actual
maximum size may be slightly larger than the number specified, because of internal
system rounding. If a maximum size is not specified, it defaults to 32768. The
maximum size of a DAPL pipe is limited by the available onboard buffer memory.
In most cases, it is best to omit this parameter and let DAPL select the maximum
sizes of pipes.

When a pipe reaches its maximum size during the execution of a processing
procedure, it cannot accept additional data. If the pipe is defined with the WAIT
option, a task attempting to add data to the pipe is temporarily suspended until some
data are removed from the pipe. If the NOWAIT option is specified, a task trying to
add data to the full pipe does not wait for space in the pipe. Instead of adding the

Chapter 17 DAPL Commands: PIPES 273

data, the data is lost. WAIT is the default option; NOWAIT is useful only in specialized
applications.

Examples

PIPE P1

Define the pipe P1, with a maximum size of 32768.

PIPES P2 MAXSIZE=1024, P3 LONG
Define a word pipe with maximum size 1024 and a long pipe with maximum size
4096.

PIPE A234 MAXSIZE=10000 NOWAIT BYTE
Define a byte pipe with maximum size 10000 and the NOWAIT option, which flushes
data to be added whenever the pipe is full.

See Also
EMPTYEMPTYEMPTYEMPTY, FILLFILLFILLFILL

274 Chapter 17 DAPL Commands: POLAR

POLAR

Define a task that converts input data pairs from Cartesian to polar coordinates.

POLAR (<p1>, <p2>, <p3>, <p4> [, <limit>])

Parameters
<p1>

The pipe that contains the real parts of complex numbers.
WORD PIPE

<p2>
The pipe that contains the imaginary parts of complex numbers.
WORD PIPE

<p3>
The pipe that receives the amplitude of the complex numbers.
WORD PIPE

<p4>
The pipe that receives the phase of the complex numbers.
WORD PIPE

<limit>
An optional value that specifies the lower limit for the amplitude input.
WORD CONSTANT

Description
Converts input data into polar coordinates. <p1> and <p2> are pipes that contain
real and imaginary parts of complex numbers. <p3> and <p4> are pipes that contain
the amplitude and phase of the complex numbers read from <p1> and <p2>. The
phase is a binary fraction of one half cycle. To convert to radians, divide by 32768
and multiply by π. To convert to degrees, divide by 32768 and multiply by 180. The
following DAPL expression performs this conversion:

P2 = P1 * 180 / 32768

In some applications, small input numbers should be ignored. If the optional
parameter <limit> is present, the phase output is forced to zero when the
amplitude of the input is less than <limit>.

Chapter 17 DAPL Commands: POLAR 275

Examples

POLAR (P1, P2, P3, P4)

Read real and imaginary parts of complex numbers from P1 and P2, and return
amplitude and phase in P3 and P4.

See Also
DECIBELDECIBELDECIBELDECIBEL, FFTFFTFFTFFT, CABSCABSCABSCABS

276 Chapter 17 DAPL Commands: PRINT

PRINT

Define a task that prints data as ASCII text.

PRINT [(<in_pipe> [, <out_pipe>])]

Parameters
<in_pipe>

Optional input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe>
Optional output text pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
PRINTPRINTPRINTPRINT formats data as ASCII text and transfers this text to the PC for logging or
display. The formatting is not configurable. When <in_pipe> is omitted, data is
taken from all data channels sampled by the currently active input sampling
configuration. When <in_pipe> is specified, a subset of the channel range can be
selected, and an optional <out_pipe> parameter can name a communication text
pipe other than the default $SYSOUT communication pipe to receive the text.

PRINTPRINTPRINTPRINT attempts to build each text line with one sample from each channel. If
<in_pipe> has too many channels to display in this manner, or if channels cannot
be identified from the source pipe, each sample value is displayed on a separate text
line.

Examples

PRINT

Print all input channel pipes.

PRINT (IPIPES(0,1,2), LISTING)
Print data from input channel pipes 0, 1, and 2, sending the text to LISTING, a
communications pipe set up for this purpose.

See Also
BPRINTBPRINTBPRINTBPRINT, FORMATFORMATFORMATFORMAT

Chapter 17 DAPL Commands: PULSECOUNT 277

PULSECOUNT

Define a task that counts low to high bit transitions.

PULSECOUNT (<in_pipe>, <bit_number>, <cnt>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<bit_number>
A value that represents the bit number from which low to high transitions are
detected.
WORD CONSTANT

<cnt>
A variable that is incremented by one every time a low to high transition is
detected.
WORD VARIABLE | LONG VARIABLE

Description
PULSECOUNTPULSECOUNTPULSECOUNTPULSECOUNT reads data from <in_pipe> and detects low to high transitions of bit
<bit_number>. Bit 0 is the least significant bit. Every time a low to high transition
is detected, the value of variable <cnt> is incremented by one.

Example

PULSECOUNT (P, 4, V)

Read data from pipe P and increment variable V whenever bit 4 of the data changes
from zero to one.

See Also
CTCOUNTCTCOUNTCTCOUNTCTCOUNT, FREQUENCYFREQUENCYFREQUENCYFREQUENCY

278 Chapter 17 DAPL Commands: PVALUE

PVALUE

Define a task that updates a variable with the most recent value from a pipe.

PVALUE (<in_pipe>, <variable>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<variable>
The variable that is updated.
WORD VARIABLE | LONG VARIABLE | FLOAT VARIABLE |
DOUBLE VARIABLE

Description
PVALUEPVALUEPVALUEPVALUE reads data from <in_pipe> and updates <variable> with the most recent
value. The data types of the pipe and variable must match.

Example

PVALUE (P1, V1)

Read data from P1 and place the data in variable V1.

See Also
PCOUNTPCOUNTPCOUNTPCOUNT

Chapter 17 DAPL Commands: PWM 279

PWM

Define a task that converts a continuous signal to a pulsewidth modulated signal on a
single bit.

PWM (<in_pipe>, <low>, <high>, <length>, <source>, <bit>,
 <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<low>
A lower threshold corresponding to output duty cycle of 0%.
WORD CONSTANT

<high>
An upper threshold corresponding to output duty cycle of 100%.
WORD CONSTANT

<length>
A value that specifies the data block size.
WORD CONSTANT

<source>
A data value or stream supplying values for output data bits not affected by the
modulation.

WORD CONSTANT | WORD VARIABLE | WORD PIPE

<bit>
A value that selects the bit to modulate.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output data pipe for modulated output signal.
WORD PIPE

Description
PWMPWMPWMPWM is an abbreviation for Pulse Width Modulation. This command allows encoding
of a continuous signal as digital pulses of varying width. The output pulse stream is
then multiplexed with other digital pulse streams.

280 Chapter 17 DAPL Commands: PWM

PWMPWMPWMPWM converts data from <in_pipe> to ON/OFF bit transitions in <out_pipe>.
<bit> selects the bit to modulate. A block of <length> values is read from
<in_pipe> and averaged. PWMPWMPWMPWM then generates <length> output values. If the
average is less than <low>, the bit is turned OFF for all output values. If the average
is greater than <high>, the bit is turned ON for all the output values.

Otherwise, the values between <low> and <high> are mapped linearly to the
number range 0..<length>. Calling this number M, the output block contains M
values with the output bit set to 1, followed by <length - M> values with the
output bit set to 0.

The PWMPWMPWMPWM command output is typically sent to the digital output port. If no other
digital output bits are needed, the <source> parameter can specify a fixed bit
pattern for all of the other bits. Or, if other digital output values are needed, the PWMPWMPWMPWM
command will copy all of the bits from the original <source> pipe and modify only
the one bit position specified by <bit>.

Note: The difference between <high> and <low> must not exceed 32767.

Example

PIPES P1, P2, B1
PWM (P1, 0, 10000, 500, $FFFF, 0, B1)
PWM (P2, 0, 10000, 500, B1, 1, OP1)

Take values from pipes P1 and P2 and map the data ranges from 0 to 10000 into
pulse width modulated digital signals. Put the first modulated signal into bit position
0 and the second modulated signal into bit position 1. Set all unused digital bits to
value 1.

See Also
ODEFINEODEFINEODEFINEODEFINE, PID1PID1PID1PID1

Chapter 17 DAPL Commands: RANDOM 281

RANDOM

Define a task that generates 16-bit or 32-bit random values.

RANDOM (<type>, <seed>, <out_pipe>)

Parameters
<type>

This parameter is for future expansion and must be zero.
WORD CONSTANT

<seed>
A value that initializes the sequence of random numbers.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe for pseudorandom numbers.
WORD PIPE | LONG PIPE

Description
RANDOMRANDOMRANDOMRANDOM generates pseudorandom numbers appropriate for the specified
<out_pipe> (16-bit or 32-bit). Random numbers can be sent to a digital-to-analog
converter to generate white noise.

<type> must be zero.

<seed> determines the sequence of random numbers. Any nonzero value generates
a predetermined, reproducible sequence of numbers. A value of zero creates a seed
that is derived from the Data Acquisition Processor real-time clock.

Note: Some previous versions of RANDOMRANDOMRANDOMRANDOM use a different method of producing the
pseudorandom values. A seed value producing a known, repeatable sequence of
numbers in the previous version will now produce a different repeatable sequence.

Examples

PIPE P1
RANDOM (0, 0, P1)

Send pseudorandom numbers between 0 and 32767 to word pipe P1.

282 Chapter 17 DAPL Commands: RANDOM

PIPE P1 LONG
RANDOM (0, 1774985, P1)

Send pseudorandom numbers between 0 and 2147483563 to long pipe P1.

PIPES PR1 WORD, PR2 WORD, PRAND WORD
RANDOM(0,0,PR1)
RANDOM(0,0,PR2)
PRAND = (PR1-PR2)/2

Generate 16-bit zero mean, triangularly distributed white noise on interval -32767 to
+32767.

See Also
WAVEFORMWAVEFORMWAVEFORMWAVEFORM

Chapter 17 DAPL Commands: RANGE 283

RANGE

Define a task that transfers data in a specified region from an input pipe to an output
pipe.

RANGE (<in_pipe>, <region>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<region>
A region selecting which data values are transferred.
REGION

<out_pipe>
Output data pipe.
WORD PIPE

Description
RANGERANGERANGERANGE transfers data values that satisfy <region> from <in_pipe> to
<out_pipe>. Values that do not satisfy <region> are ignored.

Example

RANGE (P1, INSIDE,-10000,10000, P2)

Read data from pipe P1 and transfer all values from -10000 to 10000 to pipe P2.

See Also
HIGHHIGHHIGHHIGH, LIMITLIMITLIMITLIMIT, LOWLOWLOWLOW, PEAKPEAKPEAKPEAK

284 Chapter 17 DAPL Commands: RAVERAGE

RAVERAGE

Define a task that computes the running average of a data stream.

RAVERAGE (<in_pipe>, <count>, <out_pipe>,
[<phase_correction>])

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<count>
A positive integer that specifies the number of values used in each averaging
calculation.
WORD CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE

<phase_correction>
An optional value that specifies a time-shift correction for filtering applications.
WORD CONSTANT

Description
For each value RAVERAGERAVERAGERAVERAGERAVERAGE reads from <in_pipe>, it computes the average of the
last <count> values, and puts this running average into <out_pipe>. <count> is a
positive integer. Unlike the AVERAGEAVERAGEAVERAGEAVERAGE command that computes one result per block
of data, RAVERAGERAVERAGERAVERAGERAVERAGE computes a new result for each new value.

RAVERAGERAVERAGERAVERAGERAVERAGE begins generating output only after <count> samples are read. This
produces a �time lag� between the input and output streams. This can be important
in triggering applications because a trigger assertion generated from averaged data
contains a different sample count from the sample count of a trigger assertion from
unaveraged data. If the optional parameter <phase_correction> is present, the
first averaged result is repeated <count> times so that sample counts from
RAVERAGERAVERAGERAVERAGERAVERAGE correspond to unaveraged sample counts. The value of
<phase_correction>, if present, should be zero.

Chapter 17 DAPL Commands: RAVERAGE 285

Example

RAVERAGE (P1, 10, P2)

Reads data from pipe P1, compute the averages of moving windows of 10 values,
and put the average values in pipe P2.

See Also
AVERAGEAVERAGEAVERAGEAVERAGE, BAVERAGEBAVERAGEBAVERAGEBAVERAGE, FIRFILTERFIRFILTERFIRFILTERFIRFILTER

286 Chapter 17 DAPL Commands: REPLICATE

REPLICATE

Define a task that replicates data values.

REPLICATE (<in_pipe>, <cnt>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<cnt>
A value that specifies the number of copies of each data value to transfer.
WORD CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE

Description
REPLICATEREPLICATEREPLICATEREPLICATE reads data values from <in_pipe> and places <cnt> copies of each
data value into <out_pipe>.

Example

REPLICATE (P1, 3, P2)

Transfer three copies of each data value from P1 into pipe P2.

See Also
COPYCOPYCOPYCOPY, MERGEMERGEMERGEMERGE

Chapter 17 DAPL Commands: RESET 287

RESET

Stop all configurations and clear the current configuration.

RESET

Description
RESETRESETRESETRESET stops all configurations, clears all memory, and erases all DAPL symbols
except communication pipes and downloaded command modules.

RESETRESETRESETRESET does not affect OPTIONSOPTIONSOPTIONSOPTIONS settings.

See Also
EMPTYEMPTYEMPTYEMPTY, ERASEERASEERASEERASE

288 Chapter 17 DAPL Commands: RMS

RMS

Define a task that calculates the root-mean-square average of data blocks.

RMS (<in_pipe>, <n>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<n>
Number of data values per block.
WORD CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE

Description
RMSRMSRMSRMS reads blocks of <n> data values from <in_pipe>, calculates the square root of
the average of the squares of the <n> data values, and writes the result to pipe
<out_pipe>. RRRRMSMSMSMS is an abbreviation for Root Mean Square.

Example

RMS(P1, 256, P2)

Calculate RMSRMSRMSRMS values of blocks of 256 values from P1 and place the results in P2.

See Also
AVERAGEAVERAGEAVERAGEAVERAGE, VARIANCEVARIANCEVARIANCEVARIANCE

Chapter 17 DAPL Commands: SAMPLEHOLD 289

SAMPLEHOLD

Pause DAPL command processing until all sampled data is processed.

SAMPLEHOLD

Description
SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD pauses DAPL until the currently active input configuration finishes
sampling and all input channel pipes are empty. The SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD command
guarantees that all data are taken for processing, and the final PAUSE allows enough
time to finish the last processing and complete data transfers to the PC.

SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD can be used only when the active input configuration has a COUNTCOUNTCOUNTCOUNT
specification. It should not be used with UPDATEUPDATEUPDATEUPDATE BURST mode.

Example

START <input_configuration>
SAMPLEHOLD
PAUSE 500
STOP <input_configuration>

After starting an input configuration, wait for sampling initiated by hardware
triggering to finish. Wait an additional 1/2 second after sampling has finished to allow
processing of data to complete. Then stop everything.

See Also
COUNTCOUNTCOUNTCOUNT, STARTSTARTSTARTSTART, STOPSTOPSTOPSTOP, UPDATEUPDATEUPDATEUPDATE

290 Chapter 17 DAPL Commands: SAWTOOTH

SAWTOOTH

Define a task that generates sawtooth wave data.

SAWTOOTH (<amplitude>, <period>, <out_pipe>
 [,<mod_type>, <mod1> [, <mod2>]])

Parameters
<amplitude>

A value that is one half of the peak to peak range of the output.
WORD CONSTANT | WORD VARIABLE

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for sawtooth wave data.
WORD PIPE

<mod_type>
A value that selects amplitude and/or frequency modulation of the output wave.
WORD CONSTANT

<mod1>
Pipe for first modulation signal.
WORD PIPE

<mod2>
Pipe for second modulation signal.
WORD PIPE

Description
SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH generates sawtooth wave data and places the data in <out_pipe>.
<period> is the number of sample values in each wave. The <amplitude> is one
half the peak to peak distance of the output wave. The maximum value of
<amplitude> is 32767.

Note: SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH is identical to WAVEFORMWAVEFORMWAVEFORMWAVEFORM, with <mod_type> set equal to 1.

Chapter 17 DAPL Commands: SAWTOOTH 291

Three optional modulation parameters may be specified. <mod_type> selects
amplitude and/or frequency modulation of the output wave. The value of
<mod_type> must be one of the following:

 1. amplitude modulation controlled by the data in <mod1>
 2. frequency modulation controlled by the data in <mod1>
 3. amplitude and frequency modulation controlled by the data in <mod1> and
<mod2>, respectively

<mod1> and <mod2> are pipes. One value is read from the pipe(s) for each value
output by SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH. Modulation values are interpreted as signed binary fractions;
they are multiplied by the base amplitude or frequency to obtain the amplitude or
frequency.

An alternative method for changing the amplitude or frequency of SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH during
execution uses a DAPL variable as the <amplitude> or <period> parameter of
SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH. This variable can be changed during execution using a LETLETLETLET command.
This is efficient, but cannot adjust the amplitude or frequency continuously, and
changes are detected and applied asychronously.

Example

SAWTOOTH (1000, 100, P2)

Generate a sawtooth wave with values ranging from -1000 to 1000, with a period of
100 samples.

See Also
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SINEWAVESINEWAVESINEWAVESINEWAVE, TRIANGLETRIANGLETRIANGLETRIANGLE, SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE, WAVEFORMWAVEFORMWAVEFORMWAVEFORM

292 Chapter 17 DAPL Commands: SCALE

SCALE

Define a task that applies gain and offset corrections to data.

SCALE (<in_pipe>, <X>, <Y>, <Z>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<X>
Scalar offset to apply to data.
WORD CONSTANT | WORD VARIABLE

<Y>
Scalar multiplier to apply to data.
WORD CONSTANT | WORD VARIABLE

<Z>
Scalar divisor to apply to data.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE

Description
SCALESCALESCALESCALE reads a value from <in_pipe>, transforms the value, and puts the result into
<out_pipe>. The following formula summarizes the arithmetic operations
performed by SCALESCALESCALESCALE, where the data value is represented by the letter D:

(D + X) * Y

 Z

X, Y and Z can be negative; Z must not be zero.

Note: A DAPL expression can also perform this scaling operation, and is more
general but slightly slower.

Chapter 17 DAPL Commands: SCALE 293

Examples

SCALE (P3, -100, 3, 2, P4)

Subtract 100 from data values and then multiply by 3/2.

SCALE (P5, 0, -5000, -32768, P6)
Convert -5 to +5 volt bipolar A/D counts into millivolt readings.

See Also
OFFSETOFFSETOFFSETOFFSET

294 Chapter 17 DAPL Commands: SCAN

SCAN

Define a task that copies sets of input samples as a unit.

SCAN (<in_pipe>, <p1> [, <p2>]*)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<p1>
First output data pipe.
WORD PIPE

<p2>
Additional output data pipes.
WORD PIPE

Description
SCANSCANSCANSCAN reads data from <in_pipe> and puts the data into one or more output pipes.
The input pipe is an input channel list pipe. SCANSCANSCANSCAN does not transfer any data until a
sample is available for each channel pipe in the input channel pipe list. Then SCANSCANSCANSCAN
transfers the block of input channel pipe data into its output pipes.

SCANSCANSCANSCAN is most useful in low latency applications that require one sample from each
channel. See Chapter 13 for more information.

Example

SCAN (IPIPES(0,1,2,3,4), P1)

Transfer data from input channel pipes 0, 1, 2, 3, and 4 to the pipe P1 in groups of
five samples, one per channel.

See Also
COPYCOPYCOPYCOPY, LCOPYLCOPYLCOPYLCOPY, OPTIONSOPTIONSOPTIONSOPTIONS

Chapter 17 DAPL Commands: SDISPLAY 295

SDISPLAY

Print information about individual DAPL symbols.

SDISPLAY <symbol>[, <symbol>]*

SDISP <symbol>[, <symbol>]*

SD <symbol>[, <symbol>]*

Parameters
<symbol>

Symbol name.

Description
SDISPLAYSDISPLAYSDISPLAYSDISPLAY (symbol display) formats information about individual DAPL symbols
and sends the information to the $SYSOUT pipe for display. For example, if a
processing procedure symbol is given, the contents of the processing procedure are
displayed. If a variable name is specified, the current value of the variable is
displayed.

Example

SDISPLAY V1,P1,T1

Display information about symbols V1, P1, and T1.

See Also
DISPLAYDISPLAYDISPLAYDISPLAY, VARIABLESVARIABLESVARIABLESVARIABLES

296 Chapter 17 DAPL Commands: SEPARATE

SEPARATE

Define a task that distributes data consecutively into one or more output pipes.

SEPARATE (<in_pipe>, <out_pipe_0>, ... , <out_pipe_n-1>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe_0>
First output pipe for separated data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<out_pipe_n-1>
Last output pipe for separated data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SEPARATESEPARATESEPARATESEPARATE reads a stream of mixed data from <in_pipe> and places the data
consecutively into one or more output pipes. One value is sent to <out_pipe_0>,
the next value is sent to <out_pipe_1>, and so forth. After all output pipes have
received a value, the cycle repeats.

Depending on the data type of the <in_pipe> and the data type of the output pipe
receiving the data, values from the input stream are processed in one of several
ways:

• Copy � copied with no change to value or type,

• Alias � copied in a manner that preserves bit patterns but interprets the
patterns as a different data type,

• Splice � combined with additional values from the input stream to
reconstruct a number of higher precision,

• Convert � converted to the data type of the output pipe in a manner that
preserves value,

• Not allowed � conversions that could result in loss of precision or range
errors are not supported.

Chapter 17 DAPL Commands: SEPARATE 297

The following table shows which operations are applied for each combination of
<in_pipe> and <out_pipe> data types.

<in_pipe> <out_pipe>

 WORD LONG FLOAT DOUBLE

WORD copy splice splice splice

LONG convert copy alias splice

FLOAT convert ---- copy convert

DOUBLE convert convert convert copy

Each conversion operation reverses the conversion that the MERGEMERGEMERGEMERGE command would
apply to construct the merged stream. See the conversion table provided for the
MERGEMERGEMERGEMERGE command.

Note: Be careful when applying the SEPARATESEPARATESEPARATESEPARATE command to data streams not
constructed by the MERGEMERGEMERGEMERGE command. It is possible to construct numerically valid
streams of data that MERGEMERGEMERGEMERGE could not have produced. Results of applying the
SEPARATESEPARATESEPARATESEPARATE command to such a data stream are undefined.

Examples

SEPARATE (PW1,PL2,PF3,PD4)

Read 16-bit WORD data from pipe P1, taking as many values as necessary to
construct higher precision numbers placed consecutively into LONG pipe PL2, FLOAT
pipe PF3, and DOUBLE pipe PD4.

SEPARATE ($BININ,P5,P6,P7)
Transfer data from the PC host to the Data Acquisition Processor through the binary
input com pipe, placing successive values into WORD pipes P5, P6, and P7.

See Also
MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, SEPARATEFSEPARATEFSEPARATEFSEPARATEF

298 Chapter 17 DAPL Commands: SEPARATEF

SEPARATEF

Define a task that distributes flagged data.

SEPARATEF (<in_pipe>, <out_pipe_0>, ... , <out_pipe_n-1>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<out_pipe_0>
First output pipe for separated data.
WORD PIPE | LONG PIPE

<out_pipe_n-1>
Last output pipe for separated data.
WORD PIPE | LONG PIPE

Description
SEPARATEFSEPARATEFSEPARATEFSEPARATEF reads flagged data from <in_pipe>, removes the flags, and writes each
data value to one of <out_pipe_0>, � , <out_pipe_n-1>. Each flagged data
value consists of two values, a flag from 0 to n-1, which identifies the destination
pipe, and a data value to be placed in the pipe. Flagged data values with flags out of
range are detected and cause the SEPARATEFSEPARATEFSEPARATEFSEPARATEF task to terminate with an error.

When <in_pipe> is a word pipe and an output is a long pipe, two consecutive
words, low word then high word, are read from the input pipe and concatenated to
form a long output value.

When <in_pipe> is a long pipe and an output is a word pipe, the low word of the
long value is transferred, and the high word is ignored.

SEPARATEFSEPARATEFSEPARATEFSEPARATEF is useful for reading binary data from a host computer and splitting the
binary data stream into several pipes for processing. SEPARATEFSEPARATEFSEPARATEFSEPARATEF is the inverse of
MERGEFMERGEFMERGEFMERGEF.

Chapter 17 DAPL Commands: SEPARATEF 299

Examples

SEPARATEF (P1,P2,P3,P4)

Read flagged data from pipe P1 and place data selectively into pipes P2, P3, and
P4.

SEPARATEF ($BININ,P5,P6,P7)
Transfer data from the binary input com pipe to pipes P5, P6, and P7.

See Also
MERGEMERGEMERGEMERGE, MERGEFMERGEFMERGEFMERGEF, SEPARATESEPARATESEPARATESEPARATE

300 Chapter 17 DAPL Commands: SET (individual channel sampling)

SET (individual channel sampling)

Associate an individual input channel pipe with an input pin.
SET <channel> <input_pin> [<gain>]

Parameters
<channel>

Input channel pipe identifier.

<input_pin>
Input pin identifier.

<gain>
An integer number that specifies the gain.
WORD CONSTANT

Description
SETSETSETSET associates an individual input channel pipe (IPIPE) with an input pin. Models
of Data Acquisition Processor that sample multiple channels simultaneously use a
different version of this command � see the SETSETSETSET command version described in the
next section. Output updating configurations use another version of this command,
also in this chapter.

A <channel> identifier consists of an IPIPE keyword followed by a decimal
number. It assigns a name to a data channel. The IPIPE keyword may be
abbreviated to IP. Some examples:

 IP7
 IPIPE482

The range of the channel identifier numbers is restricted by the Data Acquisition
Processor model. When the sampling configuration runs, it will capture samples in
order of channel identifier numbers rather than by order of appearance within the
IDEFINE section.

An <input_pin> identifier begins with a identifier character. The pin type
identifier characters S, D, and G represent single-ended, differential, and ground
reference analog inputs, respectively. The identifier letter is followed immediately
by a number to identify the hardware pin. One physical pin can be sampled into
multiple input channels and thus appear on more than one SETSETSETSET command.

Chapter 17 DAPL Commands: SET (individual channel sampling) 301

A separate <gain> number can follow. If <gain> is omitted, it defaults to 1. The
allowed gains are 1, 10, 100, or 500. See the Data Acquisition Processor hardware
manual for information about sampling rate limitations at each gain. The following
are examples of analog channel specifiers and gains:

 S2 100
 D0
 G 10

A pin type identifier character B indicates a binary (digital) input source. A number
follows immediately to indicate the digital port. The digital port number is optional,
so identifier B means the same thing as B0. The following are examples of digital
<input_pin> identifiers.

 B4
 B

The analog and digital pin numbers are restricted according to the physical signals
available on the Data Acquisition Processor and attached accessory boards. Digital
or analog expansion boards increase the number of available physical digital or
analog signals, extending the range of meaningful pin numbers. See the hardware
documentation for each Data Acquisition Processor and accessory board type for
more information about the available pin numbers.

When digital and analog input pins are used in the same input configuration, a
digital input is acquired one sampling period later than a corresponding analog
input. See the Data Acquisition Processor hardware documentation for more
information about the timing of input channel sampling.

When an external Counter/Timer Board is connected to the digital input/output port
of a Data Acquisition Processor, two additional <input_pin> names are valid:
CTLx and CTy, where �x� is the number 0 or 1 and �y� is a number from 0 to 9. The
sample value produced by a CTLx sampling operation is not meaningful, but the
operation freezes the values of all counters in counter circuit �x� (Counter Timer
Load). A CTy sampling operation (Counter Timer read) reads the value of input
counter �y�. See the Counter/Timer Board documentation for more information.

A DAPL task can read sampled data using an input channel pipe notation in a
processing task definition. A processing task can read from a single input channel
pipe, using the notation IPIPEx or IPx, where x is a number indicating an input
channel similar to the SETSETSETSET command. A processing task can read from several input
channel pipes using an input channel pipe list notation beginning with the name
IPIPES, and followed immediately by a list of input channel pipe numbers enclosed
in parentheses. A range of consecutive channel pipe numbers can be selected by
specifying the first channel number, two consecutive periods, and the last channel

302 Chapter 17 DAPL Commands: SET (individual channel sampling)

number. The identifier IPIPES can be abbreviated to IPIPE or IP. Input channel
pipe numbers must appear in ascending order and must not be repeated. The channel
pipe numbers correspond to the channel pipe identifiers assigned on SETSETSETSET commands.
The following is an example of a task parameter list using a mix of single-channel
and channel range specifications to copy ten channels.

 COPY (IP(0..3,10..13,22,23),$binout)

A channel list also can use a named word vector defined by a VECTORVECTORVECTORVECTOR command.
The following example shows equivalent notations to access input channels 0
through 4.

VECTOR CLIST WORD = (0, 1, 2, 3, 4)

IPIPES(0,1,2,3,4)
IPIPES CLIST

Examples

SET IPIPE0 S4

Input channel pipe 0 contains samples from single-ended input 4, at unity gain.

SET IPIPE1 D5 10
Input channel pipe 1 contains samples from differential input 5, with a gain of 10.

SET IP2 G 100
Input channel pipe 2 contains samples of a ground reference measured with gain of
100.

SET IP3 B0
Input channel pipe 3 contains samples from the binary input port.

See Also
IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE, variant of SETSETSETSET for multiple channel simultaneous sampling,
variant of SETSETSETSET for single channel output updating

Chapter 17 DAPL Commands: SET (multiple channel simultaneous sampling) 303

SET (multiple channel simultaneous sampling)

Associate grouped input channels with an input sampling pin group.

SET <channel_group> <pin_group>

Parameters
<channel_group>

Input channel pipe identifier.

<pin_group>
Input pin group identifier.

Description
SETSETSETSET associates an input channel group (IPIPE) with an input pin group. Models of
Data Acquisition Processors that sample individual channels use a different kind of
SETSETSETSET command � see the SETSETSETSET command version described in the previous section.
Output updating configurations use another version of the SETSETSETSET command, described
in the next section.

The logical data channels to be assigned are specified by the <channel_group>.
The group of signal pins is specified by the <pin_group>. If the Data Acquisition
Processor hardware provides a programmable ground reference signal source, this
source is the default signal source. Any channel group not assigned to a signal pin
group by a SETSETSETSET command will receive samples from the ground reference source. If
the Data Acquisition Processor hardware does not provide a programmable ground
reference signal source, a SETSETSETSET command is required for each channel group
specified by the GROUPSGROUPSGROUPSGROUPS command.

A <channel_group> identifier consists of an IPIPE keyword followed by a
restricted form of channel list. When the sampling configuration runs, it will capture
samples in order of channel group identifier numbers rather than by order of
appearance within the IDEFINE section. The channel list is a pair of decimal
numbers separated by two periods and enclosed in parentheses. The IPIPES
keyword may be abbreviated to IPIPE or IP. Some examples:

 IPIPES(4..7) // 4 pin group, channels 4 through 7
 IPIPE(0..3) // 4 pin group, channels 0 through 3
 IP(16..23) // 8 pin group, channels 16 through 23

304 Chapter 17 DAPL Commands: SET (multiple channel simultaneous sampling)

Only certain numbers are allowed to begin and end the special lists. The range must
start with an integer that is a multiple of the channel group size supported by the
Data Acquisition Processor hardware. The range must cover the exact group size.
The range limits for the channel pipe numbers depend on the Data Acquisition
Processor model. When the hardware supports a group size of 4, the following
ranges are acceptable:

IP(0..3)
IP(4..7)
IP(8..11)
...

When the hardware supports a group size of 8, the following ranges are acceptable.

IP(0..7)
IP(8..15)
IP(16..23)
...

When the sampling configuration runs, it will capture samples in order of channel
identifier numbers rather than by order of appearance within the IDEFINEIDEFINEIDEFINEIDEFINE section.

A group of simultaneously sampled pins is specified by the notation SPGx, where x
is an integer. The pin groupings are predefined. The range of the pin numbers
depends on the Data Acquisition Processor model and attached expansion cards. For
a Data Acquisition Processor model with analog input pin groups of size 4, the
mapping of physical input pins to pin groups is as follows:

SPG0 S0, S4, S8, S12
SPG1 S1, S5, S9, S13
SPG2 S2, S6, S10, S14
SPG3 S3, S7, S11, S15
SPG4 S16, S20, S24, S28
SPG5 S17, S21, S25, S29
...

For a Data Acquisition Processor model with pin groups of size 8, expandable to
1024 inputs, the mapping of physical input pins to pin groups is as follows:

SPG0 S0, S2, S4, S6, S8, S10, S12, S14
SPG1 S1, S3, S5, S7, S9, S11, S13, S15
SPG2 S16, S18, S20, S22, S24, S26, S28, S30
SPG3 S17, S19, S21, S23, S25, S27, S29, S31
SPG4 S32, S34, S36, S38, S40, S42, S44, S46
...

Chapter 17 DAPL Commands: SET (multiple channel simultaneous sampling) 305

There are variations in the pin mapping scheme for certain analog expansion boards.
These are discussed in the hardware manuals for each individual hardware board.

A DAPL task can read sampled data using an input channel pipe or input channel
pipe list notation in a processing task definition, without regard to the grouping
imposed as the data is sampled. To read from a single channel, use the notation
IPIPE<number> or IP<number>. To read multiplexed data from several input
channels, use an input channel pipe list notation that begins with IPIPES, followed
immediately by a list of input channel pipe numbers enclosed in parentheses. The
identifier IPIPES can be abbreviated to IPIPE or IP. Input channel pipe numbers
must appear in ascending order and must not be repeated. The channel pipe numbers
must be within the channel pipe ranges assigned on SETSETSETSET commands. A range of
channel pipe numbers can be selected by specifying the first channel number, two
consecutive periods, and the last channel number. The following is an example of a
task parameter list using a mix of single-channel and channel range specifications to
copy twelve channels.

COPY (IP(0..3,10..15,22,23),$binout)

Examples

IDEFINE A
 GROUPS 3
 SET IP(0..3) SPG3
 SET IP(4..7) SPG0
 SET IP(8..11) SPG1
 TIME 100
END
PDEFINE B
 AVERAGE(IP0,100,$BINOUT)
END

For a Data Acquisition Processor that has input channel groups of size 4, associate
the channel pipes IP0-IP3 to pins S3, S7, S11, and S15; channel pipes IP4-IP7 to
pins S0, S4, S8, and S12; and channel pipes IP8-IP11 to pins S1, S5, S9, and S13.
Process only the data from channel 0 from channel group IP(0..3).

 SET IP(0..7) SPG0
 SET IP(8..15) SPG1

For a Data Acquisition Processor that has input channel groups of size 8, specify
two input channel groups, one connected to pins S0, S2, S4, S6, S8, S10, S12 and
S14, and the other to pins S1, S3, S5, S7, S9, S11, S13 and S15. These signals are
recorded in logical channels 0 through 15.

306 Chapter 17 DAPL Commands: SET (multiple channel simultaneous sampling)

See Also
GROUPSGROUPSGROUPSGROUPS, IDEFINEIDEFINEIDEFINEIDEFINE, ODEFINEODEFINEODEFINEODEFINE, variant of SETSETSETSET for individual channel sampling,
variant of SETSETSETSET for single channel output updating, VRANGEVRANGEVRANGEVRANGE

Chapter 17 DAPL Commands: SET (single channel output updating) 307

SET (single channel output updating)

Associate an output channel pipe with a clocked output pin.
SET <channel> <output_pin>

Parameters
<channel>

Output channel pipe specifier.

<output_pin>
Output pin specifier.

Description
SETSETSETSET associates an individual output channel pipe (OPIPE) with a clocked output pin.
See the preceding variants of the SETSETSETSET command for configuring input sampling.

A <channel> identifier consists of an OPIPE keyword followed by a decimal
number. It assigns a name to a data channel. The OPIPE keyword may be
abbreviated to OP. Some examples:

 OP7
 OPIPE62

The range of the channel identifier numbers is restricted by the Data Acquisition
Processor model. The <output_pin> specifier can be A0, A1, or B0 without using
output expansion boards. Output pins A0 and A1 are the two analog output ports; B0
is the digital output port. The pin number following B is optional; the notation B
without a number is equivalent to B0. More output pins are available with output
expansion.

A task can provide output data by writing to an output channel pipe identified in the
task parameter list by the notation OPIPE, followed immediately by the input
channel pipe number. OPIPE can be abbreviated to OP.

To enforce the restriction that data are written to the output channel pipe in a strict
multiplexed order, the output channel list notation is very helpful. An output channel
list parameter in a processing task definition consists of the identifier OPIPES
followed immediately by a list of the output channels enclosed in parentheses. The
output channel pipe numbers in the list correspond to the channels assigned on the
SETSETSETSET commands. OPIPES can be abbreviated to OPIPE or OP. A range of channel
pipe numbers is selected by specifying the first channel number, two consecutive

308 Chapter 17 DAPL Commands: SET (single channel output updating)

periods, and the last channel number. An example of a task that writes four channels
for clocked output updates:

 MERGE (P0,P1,P2,P3, OPIPE(0..3))

Examples

ODEFINE D 2
 SET OPIPE0 A1
 SET OPIPE1 B
 TIME 50
END

Define output updating with one analog output to analog output pin A1 and one
digital output to binary port 0.

See Also
 ODEFINEODEFINEODEFINEODEFINE

Chapter 17 DAPL Commands: SINEWAVE 309

SINEWAVE

Define a task that generates sine wave data.

SINEWAVE (<amplitude>, <period>, <out_pipe> [,<mod_type>, <mod1>
[,<mod2>]])

Parameters
<amplitude>

A value that is one half of the peak to peak range of the output.
WORD CONSTANT | WORD VARIABLE

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for sine wave data.
WORD PIPE

<mod_type>
A value that selects amplitude and/or frequency modulation of the output wave.
WORD CONSTANT

<mod1>
Pipe for first modulation signal.
WORD PIPE

<mod2>
Pipe for second modulation signal.
WORD PIPE

Description
SINEWAVESINEWAVESINEWAVESINEWAVE generates sine wave data and places the data in <out_pipe>. <period>
is the number of sample values in each wave. The <amplitude> is one half the
peak to peak distance of the output wave. The maximum value of <amplitude> is
32767.

Note: SINEWAVESINEWAVESINEWAVESINEWAVE is identical to WWWWAVEFORMAVEFORMAVEFORMAVEFORM, with <type> set equal to 2.

310 Chapter 17 DAPL Commands: SINEWAVE

Three optional modulation parameters may be specified. <mod_type> selects
amplitude and/or frequency modulation of the output wave. The value of
<mod_type> must be one of the following:

1. amplitude modulation controlled by the data in <mod1>
2. frequency modulation controlled by the data in <mod1>
3. amplitude and frequency modulation controlled by the data in <mod1> and
<mod2>, respectively

<mod1> and <mod2> are pipes. One value is read from the pipe(s) for each value
output by SINEWAVESINEWAVESINEWAVESINEWAVE. Modulation values are signed binary fractions and are
multiplied by the base amplitude or frequency to obtain the amplitude or frequency.

An alternative method for changing the amplitude or frequency of SINEWAVESINEWAVESINEWAVESINEWAVE during
execution uses a DAPL variable as the <amplitude> or <period> parameter of
SINEWAVESINEWAVESINEWAVESINEWAVE. The value of this variable can be changed during execution using LETLETLETLET.
This is efficient, but cannot adjust the amplitude or frequency continuously, and
changes are detected and applied asynchronously.

Example

SINEWAVE (1000, 100, P2)

Generate a sine wave with values ranging from -1000 to 1000, with a period of 100
samples.

See Also
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SASASASAWTOOTHWTOOTHWTOOTHWTOOTH, TRIANGLETRIANGLETRIANGLETRIANGLE, SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE, WAVEFORMWAVEFORMWAVEFORMWAVEFORM

Chapter 17 DAPL Commands: SKIP 311

SKIP

Define a task that alternately copies and skips data.

SKIP (<in_pipe>, <initial_skip>, <take_cnt>, <skip_cnt>
<out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<initial_skip>
A value that specifies the initial number of values to skip.
WORD CONSTANT | LONG CONSTANT

<take_cnt>
A value that specifies the number of values to move.
WORD CONSTANT | LONG CONSTANT

<skip_cnt>
A value that specifies the number of values to skip.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
SKIPSKIPSKIPSKIP provides flexible options for moving selected data from <in_pipe> to
<out_pipe>. After doing a one time skip of <initial_skip> values, SKIPSKIPSKIPSKIP
repeats a cycle of moving <take_cnt> values to <out_pipe> then ignoring
<skip_cnt> values. The parameters <initial_skip>, <take_cnt> and
<skip_cnt> must be all non-negative. If the value of <take_cnt> is zero, the
effect is to discard all data. If the value of <take_cnt> is positive but the value of
<skip_cnt> is zero, the effect is to copy all data following the initial
<initial_skip> values.

Applications of the SKSKSKSKIPIPIPIP command include data selection, reducing volumes of data
to process, and decimation of signal streams.

312 Chapter 17 DAPL Commands: SKIP

Examples

SKIP (IP0, 0, 1000, 2000, P1)

Transfer 1000 values to P1, ignore a block of 2000 values, and repeat.

SKIP (IP0, 100, 500, 100, P1)
Ignore 100 values from IP0, transfer 500 values to P1, then repeat.

SKIP (P1, 50, 1, 0, P2)
Ignore first 50 values from P1, then continuously transfer remaining data.

Chapter 17 DAPL Commands: SLAVE 313

SLAVE

Configure an input or output configuration�s clock source to be another Data
Acquisition Processor.

SLAVE

Description
The SLAVESLAVESLAVESLAVE command configures an input or output configuration�s clock source to
be another Data Acquisition Processor. The SLAVESLAVESLAVESLAVE command is used in
synchronized multiple Data Acquisition Processor systems; a slave Data Acquisition
Processor synchronizes input sampling or output updates to a clock signal from a
master Data Acquisition Processor.

If SLAVESLAVESLAVESLAVE is used in an output configuration, the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT count must be
satisfied before the master output configuration is started.

Note: UPDATEUPDATEUPDATEUPDATE BURST mode is not available with SLAVESLAVESLAVESLAVE.

See Also
CLOCKCLOCKCLOCKCLOCK, HTRIGGERHTRIGGERHTRIGGERHTRIGGER, MASTERMASTERMASTERMASTER

314 Chapter 17 DAPL Commands: SQRT

SQRT

Define a task that computes square roots of data.

SQRT (<in_pipe>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<out_pipe>
Output pipe for square root data.
WORD PIPE | LONG PIPE

Description
SQRTSQRTSQRTSQRT computes square roots of data from <in_pipe> and places the results in
<out_pipe>. If an input data value is negative, SQRTSQRTSQRTSQRT sends the number zero to the
output pipe. The returned value is the greatest integer lower bound on the exact
square root value.

Example

SQRT (P1, P2)

Read data from pipe P1, compute square roots, and place the results in pipe P2.

See Also
CABSCABSCABSCABS, RMSRMSRMSRMS

Chapter 17 DAPL Commands: SQUAREWAVE 315

SQUAREWAVE

Define a task that generates square wave data.

SQUAREWAVE (<amplitude>, <period>, <out_pipe> [,<mod_type>
 <mod1> [, <mod2>]])

Parameters
<amplitude>

A value that is one half of the peak to peak range of the output.
WORD CONSTANT | WORD VARIABLE

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for square wave data.
WORD PIPE

<mod_type>
A value that selects amplitude and/or frequency modulation of the output wave.
WORD CONSTANT

<mod1>
Pipe for first modulation signal.
WORD PIPE

<mod2>
Pipe for second modulation signal.
WORD PIPE

Description
SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE generates square wave data and places the data in <out_pipe>.
<period> is the number of sample values in each wave. The <amplitude> is one-
half the peak to peak distance of the output wave, with a maximum value of 32767.

Note: SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE is identical to WAVEFORMWAVEFORMWAVEFORMWAVEFORM, with <type> set equal to 3.

316 Chapter 17 DAPL Commands: SQUAREWAVE

Three optional modulation parameters may be specified. <mod_type> selects
amplitude and/or frequency modulation of the output wave. The value of
<mod_type> must be one of the following:

 1. amplitude modulation controlled by the data in <mod1>
 2. frequency modulation controlled by the data in <mod1>
 3. amplitude and frequency modulation controlled by the data in <mod1> and
<mod2>, respectively

<mod1> and <mod2> are pipes. One value is read from the pipe(s) for each value
output by SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE. Modulation values are interpreted as signed binary
fractions; they are multiplied by the base amplitude or frequency to obtain the
amplitude or frequency.

An alternative method for changing the amplitude or frequency of SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE
during execution uses a DAPL variable as the <amplitude> or <period>
parameter of SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE. The value of this variable can be changed during
execution using a LETLETLETLET command. This is efficient, but it cannot adjust the amplitude
or frequency continuously, and changes are detected and applied asynchronously.

Example

SQUAREWAVE (1000, 100, P2)

Generate a square wave with values ranging from -1000 to 1000, with a period of
100 samples.

See Also
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, TRIANGLETRIANGLETRIANGLETRIANGLE, WAVEFORMWAVEFORMWAVEFORMWAVEFORM

Chapter 17 DAPL Commands: START 317

START

Activate input configurations, processing procedures, and output configurations.

START [<name> [,<name>]*]

STA [<name> [,<name>]*]

Parameters
<name>

Name of an input, output, or processing configuration.

Description
STARTSTARTSTARTSTART activates input configurations, processing procedures, and output
configurations.

STARTSTARTSTARTSTART can be used with no parameters to start all defined configurations. Only one
input configuration and one output configuration should be defined when using
STARTSTARTSTARTSTART without parameters. When more than one input configuration or output
configuration is defined, the STARTSTARTSTARTSTART command with no parameters will generate a
warning message and start the first configuration defined.

Activation of an input configuration initializes the Data Acquisition Processor
hardware and software to allow sampling, as defined by the input configuration�s
sampling configuration. Once the hardware begins sampling the input pins, sampling
continues until the sample count reaches the input configuration�s COUNTCOUNTCOUNTCOUNT
specification or until a STOPSTOPSTOPSTOP command is issued. Only one input configuration can
be active at a given time.

Activation of a processing procedure starts each of the tasks in the processing
procedure. Any number of processing procedures can be active at one time. Starting
a processing procedure does not affect the Data Acquisition Processor input
sampling or output update status.

Activation of an output configuration initializes the Data Acquisition Processor
hardware and software to allow output updating, as defined by the output
configuration. Once the hardware begins updating the output pins, updating
continues until the output sample count reaches the output configuration�s COUNTCOUNTCOUNTCOUNT
specification or until a STOPSTOPSTOPSTOP command is issued. Only one output configuration can
be active at a given time.

318 Chapter 17 DAPL Commands: START

When starting an input or output configuration that specifies an external clock or
trigger, sampling might not begin immediately. See the hardware documentation for
details about external clocks and triggers.

When stopping and restarting an input or output configuration, it is best to use the
STOPSTOPSTOPSTOP and STARTSTARTSTARTSTART commands with no parameters to perform a complete stop and
restart. It is possible, however, to stop an input or output configuration while other
processing continues. In this case, it also is necessary to stop the tasks that read from
or write to the input or output configuration channel pipes. To restart the input or
output configuration, start the input or output configuration and then start the input
or output tasks.

Examples

START
START A
START A,B

See Also
RESETRESETRESETRESET, STOPSTOPSTOPSTOP

Chapter 17 DAPL Commands: STATISTICS 319

STATISTICS

Report processor utilization information about the system and running tasks.

STATISTICS ON | [DISPLAY] | OFF

STAT ON | [DISPLAY] | OFF

Description
The STATISTICSSTATISTICSSTATISTICSSTATISTICS command displays information about CPU utilization of the
system and processing tasks. To initiate collection of the measurements, issue the
STATISTICSSTATISTICSSTATISTICSSTATISTICS command with the ON command line option. After STATISTICSSTATISTICSSTATISTICSSTATISTICS
collection is ON, pause for a few seconds, then issue a STATISTICSSTATISTICSSTATISTICSSTATISTICS DISPLAY
command, or simply a STATISTICSSTATISTICSSTATISTICSSTATISTICS command with no command line options, to see
the collected information. STATISTICSSTATISTICSSTATISTICSSTATISTICS can be displayed multiple times, but there is
some interaction between the measured CPU utilization and the utilization of the
STATISTICSSTATISTICSSTATISTICSSTATISTICS command itself, so the first measurement will be the most accurate.
When the statistics are no longer needed, issue the STATISTICSSTATISTICSSTATISTICSSTATISTICS command with the
OFF command line option so there is no possibility that the STATISTICSSTATISTICSSTATISTICSSTATISTICS processing
will interfere with other processing.

The abbreviated command form STATSTATSTATSTAT is useful when entering DAPL commands
interactively.

The report displayed by STATISTICSSTATISTICSSTATISTICSSTATISTICS might look something like the following:

Task CPU Time Used
HOST_TSK 3555
MEM_TSK 0
DAPL 199390
INF_TSK 0
CFG_TSK 0
OVR_CHK 272
UND_CHK 272
MEM_TSK 407
COPY 281831
COPY 266681
FORMAT 267887
system idle/overhead 986654

320 Chapter 17 DAPL Commands: STATISTICS

Total time elapsed: 2006000
Average task cycle latency 890
Longest task cycle latency 3445
 (all numbers are in uS)

All measured times are in microsecond units. The table shows the total time in
microseconds used by each task running at the time that statistics are taken. The first
tasks on the list are DAPL system tasks. After that, the names of the processing
commands appear.

A large value for system idle/overhead typically indicates that the Data Acquisition
Processor is performing well. All processing is completed and there is reserve CPU
capacity. When the Data Acquisition Processor has extra capacity, it spends much of
its time switching tasks while it waits for data. As the demands on the Data
Acquisition Processor increase, it spends more time processing data and less time
switching tasks. Its efficiency increases, as the amount of time spent on system
overhead decreases. On the other hand, a heavily-loaded CPU cannot respond to
real-time events as quickly.

The average task latency is the typical number of microseconds of real time between
activations of a particular task. If tasks typically are not busy, but are very busy
when data arrives, the longest task cycle latency might be very much larger than the
average latency. This is usually okay, but if the longest latency gets too large, this
could indicate problems for systems needing fast real-time response.

Chapter 17 DAPL Commands: STATUS 321

STATUS

Display information about the current status of the system.

STATUS

STAT

Description
STATUSSTATUSSTATUSSTATUS displays information about the current status of the system � memory
usage, active system tasks, interrupt status variables, etc. In most cases, this
information is of interest to system implementers only. The STATUSSTATUSSTATUSSTATUS command
should not be used while an input or output configuration is active.

322 Chapter 17 DAPL Commands: STOP

STOP

Stop input sampling, processing, and output updating configurations.

STOP [<name> [,<name>]*]

Parameters
<name>

Name of input, output, or processing configuration.

Description
The STOPSTOPSTOPSTOP command with no parameters stops input sampling and output updating,
stops all tasks, empties all pipes, and clears all triggers. The Data Acquisition
Processor stops producing output and flushes all data.

The STOPSTOPSTOPSTOP command with a list of names stops each input configuration, output
configuration, or processing procedure named.

Stopping an input configuration results only in termination of input pin sampling.
Processing of buffered data in input channel pipes and in pipes continues.

Stopping a processing procedure stops all the tasks in the processing procedure.

Stopping an output configuration stops the updating of the analog or digital outputs.
Processing of buffered data in pipes continues.

Note: Only the variant of STOPSTOPSTOPSTOP without parameters flushes buffered data. STOPSTOPSTOPSTOP
without parameters is the recommended way to stop an application.

Examples

STOP A
STOP A,B
STOP

See Also
RESETRESETRESETRESET, STARTSTARTSTARTSTART

Chapter 17 DAPL Commands: STRING 323

STRING

Define a string.

STRING <name> = “<text>“

STR <name> = “<text>“

Parameters
<name>

String name.

<text>
String text.

Description
STRINGSTRINGSTRINGSTRING defines a string. Strings can be used by the FORMATFORMATFORMATFORMAT command to include
alphanumeric information on printed lines. Enclose the text in double quote
characters. To include a quote character in the content of a string, use two quote
characters in sequence.

A STRINGSTRINGSTRINGSTRING also is useful for passing configuration information to custom command
tasks.

Example

STRING HEADING = ¨MAXIMUM AT PEAK:¨

324 Chapter 17 DAPL Commands: TAND

TAND

Define a task that calculates a logical �and� of trigger assertions.

TAND (<in_trigger_1>, ... , <in_trigger_n>,
 <out_trigger> [, <delta>])

Parameters
<in_trigger_1>

First input trigger.
TRIGGER

<in_trigger_n>
Last input trigger.
TRIGGER

<out_trigger>
Output trigger.
TRIGGER

<delta>
Tolerance specification for almost simultaneous events.
WORD CONSTANT

Description
TANDTANDTANDTAND is used to detect simultaneous or near-simultaneous events. TANDTANDTANDTAND calculates a
logical �and� of trigger assertions. Each time that triggers <in_trigger_1>, � ,
<in_trigger_n> are all asserted within <delta> sample times, <out_trigger>
is asserted. When this occurs, <out_trigger> is asserted at the earliest of the
times in <in_trigger_1>, � , <in_trigger_n>, and one trigger assertion is
removed from each of <in_trigger_1>, � , <in_trigger_n>. <delta> is an
optional parameter; its default value is zero. When <delta> is zero, the timestamps
from <in_trigger_1>, � , <in_trigger_n> must match exactly to generate an
output event.

Any other trigger events that do not satisfy the conditions for sending an assertion to
<out_trigger> are removed from <in_trigger_1>, � ,<in_trigger_n> and
ignored.

Chapter 17 DAPL Commands: TAND 325

Example

TAND (T1, T2, T3, T_OUT, 25)

Assert T_OUT each time T1, T2, and T3 all are asserted within an interval of 25
sample times.

See Also
TORTORTORTOR

326 Chapter 17 DAPL Commands: TCOLLATE

TCOLLATE

Define a task that combines trigger assertions and produces a combined event stream.

TCOLLATE (<trig_0>, ..., [<trig_n-1>,] <trig_out>)

Parameters
<trig_0>

First source of events.
TRIGGER

<trig_n-1>
Subsequent sources of events.
TRIGGER

<trig_out>
Output trigger for the combined event stream.
TRIGGER

Description
The TCOLLATETCOLLATETCOLLATETCOLLATE command combines trigger assertions from n triggers <trig_0>
through <trig_n-1> in sequence, where n is in the range 2 to 16. It produces a
combined event stream in trigger <trig_out>. Timestamps from the n input
triggers, <trig_0> through <trig_n-1>, must be based on the same data rates.

The input triggers <trig_0> through <trig_n-1> are processed in sequence.
When an event appears in <trig_0>, it is copied to <trig_out>. Next, trigger
<trig_1> is processed, discarding any events prior to the event timestamp taken
from trigger <trig_0>. When a suitable event appears, it is copied to
<trig_out>. Processing continues in this manner for each input trigger in the list.
When the list is exhausted, processing begins again at the start of the list. This
processing sequence ensures that the events posted in trigger <trig_out> are in a
strictly increasing time sequence.

A common application for the TCOLLATETCOLLATETCOLLATETCOLLATE command is enforcing a strict alternating
sequence of trigger events from two independent triggering tasks. These events
might be interpreted, for example, as ON events alternating with OFF events. This
kind of alternating sequence is required by the TOGGWTTOGGWTTOGGWTTOGGWT command. Extremely
general triggering conditions can be defined for the TOGGWTTOGGWTTOGGWTTOGGWT command using a
TCOLLATETCOLLATETCOLLATETCOLLATE command in combination with any two trigger generating commands.

Chapter 17 DAPL Commands: TCOLLATE 327

Examples

LIMIT(P1,INSIDE,24000,32767,T1,INSIDE,1,32767)
LIMIT(P1,INSIDE,-32768,0,T2,INSIDE, -32768,0)
TCOLLATE(T1, T2, T3)

Alternate trigger events from trigger T1, generated by a LIMITLIMITLIMITLIMIT task that detects
values 24000 or greater in pipe P1, with trigger events from trigger T2, generated by
another LIMITLIMITLIMITLIMIT task that detects negative values in pipe P1. Place the alternating
trigger sequence in trigger T3. For this particular example, which requires only
simple region tests, the TOGGLETOGGLETOGGLETOGGLE command is an alternative.

CUSTOM(P1,T1)
TGEN(1000,T2)
TCOLLATE(T1,T2,T3)

Guarantee that at most one assertion event generated by custom command CUSTOM
is retained each 1000 samples. Alternate the events generated by CUSTOM in trigger
T1 with artificial events generated each 1000 samples by the TGENTGENTGENTGEN command in
trigger T2, to produce the alternating sequence in trigger T3.

See Also
TANDTANDTANDTAND, TORTORTORTOR, TOGGLETOGGLETOGGLETOGGLE, TOGGWTTOGGWTTOGGWTTOGGWT

328 Chapter 17 DAPL Commands: TFUNCTION1

TFUNCTION1

Define a task that calculates transfer functions from Fourier transform data.

TFUNCTION1 (<p1>, <p2>, <p3>, <p4>, <scale>,
 <p5>, <p6> [, <limit1>, <limit2>])

Parameters
<p1>

A pipe that contains the real part of the Fourier transform of the input to a system
under test.
WORD PIPE

<p2>
A pipe that contains the imaginary part of the Fourier transform of the input to a
system under test.
WORD PIPE

<p3>
A pipe that contains the real part of the Fourier transform of the output of the
system under test.
WORD PIPE

<p4>
A pipe that contains the imaginary part of the Fourier transform of the output of
the system under test.
WORD PIPE

<scale>
A scale factor for decibel output.
WORD CONSTANT

<p5>
Output pipe for amplitude data.
WORD PIPE

<p6>
Output pipe for phase data.
WORD PIPE

<limit1>
An optional word constant for suppressing computations with very small inputs.
WORD CONSTANT

Chapter 17 DAPL Commands: TFUNCTION1 329

<limit2>
An optional word constant for suppressing computations with very small outputs.
WORD CONSTANT

Description
TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 calculates transfer functions from Fourier transform data. The transfer
function of a system is defined as the ratio of the output of the system to the input of
the system, calculated in the frequency domain. The transfer function can be
calculated either from Fourier transforms or from crosspower spectrum and
autopower spectrum. TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 uses the transforms directly. TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 uses
power spectrum methods. If averaging is to be performed before the transfer
function is calculated, use TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2.

<p1> and <p2> are pipes that contain the real and imaginary components of the
Fourier transform of the input to a system under test. <p3> and <p4> are pipes that
contain the real and imaginary components of the Fourier transform of the output of
the system under test. TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 calculates the ratios of corresponding terms in
the Fourier transforms, then converts to amplitude and phase, and writes the
amplitude in decibels to pipe <p5> and the phase to pipe <p6>. <scale> is a scale
factor for the decibel output. See the descriptions of the DECIBELDECIBELDECIBELDECIBEL and POLARPOLARPOLARPOLAR
commands for the scaling of the amplitude and phase outputs.

The transfer function output is meaningful only where the inputs and outputs are not
too small. <limit1> and <limit2> are optional word constants that fix the transfer
function result when the inputs are too small. If the amplitude of the complex value
in <p1> and <p2> is less than <limit1>, both <p5> and <p6> are set to zero. If the
amplitude of the complex value in <p3> and <p4> is less than <limit2>, <p6> is
set to zero.

See Also
DECIBELDECIBELDECIBELDECIBEL, FFTFFTFFTFFT, POLARPOLARPOLARPOLAR, TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2

330 Chapter 17 DAPL Commands: TFUNCTION2

TFUNCTION2

Define a task that calculates transfer functions from cross power spectrum data and
autopower spectrum data.

TFUNCTION2 (<p1>, <p2>, <p3>, <scale>, <p5>, <p6>
[, <limit1>, <limit2>])

Parameters
<p1>

A pipe that contains the real parts of the autopower spectrum of the input to a
system under test.
LONG PIPE

<p2>
A pipe that contains the real parts of the crosspower spectrum of the output of the
system under test.
LONG PIPE

<p3>
A pipe that contains the imaginary parts of the crosspower spectrum of the output
of the system under test.
LONG PIPE

<scale>
A scale factor for decibel output.
WORD CONSTANT

<p5>
Output pipe for amplitude data.
WORD PIPE

<p6>
Output pipe for phase data.
WORD PIPE

<limit1>
An optional word constant for suppressing computations with very small inputs.
WORD CONSTANT

<limit2>
An optional word constant for suppressing computations with very small outputs.
WORD CONSTANT

Chapter 17 DAPL Commands: TFUNCTION2 331

Description
TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 calculates transfer functions from crosspower spectrum data and
autopower spectrum data. The transfer function of a system is defined as the ratio of
the output of the system to the input of the system, calculated in the frequency
domain. The transfer function can be calculated either from Fourier transforms or
from crosspower spectrum and autopower spectrum. TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 uses the
transforms directly. TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 uses power spectrum methods. If averaging is to
be performed before the transfer function is calculated, use this command.

<p1> is a pipe that contains the real components of the autopower spectrum of the
input to a system under test. <p2> and <p3> are pipes that contain the real and
imaginary components of the crosspower spectrum of the output of the system under
test. TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 calculates the ratios of corresponding terms in the Fourier
transforms, then converts to amplitude and phase, and writes the amplitude in
decibels to pipe <p5> and the phase to pipe <p6>. <scale> is a scale factor for the
decibel output. See the descriptions of the DECIBELDECIBELDECIBELDECIBEL and POLARPOLARPOLARPOLAR commands for the
scaling of the phase and amplitude outputs.

The transfer function output is meaningful only where the inputs and outputs are not
too small. <limit1> and <limit2> are optional constants that fix the transfer
function result when the inputs are too small. If the amplitude of the value in <p1> is
less than <limit1>, both <p5> and <p6> are set to zero. If the amplitude of the
complex value in <p2> and <p3> is less than <limit2>, <p6> is set to zero.

See Also
CROSSPOWERCROSSPOWERCROSSPOWERCROSSPOWER, DECIBELDECIBELDECIBELDECIBEL, POLARPOLARPOLARPOLAR, TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1

332 Chapter 17 DAPL Commands: TGEN

TGEN

Define a task that generates periodic trigger assertions.

TGEN (<n>, <trigger>)

Parameters
<n>

The sample count change for each trigger assertion.
WORD CONSTANT

<trigger>
Output stream of artificial trigger events.
TRIGGER

Description
TGENTGENTGENTGEN generates periodic trigger assertions. The sample count for each trigger
assertion increases by <n> sample counts.

TGENTGENTGENTGEN is useful for sending uniformly separated trigger assertions to a WAITWAITWAITWAIT task or
to a TORTORTORTOR task.

Note: TGENTGENTGENTGEN generates trigger assertions independent of input sampling activity.

Example

TGEN (100, T)

Place trigger assertions into trigger T corresponding to sample counts 99, 199, 299,
399, � .

See Also
TANDTANDTANDTAND, TORTORTORTOR

Chapter 17 DAPL Commands: THERMO 333

THERMO

Define a task that converts thermocouple voltages to temperatures.

THERMO (<in_pipe>, <type>, <scale1>, <scale2>,
[<offset>,] <out_pipe> [, <cjc>])

Parameters
<in_pipe>

Input thermocouple junction voltage data.
WORD PIPE

<type>
An integer indicating the thermocouple type.
WORD CONSTANT

<scale1>
First term of scaling factor.
WORD CONSTANT

<scale2>
Second term of scaling factor.
WORD CONSTANT

<offset>
Constant offset adjustment.
WORD VARIABLE

<out_pipe>
Output data pipe.
WORD PIPE

<cjc>
Optional variable that contains the temperature of the cold junction, in units of
tenths of a degree.
WORD VARIABLE

334 Chapter 17 DAPL Commands: THERMO

Description
THERMOTHERMOTHERMOTHERMO performs linearization of thermocouple voltage data from <in_pipe> and
places the corresponding temperature data in <out_pipe>. <type> is an integer
from 0 to 9, indicating type E, J, K, R, S, T, N, U, L, or B thermocouple. See the
table below for more details on thermocouple types. Input values are multiplied by
the factor <scale1>/<scale2> before linearization. The result of this
multiplication is interpreted as a voltage in tens of microvolts. The scale factor
should be adjusted according to the gain of the programmable amplifier.

If the <cjc> parameter is specified, THERMOTHERMOTHERMOTHERMO also performs cold junction
compensation. <cjc> is a word variable that contains the temperature of the cold
junction, in units of tenths of a degree Celsius. An additional table lookup is used to
determine a voltage correction to apply to the input data.

The optional <offset> parameter is a word variable that is subtracted from each
data value read by THERMOTHERMOTHERMOTHERMO This parameter allows the easy removal of a DC ground
offset from the input data.

The output values are expressed in units of tenths of a degree Celsius. The
temperature can be converted to Fahrenheit using the following DAPL expression:

PF = PC*9/5 + 320

The Applications Manual provides several examples of thermocouple processing
using the THERMOTHERMOTHERMOTHERMO command.

The following table specifies the temperature ranges of the linearization data for
each thermocouple type supported by the THERMOTHERMOTHERMOTHERMO command. The Error column
describes the contribution of the thermocouple linearization to the total
measurement error.

Chapter 17 DAPL Commands: THERMO 335

Thermocouple Type Code Range (Deg C) Error* (± Deg C)
ANSI type E (IEC 584) 0 -270 to 1000 0.4
ANSI type J (IEC 584) 1 -200 to 1200 0.3
ANSI type K (IEC 584) 2 -270 to 1370 0.4
ANSI type R (IEC 584) 3 -50 to 1760 0.4
ANSI type S (IEC 584) 4 -50 to 1750 0.3
ANSI type T (IEC 584) 5 -270 to 400 0.3
ANSI proposed type N 6 -260 to 1300 0.3
Type U (DIN 43710) 7 -200 to 600 0.2
Type L (DIN 43710) 8 -200 to 900 0.3
Type B (IEC 584) 9 0 to 1750 0.6

 * Maximum contribution to overall error by THERMOTHERMOTHERMOTHERMO.

The conversions provided by the THERMOTHERMOTHERMOTHERMO command span the full standard
temperature range for the thermocouple devices. There is a substantial variation
among individual devices, and the standard correction curves are typically in error
of 1 to 2 degrees Celsius for any individual thermocouple device. Much higher
conversion accuracy is possible by calibrating an individual device and using the
INTERPINTERPINTERPINTERP command to perform the linearization.

Example

THERMO (P1, 2, 10000, 32767, P2)

Read input data from pipe P1, multiply the data by 10000/32767, perform type K
thermocouple linearization, and place the results in pipe P2.

See Also
INTERPINTERPINTERPINTERP

336 Chapter 17 DAPL Commands: TIME

TIME

Set the time intervals at which successive inputs are sampled or successive outputs are
updated.

TIME <interval>

Parameters
<interval>

The time in microseconds.

Description
TIMETIMETIMETIME sets the time intervals at which successive inputs are sampled or outputs are
updated. The time is specified in microsecond units. For Data Acquisition Processor
models with multiplexed input sampling or output updating, and with M channels in
the input or output channel pipe, each channel is sampled or updated every
<interval>*M microseconds. For Data Acquisition Processor models with
simultaneous input sampling, and with M channel groups defined in the input or
output channel pipe, each channel group is sampled every <interval>*M
microseconds.

The minimum <interval> for the TIMETIMETIMETIME command depends on the Data
Acquisition Processor model. The following table summarizes the minimum
sampling and update times for most Data Acquisition Processors. All times are in
microseconds.

Chapter 17 DAPL Commands: TIME 337

 Minimum
Analog
Input
Time

Minimum
Digital
Input
Time

Minimum
Analog
Output
Time

Minimum
Digital
Output
Time

Increment Maximum
Time

840/103 1.25 1.25 2.50 1.25 0.05 52428
3000a/212 1.30 0.60 1.20 0.60 0.10 13107
3200a/415 1.30 0.60 1.20 0.60 0.10 104856
3216a/415 5.00 0.60 2.00 0.60 0.10 104856
4000a/112 1.25 1.25 2.50 1.25 0.05 52428
4000a/212 1.25 1.25 2.50 1.25 0.05 52428
4200a/526 1.30 0.60 1.20 0.60 0.10 104856
4400a/446 1.25 NA NA NA 0.05 52428
5200a/526 1.25 0.06 1.20 0.60 0.05 52428
5200a/626 1.25 0.06 1.20 0.60 0.05 52428
5216a/626 3.00 0.06 2.50 0.60 0.05 52428
5400a/627 0.80 (8)* NA NA NA 0.02 83884
5400a/627 0.50 (4)* NA NA NA 0.02 83884

* Minimum time interval depends on the number of channels in a channel group

The information in this table should be used with caution. Even though the
conversion hardware and the processing can sustain sampling at these rates, full
accuracy of the conversion is not always guaranteed. Some of the conditions that
affect the maximum sampling and updating rates:

� Quality of signal cables. Cable type, length and termination are critical to the
success of high speed sampling and updating. Cabling should be tested to verify
proper operation at high speeds.

� Slew rate limiting. If an input or output amplifier switches between widely
differing input or output voltage levels, the conversion might not settle to full
accuracy during a sampling interval. See the Data Acquisition Processor hardware
manual for information about slew rate limitations in various configurations.

� High gain. The bandwidth of a feedback amplifier reduces at high gains. When a
SETSETSETSET command assigns a gain higher than 1.0, the Data Acquisition Processor
programmable gain amplifier requires extra time to settle to full accuracy. See the
Data Acquisition Processor hardware documentation for more information.

Data Acquisition Processor models place different restrictions on fractional
microsecond timings. DAPL allows three decimal places of precision in the time
specification. Time specifications that are multiples of 0.1 microseconds are
compatible with all current models. The �increment� column of the table shows the
time increments that are allowed for each Data Acquisition Processor model.
<interval> must be a multiple of the time increment. If <interval> cannot be
realized exactly, a warning is displayed and the actual sampling time is rounded
down to the nearest valid multiple.

338 Chapter 17 DAPL Commands: TIME

For maximum compatibility among Data Acquisition Processor models, the
<interval> should not exceed 10000 µs, but most models allow 50000 µs or
more. Even though TIMETIMETIMETIME restricts the maximum sampling time, the effective
sampling interval can be made longer by using SKIPSKIPSKIPSKIP or AVERAGEAVERAGEAVERAGEAVERAGE commands. The
effective output update time can be made longer by using the REPLICATEREPLICATEREPLICATEREPLICATE command.

Some models of Data Acquisition Processors allow digital sampling at shorter
intervals than analog sampling. When there is a mix of analog and digital input
signals, these Data Acquisition Processor models allow <interval> to be set to a
value shorter than the minimum allowed for analog signals, provided that the
combined time intervals for each analog channel and its preceding digital channels is
at least as long as the minimum analog interval.

The combined digital and analog intervals cannot be

less than the minimum analog interval.

A configuration of this kind that mixes digital and analog signals, and has a
sampling time interval shorter than the minimum allowed for analog signals alone, is
called �fast sampling.� To ensure that there are enough digital samples in the
sequence when starting each pass through the channel list, a fast configuration must
always begin with an appropriate number of digital samples.

Note: Fast sampling is not effective when using a Counter/Timer Board. The
Counter/Timer Board needs a TIMETIMETIMETIME interval no less than 3.0 µs.

The following is an example of fast input sampling for a Data Acquisition Processor
with a minimum analog input TIMETIMETIMETIME of 1.3 µs, a minimum digital sampling time of
0.6 µs, and a time interval resolution of 0.1 µs. The configuration has one digital
channel and one analog channel. If the TIMETIMETIMETIME statement specifies <interval> to be
0.6 µs, sampling in the following manner is incorrect:

Chapter 17 DAPL Commands: TIME 339

� the digital channel is sampled at 0.6 µs (okay)
� the analog channel is sampled at 1.2 µs (error, less than minimum)
� this cycle repeats

One solution to this problem is to sample the digital channel an extra time.

� the digital channel is sampled at 0.6 µs (discarded)
� the digital channel is sampled at 1.2 µs (okay)
� the analog channel is sampled at 1.8 µs (okay)
� this cycle repeats

However, the only thing gained by discarding a sample is a time delay. It is also
possible to achieve a time delay by adjusting the time interval. Selecting the next
allowed sampling interval of 0.7 µs:

� the digital channel is sampled at 0.7 µs (okay)
� the analog channel is sampled at 1.4 µs (okay)
� this cycle repeats

Because this configuration has a net faster sampling rate on the analog signal, it is
probably the preferred configuration. The DAPL commands for this example would
look like the following:

 IDEF A
 CHANNELS 2
 SET IP0 B
 SET IP1 S0
 TIME 0.7
 END

Fast input sampling configurations are possible because input hardware devices
allow sampling and conversions to be started while digital sampling is done in
parallel. Output updating does not have a similar feature, so output conversions must
start and end within the <interval> specified by the TIMETIMETIMETIME command. The output
configuration accepts the minimum digital output time for both analog and digital
updates and does not check whether analog update intervals are long enough. If they
are not, output voltages can be latched before they completely settle to the correct
value. In some applications, when all multiplexed output signals are close to the
same level and changes from one update to the next are small, less settling time is
required for output voltage transitions to settle. These applications might be able to
track the desired output signal with sufficient accuracy at higher rates. Test carefully
to determine actual accuracies achieved.

340 Chapter 17 DAPL Commands: TIME

Examples

TIME 5000

Set sampling speed to 5 milliseconds per sample.

TIME 2.5
Set update speed to 2.5 microseconds per update.

Chapter 17 DAPL Commands: TOGGLE 341

TOGGLE

Define a task that tests for sequences of ON events alternating with OFF events.

TOGGLE (<on_pipe>, <on_region> [, <off_pipe>],
 <off_region>, <trig>)

Parameters
<on_pipe>

Input data pipe for ON events.
WORD PIPE

<on_region>
Testing region for ON events.
REGION

<off_pipe>
Input data pipe for OFF events.
WORD PIPE

<off_region>
Testing region for OFF events.
REGION

<trig>
Output trigger for alternating trigger assertions.
TRIGGER

Description
TOGGLETOGGLETOGGLETOGGLE tests for sequences of ON events alternating with OFF events, placing
alternating trigger assertions into <trig> . For detecting ON events, data from the
<on_pipe> are tested using the <on_region>, in a manner similar to the LIMITLIMITLIMITLIMIT
command. The first event is always an ON event. Once an ON event is detected, data
from the <off_pipe> are tested using the <off_region>, again similar to the
LIMITLIMITLIMITLIMIT command. If the same data stream is to be tested both for the ON and the OFF
conditions, the <off_pipe> parameter is omitted. When both <on_pipe> and
<off_pipe> are specified, data from only one of the streams is tested at any time;
while testing for ON conditions, data from the <off_pipe> are skipped, and while
testing for OFF conditions, data from the <on_pipe> are skipped. These conditions
enforce a strict synchronization and alternation between ON and OFF events.

342 Chapter 17 DAPL Commands: TOGGLE

The strict alternation cannot be enforced when trigger modes are used that suppress
trigger events or artificially introduce events. For this reason, the NATIVE operating
mode is recommended for the trigger. TOGGLETOGGLETOGGLETOGGLE will not run if the trigger has a
nonzero HOLDOFF property or operates in the AUTO mode.

The TOGGLETOGGLETOGGLETOGGLE command usually is used in conjunction with the TOGTOGTOGTOGGWTGWTGWTGWT command,
which extracts variable-length blocks of data from a data stream in response to
ON/OFF events.

Example

TOGGLE(P1, INSIDE, 1000, 10000, OUTSIDE, 0, 32767, TT)

Test data from pipe P1 for an �on-event� value inside the region 1000 to 10000, and
when one is detected, assert an event in trigger TT. Then, test the same source pipe
P1 for an �off-event� negative value, and when one is detected, assert another event
in trigger TT. Repeat the cycle.

TOGGLE(P1, INSIDE, 1000, 10000, P2, OUTSIDE, 0, 32767, TT)
Test samples from pipe P1 for �on-event� values inside the region 1000 to 10000,
and test samples from a separate pipe P2 for �off-event� negative values.

See Also
LIMITLIMITLIMITLIMIT, TOGGWTTOGGWTTOGGWTTOGGWT

Chapter 17 DAPL Commands: TOGGWT 343

TOGGWT

Collect data between alternating ON and OFF trigger events.

TOGGWT (<source>, <toggle>, <dest> [, <size>]
[, <format> [, <tags>]])

<format> = STREAM | <block specifier>

<block specifier> = BLOCKS [SPANNED | SINGLE] [STAMPED]

Parameters
<source>

Input data pipe.
WORD PIPE

<toggle>
The trigger that that signals “ON” and “OFF” events.
TRIGGER

<dest>
Output data pipe.
WORD PIPE

<size>
A value that specifies the maximum data block size.
WORD CONSTANT

<tags>
Specifies an optional separate pipe for identification information.
LONG PIPE

Description
TOGGWTTOGGWTTOGGWTTOGGWT acts somewhat like the WAITWAITWAITWAIT command. It interprets a stream of events from
trigger <toggle> as alternating ON and OFF events. The first event is always an ON
event. When an ON event is received, the TOGGWTTOGGWTTOGGWTTOGGWT command begins to accept data
from the <source> pipe, copying data to the <dest> pipe. When an OFF event is
received at trigger <toggle>, the TOGGWTTOGGWTTOGGWTTOGGWT command stops accepting data from the
<source> pipe. Data that do not occur between ON and OFF events are discarded.

Data formatting options are specified by optional parameters. The <size>
parameter specifies a maximum block size. If no <size> parameter is specified, the

344 Chapter 17 DAPL Commands: TOGGWT

DAPL system supplies a default. The <format> parameter selects formatting
options according to keywords in a format specifier string. The <tags> parameter
specifies an optional separate pipe for identification information.

The syntax of the format option string is:

“ <format string> “

format string = STREAM | <block specifier>

block specifier =
BLOCKS [SPANNED | SINGLE] [STAMPED]

Some examples of valid format specifiers:

“FORMAT = BLOCKS”
“FORMAT = STREAM”
“FORMAT = BLOCKS SINGLE STAMPED”
“FORMAT = BLOCKS SPANNED”

When a format string is specified, one of the following two options must be selected:

� STREAM. The default. The selected data is placed into the <dest> pipe
without any identifier marks. The optional <tags> parameter is not allowed with
this option. This format is probably the preferred one for isolated or single events.
The data are sent in an arbitrary number of blocks of maximum size <size> until
all data from the ON event to the OFF event are transferred.

� BLOCKS. Data are sent in blocks and length tags are placed into the
identification information. If the <tags> parameter is specified, the tag
information is placed into that separate pipe. Otherwise, the tag information is
merged with the data stream and precedes each data block.

When the BLOCKS format is specified, there are two further choices.

� SINGLE. Specifies that the data are to be sent in a single block of up to length
<size>. The actual size is indicated in the tag information. No data are
transmitted until the block is full or an OFF event terminates the block at a smaller
size. If there are more than <size> samples between the ON and the OFF event,
any samples that will not fit in the block are ignored. It is recommended that
<size> be specified, rather than using the default.

� SPANNED. The default when BLOCKS is specified. The data are sent in blocks
no larger than <size>. Each block is tagged, in addition to a length tag, with a
CONTINUED/COMPLETED tag. If marked CONTINUED , the block covers only part
of the remaining data, and another block containing a non-zero number of

Chapter 17 DAPL Commands: TOGGWT 345

additional values is expected. If marked COMPLETED , the block contains all of the
remaining samples up to the OFF event. For example, if data are sent as 2 blocks,
the first block will be marked CONTINUED and the next will be marked
COMPLETED. The numeric representation of the CONTINUED/COMPLETED tags is
given below.

Both of the BLOCKS options can have an additional STAMPED option. When this is
selected, a 32-bit timestamp corresponding to the sample timestamp of the ON event
is placed after the other tag information.

Note: The timestamps can also be obtained by using the TSTAMPTSTAMPTSTAMPTSTAMP command and
then the SKIPSKIPSKIPSKIP command to select only ON events.

The format of the tag data is as follows:

length 16 bits
continuation 16 bits (COMPLETED = 0, CONTINUED = 1)
timestamp 32 bits (sent with STAMPED option only)

The continuation field is only meaningful for SPANNED blocks. With SINGLE
blocks, the continuation field is always zero. Note that when tag information is
merged with long data or placed into a separate <tags> pipe, the 16-bit length and
continuation fields are merged into a single 32-bit value, with the length in the low-
order 16 bits and the continuation in the high-order 16 bits. Also note that when tag
information is merged with 16-bit data, the 32-bit timestamp will appear as a
sequence of two words, with the low-order 16 bits first, followed by the high-order
16 bits. The timestamp field is not sent unless the STAMPED option is selected.

346 Chapter 17 DAPL Commands: TOGGWT

Examples

TOGGWT(P1, TT, P2)

Take samples from pipe P1, according to events in trigger TT, starting at an ON
event, and stopping at an OFF event. Place the data in the P2 pipe. Use the default
formatting option, STREAM, which generates no identification information.

TOGGWT(P1, TT, P2, 2000, “FORMAT=BLOCKS SINGLE”,TAGS)
PCOUNT(TAGS,XXX)

Copy single blocks of up to 2000 items from pipe P1 to pipe P2, beginning at an ON
event from trigger TT, and ending when the block is full or when an OFF event
arrives from TT. Discard the tag information, by placing it into a separate TAGS pipe
and using another command to empty the pipe.

TOGGWT(P1, TT, $BINOUT, 512, “FORMAT=BLOCKS SPANNED”)
Copy data from pipe P1 to communication pipe $BINOUT beginning at an ON event
from trigger TT and continuing until an OFF event. The spanned format is used,
sending the data in blocks no larger than 512 items, and merging tag information
ahead of each data block in the $BINOUT data stream.

See Also
TSTAMPTSTAMPTSTAMPTSTAMP, SKIPSKIPSKIPSKIP, WAITWAITWAITWAIT, TOGGLETOGGLETOGGLETOGGLE

Chapter 17 DAPL Commands: TOR 347

TOR

Define a task that calculates a logical �or� of trigger assertions.

TOR (<in_trigger_1>, ... , <in_trigger_n>, <out_trigger>)

Parameters
<in_trigger_1>

An event source.
TRIGGER

<in_trigger_n>
Additional event sources.
TRIGGER

<out_trigger>
Combined new event stream.
TRIGGER

Description
TORTORTORTOR calculates a logical �or� of trigger assertions. <out_trigger> is asserted each
time at least one of <in_trigger_1>, � , <in_trigger_n> is asserted.

TORTORTORTOR typically is used when a trigger event can occur for more than one reason or can
be detected on a number of separate data channels.

Example

TOR (T1, T2, T_OUT)

Assert T_OUT each time T1 or T2 is asserted.

See Also
TANDTANDTANDTAND

348 Chapter 17 DAPL Commands: TRIANGLE

TRIANGLE

Define a task that generates triangle wave data.

TRIANGLE (<amplitude>, <period>, <out_pipe>
[,<mod_type>, <mod1> [, <mod2>]])

Parameters
<amplitude>

A value that is one half the peak to peak distance of the output.
WORD CONSTANT | WORD VARIABLE

<period>
The number of sample values in each wave.
WORD CONSTANT | WORD VARIABLE

<type>
A value that specifies the type of wave function.
WORD CONSTANT

<out_pipe>
Output pipe for triangle wave data.
WORD PIPE

<mod_type>
A value that selects amplitude and/or frequency modulation of the output wave.
WORD CONSTANT

<mod1>
Pipe for first modulation signal.
WORD PIPE

<mod2>
Pipe for second modulation signal.
WORD PIPE

Description
TRIANGLETRIANGLETRIANGLETRIANGLE generates triangle wave data and places the data in <out_pipe>.
<period> is the number of sample values in each wave. The <amplitude> is one
half the peak to peak distance of the output wave. The maximum value of
<amplitude> is 32767.

Chapter 17 DAPL Commands: TRIANGLE 349

Note: TRIANGLETRIANGLETRIANGLETRIANGLE is identical to WAVEFORMWAVEFORMWAVEFORMWAVEFORM, with <type> set equal to 0.

Three optional modulation parameters may be specified. <mod_type> selects
amplitude and/or frequency modulation of the output wave. The value of
<mod_type> must be one of the following:

1. amplitude modulation controlled by the data in <mod1>
2. frequency modulation controlled by the data in <mod1>
3. amplitude and frequency modulation controlled by the data in <mod1> and
<mod2>, respectively

<mod1> and <mod2> are pipes. One value is read from the pipe(s) for each value
output by TRIANGLETRIANGLETRIANGLETRIANGLE. Modulation values are interpreted as signed binary fractions;
they are multiplied by the base amplitude or frequency to obtain the amplitude or
frequency.

An alternative method for changing the amplitude or frequency of TRIANGLETRIANGLETRIANGLETRIANGLE during
execution uses a DAPL variable as the <amplitude> or <period> parameter of
TRIANGLETRIANGLETRIANGLETRIANGLE. The value of this variable can be changed during execution using a LETLETLETLET
command. This is efficient, but cannot adjust the amplitude or frequency
continuously, and changes are detected and applied asynchronously.

Example

TRIANGLE (1000, 100, P2)

Generate a triangle wave with values ranging from -1000 to 1000 and a period of
100 samples.

See Also
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, SQAREWAVESQAREWAVESQAREWAVESQAREWAVE, WAVEFORMWAVEFORMWAVEFORMWAVEFORM

350 Chapter 17 DAPL Commands: TRIGARM

TRIGARM

Define a task that allows a task or PC application to asynchronously arm or disarm a
software trigger.

TRIGARM (<pipe>, <trig>)

Parameters
<pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<trig>
Trigger of interest.
TRIGGER

Description
The TRIGARMTRIGARMTRIGARMTRIGARM command allows a task or PC application to asynchronously arm or
disarm software trigger <trig> by setting the trigger property GATE=ARMED or
GATE=DISARMED, respectively. All trigger operating modes except the default
(NATIVE) mode are affected. A zero value received from <pipe> disarms the
trigger; a non-zero value arms the trigger. While disarmed, the trigger will not
respond to new assertions and will not generate artificial events. See the TRIGGERSTRIGGERSTRIGGERSTRIGGERS
command for information about operating modes and trigger properties.

A typical application of the TRIGARMTRIGARMTRIGARMTRIGARM command is one-shot data collection. The
trigger is defined with the MANUAL operating mode and an initial GATE=DISARMED
property. When the DAPL processing procedure is started, trigger events are not
recognized because the trigger is disarmed. Later, when the application places a
nonzero value into <pipe>, the TRIGARMTRIGARMTRIGARMTRIGARM command changes the GATE property of
<trig> to ARMED . Operating in MANUAL mode, trigger <trig>, responds to the
next asserted event, and then resets the GATE=DISARMED property.

The system command EDITEDITEDITEDIT is an alternate means of arming and disarming a trigger.

Chapter 17 DAPL Commands: TRIGARM 351

Example

TRIGARM(P1,T1)

Set the GATE property of trigger T1 to DISARMED when a value of 0 is received from
pipe P1. Set the GATE property of trigger T1 to ARMED when a non-zero value is
received from pipe P1.

See Also
TRIGGERSTRIGGERSTRIGGERSTRIGGERS, HTRIGGERHTRIGGERHTRIGGERHTRIGGER, EDITEDITEDITEDIT, WAITWAITWAITWAIT

352 Chapter 17 DAPL Commands: TRIGGERS

TRIGGERS

Define one or more software triggers.

TRIGGERS <t_def> [, <t_def>]*

TRIGGER <t_def> [, <t_def>]*

TRIG <t_def> [, <t_def>]*

T <t_def> [, <t_def>]*

<t_def> = <name> [MODE=<mode> [<property>]*]

<property> =
HOLDOFF=<hold> | STARTUP=<start> | CYCLE=<cycle> |
GATE=<arm>

Parameters
<name>

Trigger symbol name.

<mode>
A keyword selecting the trigger operating mode. Must be one of: NATIVE,
NORMAL, MANUAL, AUTO, DEFERRED.

<arm>
A keyword for enabling or disabling trigger activity. Must be either ARMED or
DISARMED.

<cycle>
Automatic triggering cycle for AUTO mode.
LONG CONSTANT

<hold>
Holdoff interval for all modes except NATIVE.
LONG CONSTANT

<start>
Initial startup interval for all modes except NATIVE.
LONG CONSTANT

Chapter 17 DAPL Commands: TRIGGERS 353

Description
TRIGGERSTRIGGERSTRIGGERSTRIGGERS defines one or more software triggers. A <name> parameter constructs a
software trigger and assigns it a symbol name. The <name> symbol can then be used
as a parameter for processing tasks. Note that all other parameters are optional, and
most applications will not need them. A trigger definition with none of the optional
parameters operates in the NATIVE mode, as defined below.

The trigger begins continuous operation, with dynamic allocation and release of
memory, when all reader and writer tasks for the trigger are started.

Optional operating modes modify the way that trigger events are asserted. The
operating modes act as filters, accepting some requests to assert the trigger,
suppressing other requests.

� NATIVE. The NATIVE mode applies no filtering actions, and the trigger does not
use any of the trigger properties. This mode is optimized for maximum speed
when other triggering features are not needed.

� NORMAL. The NORMAL mode uses the HOLDOFF, STARTUP, and GATE properties.
This mode simulates the normal mode operation of an oscilloscope, in which a
display sweep must be completed before responding to another trigger event.

� DEFERRED. This mode is the same as NORMAL mode, except that events occurring
inside the HOLDOFF interval are delayed until just after the HOLDOFF interval.

� AUTO. This mode is similar to NORMAL mode, except that artificial events are
inserted as specified by the <cycle> property when no events occur otherwise.
This simulates the AUTO triggering mode of an oscilloscope. The CYCLE property
value <cycle> cannot be smaller than the HOLDOFF property value <hold>.

� MANUAL. This mode is for one-shot events. The HOLDOFF, STARTUP, and GATE
properties are recognized. The trigger responds to only one event, and then it sets
its GATE property to DISARMED. It can be rearmed using an EDITEDITEDITEDIT or TRIGARM TRIGARM TRIGARM TRIGARM
command.

The operating modes use the following trigger properties. These properties are not
available for the NATIVE mode.

� GATE. This property can optionally be assigned the value ARMED or DISARMED.
The trigger does not accept new assertions when disarmed. The setting can be
changed later using an EDITEDITEDITEDIT or TRIGARMTRIGARMTRIGARMTRIGARM command. Default is ARMED.

� HOLDOFF. This property specifies a number of samples, <hold>. The trigger will
not allow a new assertion event for <hold> samples after a natural or artificial
event is asserted. Default is zero.

� STARTUP. This property specifies an interval similar to HOLDOFF, except that
events are ignored if they occur during the first <start> number of samples.
Default is zero.

354 Chapter 17 DAPL Commands: TRIGGERS

� CYCLE. This property is used by the AUTO mode to determine the number of
samples between artificially-generated events.

Note: A trigger stores 32-bit sample counts corresponding to assertions. If an
application generates more than 2^32 data values (4294967296 data values), trigger
assertion counts wrap around to zero.

Examples

TRIGGERS T1

Define one trigger T1 using the default NATIVE mode.

TRIGGERS TA MODE=AUTO CYCLE=2000 HOLDOFF=100
Trigger TA is defined to operate in the AUTO mode, and artificial events are inserted
every 2000 samples when there are no other events. There is a holdoff interval of
100 samples after each actual or artificial event during which no additional
assertions are accepted.

TRIGGERS TM MODE=MANUAL STARTUP=5000 GATE=ARMED
Define trigger TM to operate in the MANUAL mode; no event is recognized until after
the startup interval of 5000 samples. After that interval, the trigger will respond to
the next event, also changing its GATE property from ARMED to DISARMED .

TRIGGERS TN MODE=NORMAL STARTUP=5000 HOLDOFF=100 \
 GATE=DISARMED

Trigger TN is designed to operate in the NORMAL mode, but starting initially with the
trigger DISARMED. The trigger will ignore all events until the GATE property is
changed to ARMED and the startup interval of 5000 samples is completed. After both
of these conditions are satisfied, the trigger continues operation in NORMAL mode.

See Also
LIMITLIMITLIMITLIMIT, WAITWAITWAITWAIT, TRIGARMTRIGARMTRIGARMTRIGARM, HTRIGGERHTRIGGERHTRIGGERHTRIGGER

Chapter 17 DAPL Commands: TRIGRECV 355

TRIGRECV

Define a task that recovers transferred triggering information.

TRIGRECV (<in_pipe>, <out_trigger>)

Parameters
<in_pipe>

Input data pipe for encoded triggering information.
LONG PIPE

<out_trigger>
Output trigger.
TRIGGER

Description
TRIGRECVTRIGRECVTRIGRECVTRIGRECV recovers encoded software triggering information received from another
task through a user-defined or communication data pipe <in_pipe>. The triggering
information is placed into trigger <out_trigger>.

The data pipe must contain a long data type. An examples of a compatible user-
defined data pipe is the following:

PIPE PXTRIG LONG

See Chapter 14 for information on how to set up the communication pipes.

A typical application for TRIGRECVTRIGRECVTRIGRECVTRIGRECV is high speed data acquisition on a slaved Data
Acquisition Processor board, where high-speed trigger detection processing is
performed by a separate Data Acquisition Processor, with triggering information
transmitted using the TRIGSENDTRIGSENDTRIGSENDTRIGSEND command.

356 Chapter 17 DAPL Commands: TRIGRECV

Example

TRIGRECV(XF3, T3)

Encoded triggering information is received through LONG communication pipe XF3
and reconstructed in trigger T3.

See Also
PIPESPIPESPIPESPIPES, TRIGSENDTRIGSENDTRIGSENDTRIGSEND

Chapter 17 DAPL Commands: TRIGSCALE 357

TRIGSCALE

Define a task that modifies a stream of trigger events.

TRIGSCALE (<trig_in>, <offset>, <mul>, <div>, <trig_out>)

Parameters
<trig_in>

Input trigger.
TRIGGER

<offset>
A value that specifies the offset adjustment.
WORD CONSTANT

<mul>
A value that specifies the channel multiplication scaling.
WORD CONSTANT

<div>
A value that specifies the data reduction scaling.
WORD CONSTANT

<trig_out>
Output trigger.
TRIGGER

Description
The TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command modifies a stream of trigger events received from trigger
<trig_in> and places the results in trigger <trig_out>. The modifications to the
trigger values adjust for data rates, channel groupings, and time (phase) offsets.

The TRIGSCALETRIGSCALETRIGSCALETRIGSCALE command applies three operations to the values taken from the
<trig_in> trigger: an offset adjustment specified by the <offset> parameter, a
data reduction scaling specified by the <div> parameter, and a channel
multiplication scaling specified by the <mul> parameter.

timestamp = ((old_timestamp + <offset>) / <div>) * <mul>

The <offset> operation corresponds to a time-shift, in terms of a number of
samples in the input sequence. A positive value indicates a delay, and a negative

358 Chapter 17 DAPL Commands: TRIGSCALE

value indicates an advance. A negative value has somewhat the same effect as pre-
triggering samples when using the WAITWAITWAITWAIT command. The first sample, when the Data
Acquisition Processor starts, is always sample number zero, so any event advanced
ahead of sample zero is removed. If there is no time shift, set <offset> to zero.

The <div> operation accounts for data rate reduction due to processing. For
example, suppose that an event is detected in a stream of raw data samples, and this
data is also averaged in blocks of 100 samples, producing one averaged value for
every 100 raw input values. To locate the average value that corresponds to the
block containing the detected event, specify a value of 100 for the <div> parameter.
The value of <div> must always be positive, so if there is no data reduction, specify
the value one.

The <mul> operation accounts for data blocks or multiple channel groups. For
example, suppose that the BAVERAGEBAVERAGEBAVERAGEBAVERAGE command is used to smooth the voltage
readings from a group of 6 thermocouple devices. One of the 6 channels is then
tested for a triggering condition (such as temperature limits) using a SKIPSKIPSKIPSKIP command
and a LIMITLIMITLIMITLIMIT command. To locate the 6-channel block of data corresponding to an
event, specify 6 for the value of the <mul> parameter. Note that the WAITWAITWAITWAIT command
provides this channel multiplier factor implicitly when used with an input channel
pipe list, but in this example, the data comes from a user-defined pipe after
averaging, and not from an input channel list. The value of <mul> must always be
positive, so if there is no data reduction, specify the value one.

Notice that the <div> operation is applied first, with remainder ignored, and then
the <mul> operation is applied. The most important effect of this ordering is that the
resulting trigger timestamps always occur at the first sample in a group.

In practice, most applications will need only one of the three adjustments: a shift,
reduction, or group scaling.

Chapter 17 DAPL Commands: TRIGSCALE 359

Example

TRIGSCALE(T1, 0, 100, 100, T2)

Divide each event timestamp appearing in trigger T1 by 100, then multiply it by
100, placing the result in trigger T2, with no time shift adjustment. The effect is to
move any event occurring in a block of 100 samples to the beginning of the block.

TRIGSCALE(T1, -100, 8, 1, T2)
Convert each trigger assertion appearing in trigger T1 to a trigger assertion in trigger
T2, such that the new timestamp corresponds to a location where 100 pre-trigger
samples are available for each of 8 multiplexed channels in a data stream. Trigger
events prior to timestamp 100 are ignored.

See Also
LIMITLIMITLIMITLIMIT, WAITWAITWAITWAIT

360 Chapter 17 DAPL Commands: TRIGSEND

TRIGSEND

Define a task that transfers trigger information to another Data Acquisition Processor.

TRIGSEND (<in_trigger>, [<notify> ,] <pipe> [, <pipe>])

Parameters
<in_trigger>

Input trigger.
TRIGGER

<notify>
A value that specifies the number of samples to process before sending status
information.
WORD CONSTANT | LONG CONSTANT

<pipe>
Output pipe(s) for encoded information.
LONG PIPE | LONG COMMUNICATIONS PIPE

Description
TRIGSENDTRIGSENDTRIGSENDTRIGSEND encodes trigger information in a data pipe, allowing this information to
be transferred to another Data Acquisition Processor for coordinated software
trigger processing. TRIGSENDTRIGSENDTRIGSENDTRIGSEND extracts event and status information from
<in_trigger> and copies this information to the specified list of <pipe>
destinations.

The optional <notify> parameter requests sending status information after
processing each <notify> number of samples from the data pipe associated with
<in_trigger>. This parameter should normally be omitted, letting the DAPL
system supply a default. This parameter is useful in certain situations where
sampling rates are slow. In such situations, a reasonable number to specify would be
the number of samples processed for triggering (with or without events) in a few
milliseconds. If this parameter is too small, TRIGSENDTRIGSENDTRIGSENDTRIGSEND can cause a high level of data
bus traffic, which interferes with other PC communication.

The destination pipes must accept a long data type. An example of a compatible
user-defined pipe is the following:

PIPE PXTRIG LONG

Chapter 17 DAPL Commands: TRIGSEND 361

See Chapter 14 for information on how to set up the communication pipes.

A typical application for TRIGSENDTRIGSENDTRIGSENDTRIGSEND is triggered data acquisition on multiple, slaved
Data Acquisition Processor boards. A Data Acquisition Processor configured as a
master can issue trigger events to a number of slave processors, allowing software-
controlled data capture at very high rates on many channels. Each slave board
receives and reconstructs the triggering information using a TRIGRECVTRIGRECVTRIGRECVTRIGRECV task.

Example

TRIGSEND(T1, XF2, XF3)

Encode the information from trigger T1 and transfer it through LONG communication
pipes XF2 and XF3.

See Also
PIPESPIPESPIPESPIPES, TRIGRECVTRIGRECVTRIGRECVTRIGRECV

362 Chapter 17 DAPL Commands: TSTAMP

TSTAMP

Define a task that is used to time stamp trigger events.

TSTAMP (<trigger>, <out_pipe>)

Parameters
<trigger>

Stream of trigger assertions.
TRIGGER

<out_pipe>
Output data pipe for the sample numbers of the trigger events.
WORD PIPE | LONG PIPE

Description
TSTAMPTSTAMPTSTAMPTSTAMP is used to time stamp trigger events. TSTAMPTSTAMPTSTAMPTSTAMP waits for <trigger>
assertions. Each time <trigger> is asserted, TSTAMPTSTAMPTSTAMPTSTAMP puts the sample number of
the trigger event into <out_pipe>.

Multiplying the sample number generated by TSTAMPTSTAMPTSTAMPTSTAMP by the time interval between
successive samples converts the sample number to elapsed time.

Example

TSTAMP (T1, PL1)

Each time trigger T1 is asserted, place the sample number of the event causing the
assertion into pipe PL1.

See Also
TRIGGERSTRIGGERSTRIGGERSTRIGGERS

Chapter 17 DAPL Commands: UPDATE 363

UPDATE

Specify burst mode options for an input or output configuration.

UPDATE <option>

Parameters
<option>

A keyword, either BURST or CONTINUOUS.

Description
The UPDATEUPDATEUPDATEUPDATE command selects BURST or CONTINUOUS mode operation in an input
configuration or output configuration. The default is CONTINUOUS.

CONTINUOUS mode is the normal operating mode of an input configuration or output
configuration. Once sampling or updating begins, it continues until the configuration
is stopped.

For input configuration BURST mode, a COUNTCOUNTCOUNTCOUNT command and an HTRIGGERHTRIGGERHTRIGGERHTRIGGER
ONESHOT command must be specified. Input sampling begins when an external
trigger is asserted. Sampling stops when COUNTCOUNTCOUNTCOUNT values have been sampled. Input
sampling begins again when the external trigger is asserted. COUNTCOUNTCOUNTCOUNT must be an
integral multiple of the number of channels in the input configuration. Note that
when external clocking is used with input configuration BURST mode, the last
sampled value is held in the pipeline until the next external clock.

In output configuration BURST mode, output updating stops when output channel
pipe data are exhausted, but no output underflow warning occurs. Output updating
resumes once the available data again exceed the threshold specified by the
OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT command. Output configuration BURST mode is not available if an
output configuration CYCLECYCLECYCLECYCLE is specified.

The command SLAVESLAVESLAVESLAVE is not supported by UPDATEUPDATEUPDATEUPDATE BURST mode.

364 Chapter 17 DAPL Commands: UPDATE

Example

UPDATE BURST

Specify that output updating operate in burst mode.

See Also
CYCLECYCLECYCLECYCLE, COUNTCOUNTCOUNTCOUNT, HTRIHTRIHTRIHTRIGGERGGERGGERGGER

Chapter 17 DAPL Commands: VARIABLES 365

VARIABLES

Define named variables.

VARIABLES <name> <type> [= <value>]
[, <name> <type> [= <value>]]*

VARIABLE <name> <type> [= <value>]
[, <name> <type> [= <value>]]*

VAR <name> <type> [= <value>]
[, <name> <type> [= <value>]]*

V <name> <type> [= <value>]
[, <name> <type> [= <value>]]*

Parameters
<name>

Text of assigned variable name.
Variable Name

<type>
Keyword for data type of new variable symbol.
WORD | LONG | FLOAT | DOUBLE

<value>
An optional initial value for the variable.
WORD CONSTANT | WORD VARIABLE |
LONG CONSTANT | LONG VARIABLE |
FLOAT CONSTANT | FLOAT VARIABLE |
DOUBLE CONSTANT | DOUBLE VARIABLE

Description
The VARIABLESVARIABLESVARIABLESVARIABLES command defines named, adjustable number values. Variables can
be used by tasks to share information that changes asynchronously. The <type>
keyword specifies the data type of the new variable.

An initial value can be specified when defining a variable. Floating point variables
and constants cannot be used to assign a value to a WORD or LONG variable, but
otherwise, any constant or variable is acceptable if it provides a value in the
representable range. If the equal sign operator and initializer term <value> are

366 Chapter 17 DAPL Commands: VARIABLES

omitted, the variable is created with an initial value of zero. The value of the
variable is not changed by a STOPSTOPSTOPSTOP command, so use the LETLETLETLET command if necessary
to restore the initial value after running a DAPL configuration.

Note: For compatibility with earlier versions of the DAPL system, two older
command forms are also accepted. The VARIABLESVARIABLESVARIABLESVARIABLES command will accept a variable
declaration that does not specify a data type. For this special case, the type defaults
to WORD. The VARIABLESVARIABLESVARIABLESVARIABLES command will also accept a declaration that specifies a
WORD or LONG data type keyword after the initializer term. These old command
forms are not compatible with floating point data types, and hexadecimal
expressions could be interpreted in a manner inconsistent with other DAPL
commands. Use of the old command notations should be avoided.

Examples

VARIABLES V1 WORD,F2 FLOAT

Define two variables, each with an initial value of zero.

VAR GAMMA LONG = GAMMA17

Define a 32-bit variable GAMMA with an initial value taken from symbol GAMMA17.

See Also
CONSTANTSCONSTANTSCONSTANTSCONSTANTS, LETLETLETLET, SDISPLAYSDISPLAYSDISPLAYSDISPLAY

Chapter 17 DAPL Commands: VARIANCE 367

VARIANCE

Define a task that computes variance statistics for blocks of data values.

VARIANCE (<in_pipe>, <count>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<count>
The number of data values per block.
WORD CONSTANT

<out_pipe>
Output pipe for variance data.
WORD PIPE | LONG PIPE

Description
VARIANCEVARIANCEVARIANCEVARIANCE computes the variance of blocks of <count> data values. The variance is
sent to <out_pipe>.

Note: The variance is defined as the sum of the squares of the deviations from the
block average, divided by <count>. For some statistical applications, division by
<count>-1 is appropriate. The variance can be adjusted by a DAPL expression, as
long as <count> is guaranteed to be greater than one.

Example

VARIANCE (P1, 10000, P2)

Compute the variance of blocks of 10000 observations from pipe P1 and place the
variance in pipe P2.

See Also
AVERAGEAVERAGEAVERAGEAVERAGE, RMSRMSRMSRMS

368 Chapter 17 DAPL Commands: VECTOR

VECTOR

Define a vector.

VECTOR <name> <type> = (vn [, <vn>]*)

VECT <name> <type> = (vn [, <vn>]*)

VEC <name> <type> = (vn [, <vn>]*)

Parameters
<name>

Text of assigned vector name.
NAME

<type>
A keyword specifying a data type for the vector data.
WORD | LONG | FLOAT | DOUBLE

<vn>
A numeric value to initialize a term of the vector.
WORD CONSTANT | LONG CONSTANT |
FLOAT CONSTANT | DOUBLE CONSTANT

Description
VECTORVECTORVECTORVECTOR defines a vector of numbers in shared DAPL system storage. The keyword
<type> specifies the numeric type of the data elements in the vector. The
expressions <vn> in the initializer list specify constant numerical values
representable by the specified data type. Each vector term must be initialized, and
the number of initializer expressions in the list determines the vector length, which
cannot exceed 16384 terms.

The initializer list can be coded on multiple command lines. Placing a list separator
comma at the end of a line tells the DAPL system to expect more initializer terms on
the next line. It is acceptable but not necessary to place a backslash �\� continuation
character at the end of lines continued in this manner.

Note: For compatibility with older versions of the DAPL 2000 system, the VECTORVECTORVECTORVECTOR
command might also accept alternate notations that omit the <type> parameter or

Chapter 17 DAPL Commands: VECTOR 369

defer it to the end. The obsolete notations are incompatible with floating point data
types. New applications should avoid these old notations.

Examples

VECTOR A LONG = (1,2,-3,-4)

Define a four element vector of 32-bit LONG integer values.

VECTOR B WORD = (5,6,7,8,
 9,10,11,
 12,13)

Define a vector of nine 16-bit WORD values using multiple command lines.

VECTOR C DOUBLE = (1, 4.555, -1E6)
Define a three element vector of 64-bit DOUBLE data type.

See Also
COPYVECCOPYVECCOPYVECCOPYVEC, FIRFILTERFIRFILTERFIRFILTERFIRFILTER

370 Chapter 17 DAPL Commands: VRANGE

VRANGE

Set the default input voltage range for a sampling configuration.

VRANGE [<low> <high> | BIPOLAR=<high>]

Parameters
<low>

Input voltage low limit.
WORD CONSTANT | FLOAT CONSTANT

<high>

Input voltage high limit.
WORD CONSTANT | FLOAT CONSTANT

Description
VRANGEVRANGEVRANGEVRANGE is available for Data Acquisition Processor models that have a
programmable input voltage range. Only certain specific voltage ranges are allowed.
See the manual for each Data Acquisition Processor model for information about
supported ranges.

The <low> parameter specifies the low limit of the input voltage range. The<high>
parameter specifies the high limit of the input voltage range. When the alternate
BIPOLAR notation is used, only the <high> limit is specified, and the implied
<low> limit is the negative of the high limit. Voltage ranges are typically an exact
integer number of volts, with no decimal fraction required.

Because the VRANGEVRANGEVRANGEVRANGE command establishes a default condition that will be used for
configuring all data channels, the VRANGEVRANGEVRANGEVRANGE command should appear as one of the
first commands following the IDEFINEIDEFINEIDEFINEIDEFINE command.

Examples

IDEFINE INP3
 GROUPS 3

Chapter 17 DAPL Commands: VRANGE 371

 VRANGE -10.0 +10.0
 SET IP(0..3) SPG0
 SET IP(8..11) SPG1
 SET IP(4..7) SPG2
 TIME 5
END

Set the default input voltage range for sampling configuration INP3 to be �10 to +10
volts. This voltage range is applied to all channel groups in the configuration.

See Also
SETSETSETSET, IDEFINEIDEFINEIDEFINEIDEFINE

372 Chapter 17 DAPL Commands: WAIT

WAIT

Define a task that selects data according to trigger events.

WAIT (<in_pipe>, <trigger>, <pre>, [<post>], <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<trigger>
The trigger that is examined.
TRIGGER

<pre>
The number of values to transfer before the trigger event.
WORD CONSTANT | LONG CONSTANT

<post>
The number of values to transfer after the trigger event.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE

Description
A WAITWAITWAITWAIT task skips data from <in_pipe> until <trigger> is asserted. When a
trigger is asserted, WAITWAITWAITWAIT then transfers <pre> values from immediately before the
trigger event and <post> values immediately after the trigger event from
<in_pipe> to <out_pipe>. An effect can never be measured before the event that
produces it, so the sample where an effect is first detected is considered to occur
after the triggering event. Numbers <pre> and <post> are nonnegative integers. If
specified, <post> must not be zero. The number <pre> is often called the pre-
trigger count and the number <post> is often called the post-trigger count. The
number of samples retained after each event is <pre> + <post>. If <post> is
omitted, the WAITWAITWAITWAIT task transfers data continuously after an event occurs.

The data rate into <in_pipe> must be the same as the rate of the data that cause the
trigger assertion; otherwise, the asserted trigger count does not correspond to the
correct <in_pipe> data.

Chapter 17 DAPL Commands: WAIT 373

WAITWAITWAITWAIT treats an input channel pipe list as a special case. When processing trigger
information, WAITWAITWAITWAIT multiplies the trigger counts by the number of input channel pipes
in the input channel pipe list. WAITWAITWAITWAIT assumes that the task asserting the trigger is
testing data at the speed of only one input channel pipe. This allows WAITWAITWAITWAIT to
accurately handle several input channel pipes while the triggering command is
scanning a single input channel pipe.

Examples

WAIT (IP(0..3), T1, 0, 100, P1)

Wait for a trigger assertion on trigger T1 and after the trigger event, transfer a block
of 100 values, 25 values for each channel, from the input channel pipe to pipe P1.

WAIT (P2, T2, 50, 25, P3)
Wait for a trigger assertion on T2 and transfer from pipe P2 to pipe P3 50 values
before and 25 values after the trigger event.

WAIT (PX, T1, 0, PY)
Wait for a trigger assertion on trigger T1 and transfer data continuously from pipe
PX to pipe PY starting with the sample of the trigger event.

See Also
CHANGECHANGECHANGECHANGE, DLIMITDLIMITDLIMITDLIMIT, LIMITLIMITLIMITLIMIT, LOGICLOGICLOGICLOGIC, PEAKPEAKPEAKPEAK, TRIGSCALETRIGSCALETRIGSCALETRIGSCALE

374 Chapter 17 DAPL Commands: WAVEFORM

WAVEFORM

Define a task that generates a specified type of wave data.

WAVEFORM (<type>, <amplitude>, <period>, <out_pipe>
[,<mod_type>, <mod1> [, <mod2>]])

Parameters
<type>

A value that specifies the type of wave function.
WORD CONSTANT

<amplitude>
A value that is one half of the peak to peak range of the output.
WORD CONSTANT | WORD VARIABLE

<period>
The number of sample values in each wave cycle.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for wave data.
WORD PIPE

<mod_type>
A value that selects amplitude and/or frequency modulation of the output wave.
WORD CONSTANT

<mod1>
Pipe for first modulation signal.
WORD PIPE

<mod2>
Pipe for second modulation signal.
WORD PIPE

Chapter 17 DAPL Commands: WAVEFORM 375

Description
WAVEFORMWAVEFORMWAVEFORMWAVEFORM generates wave data and places the data in <out_pipe>. The<type>
parameter specifies the type of wave function.

Wave types are defined as follows:

type 0: triangle
type 1: sawtooth
type 2: sine
type 3: square

Note: The commands TRIANGLETRIANGLETRIANGLETRIANGLE, SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, and SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE are
identical to WAVEFORMWAVEFORMWAVEFORMWAVEFORM, with <type> set equal to 0, 1, 2, or 3.

<period> is the number of sample values in each wave. The <amplitude> is one
half the peak to peak distance of the output wave. The maximum value of
<amplitude> is 32767.

Three optional modulation parameters may be specified. <mod_type> selects
amplitude and/or frequency modulation of the output wave. The value of
<mod_type> must be one of the following:

1. amplitude modulation controlled by the data in <mod1>
2. frequency modulation controlled by the data in <mod1>
3. amplitude and frequency modulation controlled by the data in <mod1> and
<mod2>, respectively

<mod1> and <mod2> are pipes. One value is read from the pipe(s) for each value
output by WAVEFORMWAVEFORMWAVEFORMWAVEFORM. Modulation values are interpreted as signed binary fractions;
they are multiplied by the base amplitude or frequency to obtain the amplitude or
frequency.

An alternate method for changing the amplitude or frequency of WAVEFORMWAVEFORMWAVEFORMWAVEFORM during
execution uses a DAPL variable as the <amplitude> or <period> parameter of
WAVEFORMWAVEFORMWAVEFORMWAVEFORM. The value of this variable can be changed during execution using a LETLETLETLET
command. This is efficient, but cannot adjust the amplitude or frequency
continuously, and changes are detected and applied asychronously.

376 Chapter 17 DAPL Commands: WAVEFORM

Examples

WAVEFORM (2, 1000, 100, P2)

Generate a sine wave with values ranging from -1000 to 1000, with a period of 100
samples.

WAVEFORM (2, 1000, 100, P2, 2, P3)
Generate the same sine wave, with frequency modulation controlled by the data in
pipe P3.

See Also
COSINEWAVECOSINEWAVECOSINEWAVECOSINEWAVE, SAWTOOTHSAWTOOTHSAWTOOTHSAWTOOTH, SINEWAVESINEWAVESINEWAVESINEWAVE, SQUAREWAVESQUAREWAVESQUAREWAVESQUAREWAVE, TRIANGLETRIANGLETRIANGLETRIANGLE

Chapter 18 DAPL 2000 Messages 377

18. DAPL 2000 Messages

The following is a listing of error and explanatory messages produced by DAPL
system software.

A message beginning with the word Error or the word Warning results from system
level processing, and is generated by the DAPL system when a configuration or
operating error occurs. An error message beginning with <task>, where <task> is
a command name, is generated when the error results in the context of a running task.

378 Chapter 18 DAPL 2000 Messages

Error Messages 0-99 - System Errors
Error 2: fatal system error

Error 3: fatal system error

...

Error 32: fatal system error
 The DAPL system was notified of a serious fault condition by the processor

hardware. Operation is not recoverable and the system must be reloaded and
restarted. If the application does not use custom DAPL commands or modules,
please report this error to Microstar Laboratories Customer Support. It is possible
for applications using a 16-bit custom command or 32-bit downloadable module to
experience faults of this kind after: improper use of pointers or indexing, improper
use of segment registers, and stack and dynamic memory range errors. Examine
the code for custom commands and modules carefully, checking for problems in
these areas.

Chapter 18 DAPL 2000 Messages 379

Error Messages 1000-1049 - Configuration Errors

Error 1004: illegal command - '...'
 A command was used in an inappropriate context. For example, a SETSETSETSET command

that is not in an input procedure is an illegal command.

Error 1006: illegal parenthesis nesting
 A DAPL expression has mismatched parentheses.

Error 1009: illegal symbol type
 A named element has the wrong type for its context. For example, attempting to

assign a value to a pipe in a LETLETLETLET command where a constant or variable name is
required.

Error 1010: expression is too complex
 The DAPL expression contains too many operators or too many levels of

parentheses.

Error 1023: undefined symbol - '...'
 A command contains an undefined symbol name. Usually this error results from

neglecting to define a data element before referencing it in a processing task
parameter list. This error can also result from spelling a name incorrectly.

Error 1026: unmatched parentheses - '...'
 In a command such as VECTORVECTORVECTORVECTOR with an initializer list, the parenthesis that

terminates the list is missing at the end.

Error 1029: illegal decimal point specification - '...'
 In a FORMATFORMATFORMATFORMAT command, the decimal point specifier for a parameter is negative or

out of range.

Error 1034: unmatched parentheses or quotation marks - '...'
 In a situation where either parentheses or quotation marks could occur in an

expression, the terminating close parenthesis or quotation mark character is
missing. Check that all parentheses or quotation marks match correctly.

Error 1035: time is too large
 The maximum sampling or updating time specified is beyond the range

supportable by the Data Acquisition Processor model. See the TIMETIMETIMETIME command.

380 Chapter 18 DAPL 2000 Messages

Error 1037: procedure generation failed
 Insufficient system memory is available when attempting to activate an input,

output or processing procedure with the STARTSTARTSTARTSTART command. If the error message
suggests a reset, enter a RESETRESETRESETRESET command. Otherwise, enter a STOPSTOPSTOPSTOP command and
then try again to run the configuration.

Error 1038: input channel pipe number is out of range
 Input channel pipe numbers must be between 0 and n-1, where �n� is the number

of channel pipes established by the CHANNELSCHANNELSCHANNELSCHANNELS or GROUPSGROUPSGROUPSGROUPS command in the input
procedure.

Error 1040: illegal input pin identifier
 An incorrect pin identifier is specified on a SESESESETTTT command.

Error 1041: sampling time is too small
 The sampling time is less than the shortest conversion time supported by the A/D

converters on this Data Acquisition Processor model.

Error 1043: procedure name must be an input or output
procedure

 An EDITEDITEDITEDIT command can modify input or output procedures configurations but not
processing configurations.

Error 1044: procedure currently is active
 The EDITEDITEDITEDIT command cannot modify an input or output configuration that is

currently running. Apply a STOPSTOPSTOPSTOP or RESETRESETRESETRESET command and try again.

Error 1045: procedure generation failed - RESET the system
 The system ran out of heap memory and cannot complete the activation of an

input, output, or processing procedure. Use the RESETRESETRESETRESET command to release
memory taken during previous operation but never released.

Error 1046: expecting '=' after pipe name
 A task definition has an invalid syntax. The command begins with a pipe name,

but to be a correct DAPL expression, an assignment operator must follow. This
error can occur if a pipe name unintentionally appears as the first element in a task
definition command line.

Error 1049: too many output channel pipes
 An output procedure attempts to define more than the maximum number of output

channel pipes supportable by the Data Acquisition Processor model.

Chapter 18 DAPL 2000 Messages 381

Error Messages 1050-1099 - Configuration Errors
Error 1054: output channel pipe number is out of range

 Output channel pipe numbers must be between 0 and n-1, where �n� is the number
of channel pipes established in the output procedure.

Error 1055: illegal output pin specification
 A pin identifier on a SETSETSETSET command in an output procedure configuration is not

supported by the Data Acquisition Processor model.

Error 1057: update time is too small
 Output update time is smaller than the digital to analog output converters can

support on this Data Acquisition Processor model.

Error 1060: illegal input clocking parameter - '...'
 An input clocking parameter must be either INTERNAL or EXTERNAL.

Error 1062: illegal EDIT procedure option - '...'
 See the EDIT documentation for a list of accepted EDITEDITEDITEDIT options for procedures.

Error 1063: command name is undefined - '...'
 When defining a task, an undefined command name was entered. The command

must be provided by the DAPL system, by a 16-bit custom command that was
previously downloaded, or by a 32-bit module that was previously installed.

Error 1064: illegal output com pipe - '...'
 The OUTPUT= option in a FORMATFORMATFORMATFORMAT command line can only be used to redirect

output to an output communication pipe.

Error 1068: illegal output clocking parameter - '...'
 An output clocking parameter must be either INTERNAL or EXTERNAL.

Error 1069: illegal output hardware trigger parameter - '...'
 An output hardware trigger parameter must be either GATED, ONESHOT, or OFF.

Error 1070: insufficient memory to start input procedure
 All heap memory is filled. Issue a STOPSTOPSTOPSTOP command and try again.

Error 1071: insufficient memory to start output procedure
 All heap memory is filled. Issue a STOPSTOPSTOPSTOP command and try again.

382 Chapter 18 DAPL 2000 Messages

Error 1072: task creation attempt failed
 A procedure could not be started due to lack of heap memory. Issue a STOPSTOPSTOPSTOP

command and try again.

Error 1073: active input procedure does not have a COUNT
specification

 The SAMPLEHOLDSAMPLEHOLDSAMPLEHOLDSAMPLEHOLD command cannot be used with the currently active input
procedure. The procedure must include a COUCOUCOUCOUNTNTNTNT specification. Without this, the
procedure would never terminate.

Error 1074: undefined procedure - '...'
 A procedure name given in the parameter list of STARTSTARTSTARTSTART or STOPSTOPSTOPSTOP is not known to

the system. The message will show one or more task names beginning with the
procedure name that was not recognized.

Error 1075: procedure already is active - '...'
 An attempt was made to start a procedure that already has been started.

Error 1077: procedure is not active - '...'
 A procedure that is not started cannot be stopped.

Error 1078: illegal display parameter - '...'
 The display option specified on a DISPLAYDISPLAYDISPLAYDISPLAY command is not recognized. See the
DISPLAYDISPLAYDISPLAYDISPLAY documentation for a list of supported display options.

Error 1079: undefined symbol name - '...'
 An SDISPLAYSDISPLAYSDISPLAYSDISPLAY or EDITEDITEDITEDIT command line specifies an undefined symbol name.

Error 1080: illegal TASK parameter - '...'
 This message can appear when an incorrect parameter is specified on a TASKSTAT

command line in older DAPL operating system versions. Use the STATISTICSSTATISTICSSTATISTICSSTATISTICS
command instead.

Error 1082: illegal pipe parameters
 A command line option is invalid on a PIPESPIPESPIPESPIPES command. For example, the
MAXSIZE parameter does not specify a valid positive number.

Error 1084: illegal blocking size
 The transfer blocking size for a communication pipe is out of range. The blocking

must be a number of elements greater than zero and less than the maximum
buffering size of the output communications pipe.

Chapter 18 DAPL 2000 Messages 383

Error 1085: illegal pipe type
 The characteristics of a pipe being modified by an EDITEDITEDITEDIT command are

inconsistent with the new pipe characteristics specified. The pipe characteristics
are not changed.

Error 1086: at least one task must be signaled
 Trigger events asserted by a task are not received by any other task.

Error 1089: illegal VECTOR syntax
 Unrecognized text appears in a VECTORVECTORVECTORVECTOR command line.

Error 1090: vector has too many elements
 The number of terms in a vector exceeds the maximum of 8,192 elements.

Error 1091: number of wait samples is too large
 The OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT count in an output procedure is larger than available memory

resources can support.

Error 1092: illegal com pipe number
 Communication pipe numbers must be in the range of zero to 119.

Error 1094: PC NUM=<num> must be specified
 A communication pipe definition must specify a communication port.

Error 1098: MAXSIZE parameter is too large
 The maximum number of elements for buffering in the user-defined pipe is too

large for available pipe storage.

Error 1099: inconsistent pipe definition parameters
 Inconsistent pipe options were specified for a communication pipe, for instance,
BINARY and ECHO.

384 Chapter 18 DAPL 2000 Messages

Error Messages 1100-1149 - Configuration Errors
Error 1101: expecting '=' after option name

 When changing a system option, the name of the option to be changed must be
followed by an equals sign.

Error 1102: TYPE parameter is out of range
 TYPE parameter in a BDOWNLOADBDOWNLOADBDOWNLOADBDOWNLOAD command for a 16-bit custom command must be

zero if specified.

Error 1103: custom command length must be even when reading a
word com pipe

 The length parameter in a BDOWNLOADBDOWNLOADBDOWNLOADBDOWNLOAD command must be an even number of bytes
if the input pipe is a word pipe.

Error 1105: illegal com pipe edit parameter - '...'
 The parameters of a communication pipe that can be modified by an EDITEDITEDITEDIT

command are ECHO , NOECHO , BLOCKING and WIDTH.

Error 1106: undefined pipe - '...'
 An EMPTYEMPTYEMPTYEMPTY or FILLFILLFILLFILL command line specifies an undefined pipe name.

Error 1109: illegal WIDTH parameter - '...'
 The WIDTH property parameter on a PIPE definition must specify a primitive data

type: BYTE, WORD, LONG, FLOAT or DOUBLE.

Error 1110: illegal parameter - '...'
 A CPIPECPIPECPIPECPIPE command contained an illegal parameter.

Error 1111: illegal OPTION command - '...'
 See the OPTIONSOPTIONSOPTIONSOPTIONS documentation for a list of configurable system options.

Error 1112: illegal boolean value - '...'
 The Boolean values used with the OPTIONSOPTIONSOPTIONSOPTIONS command are ON, OFF, YES, and NO.

Error 1114: undefined byte or word pipe - '...'
 A BDOWNLOADBDOWNLOADBDOWNLOADBDOWNLOAD command line specifies the name of a pipe that is not a defined byte

or word pipe.

Error 1117: missing parameter(s)
 A command line is incomplete. For example, the time interval was omitted from a
TIMETIMETIMETIME command line; the symbol to modify is missing from the EDITEDITEDITEDIT command
line; no sample count is specified on the COUNTCOUNTCOUNTCOUNT command line; etc.

Chapter 18 DAPL 2000 Messages 385

Error 1118: extraneous characters at end of line - '...'
 Unexpected text appears at a point where a command would be complete without

the unrecognized text. This error can occur when an optional command parameter
is incorrectly typed, a list of comma-separated items is missing a separator comma,
or additional non-comment text follows the elements that should terminate the
command.

Error 1120: missing name
 In a command such as PIPESPIPESPIPESPIPES or LETLETLETLET, where the user is expected to specify the

name of an element, the name is missing from the command line. This error can
occur if a required name field is omitted, if there is a duplicated separator such as
a comma in a list of names, or if an extra separator character such as a comma
appears after the last element of a list.

Error 1122: symbol already is defined
 An attempt was made to redefine a symbol. Use RESETRESETRESETRESET to remove all previous

symbol definitions, or use the ERASEERASEERASEERASE command to remove symbol names
selectively.

Error 1127: this symbol cannot be edited
 Only communication pipes, input procedures, and output procedures can be

modified by the EDITEDITEDITEDIT command.

Error 1128: number is out of range - '...'
 The number entered was too large or too small to be valid in its context. For a

command such as CONSTANTSCONSTANTSCONSTANTSCONSTANTS, this would mean that the attempt to convert the
command text string into a binary number failed because the number was too large
to be representable. For a command such as COUNTCOUNTCOUNTCOUNT, this could mean that the
number is negative or too large.

Error 1129: illegal decimal number - '...'
 An element specifying a number either contains invalid characters or has a

numerical value that cannot be represented. Decimal numbers can contain only the
characters 0 to 9, optionally preceded by a minus sign.

Error 1130: illegal hexadecimal word - '...'
 Invalid characters are present in a hexadecimal number notation, or the value

represented by the notation exceed the range of a WORD data element.

Error 1131: illegal hexadecimal long word - '...'
 Invalid characters are present in a hexadecimal number notation, or the value

represented by the notation exceed the range of a LONG data element.

386 Chapter 18 DAPL 2000 Messages

Error 1132: undefined constant - '...'
 While looking for a number value, the command line found a symbol name that

might be intended as a named constant, but no constant has been defined with that
name.

Error 1133: number is negative - '...'
 Only positive numbers are allowed in this context.

Error 1134: number is too large - '...'
 The number entered was too large to be valid.

Error 1139: CYCLE count is out of range
 The CYCLE count in an output procedure must be a nonnegative integer and must

not exceed the system memory resource limitation.

Error 1142: simultaneous input and output exceeds maximum rate
 Input sampling or output updating rate exceeds the maximum rate allowed when

both input and output procedures are active.

Error 1145: hardware error
 A hardware error occurred during the system initialization. Contact Microstar

Laboratories Technical Support.

Error 1147: input procedures must have at least one input
channel pipe

 Input procedure configurations must define one or more channel pipes.

Error 1148: maximum number of counter/timer channel pipes is
exceeded

 The number of counter/timer channel pipes specified in an input configuration is
greater than the maximum of 12.

Error 1149: a single counter/timer channel pipe is illegal
 A counter/timer configuration is invalid, and data either cannot be captured or

read. See the SETSETSETSET command and the hardware manual for the counter/timer board
for more information.

Chapter 18 DAPL 2000 Messages 387

Error Messages 1150-1199 - Configuration Errors
Error 1152: undefined DIAGNOSTIC test

 The test code specified in the DIAGNOSTICDIAGNOSTICDIAGNOSTICDIAGNOSTIC command line is not supported by the
command. Currently only blank, 0 and 10 are supported.

Error 1154: number of wait samples is too small
 The OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT count in an output procedure is unreasonably small. Increase it

and try again.

Error 1157: illegal UPDATE parameter - '...'
 The UPDATEUPDATEUPDATEUPDATE parameter must be either BURST or CONTINUOUS.

Error 1158: one or more procedures still are active
 The command entered is not allowed to execute when there are active procedures.

Issue a STOPSTOPSTOPSTOP command and try again.

Error 1159: count must be a multiple of the number of channel
pipes

 The COUNTCOUNTCOUNTCOUNT parameter must be an integral multiple of the number of channel pipes.

Error 1160: output count is less than cycle size
 If both COUNTCOUNTCOUNTCOUNT and CYCLECYCLECYCLECYCLE are present in an output procedure, COUNTCOUNTCOUNTCOUNT must be

greater than or equal to CYCLECYCLECYCLECYCLE multiplied by the number of channel pipes.

Error 1161: count parameter is less than the number of wait
samples

 The output updating configuration can never produce output because the COUNTCOUNTCOUNTCOUNT
command will terminate the updating task before a sufficient number of samples is
available to satisfy the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT command. Increase the number of samples on
the COUNTCOUNTCOUNTCOUNT command or decrease the number of samples on the OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT
command and try again.

Error 1162: input burst mode can only be used with HTRIGGER
and COUNT

 Input burst mode works only with HTRIGGERHTRIGGERHTRIGGERHTRIGGER ONESHOT and a non-zero input
COUNTCOUNTCOUNTCOUNT.

Error 1165: illegal OUTPORT syntax
 The range specification in an OUTPORTOUTPORTOUTPORTOUTPORTcommand line is invalid. Verify that the

channel range number and the dot-dot separator are typed correctly.

388 Chapter 18 DAPL 2000 Messages

Error 1166: illegal output expansion board type
 An incorrect output expansion board type code was entered. Check the expansion

board specification for its correct type code.

Error 1167: illegal output expansion port(s)
 An incorrect output expansion board address was entered.

Error 1168: pipe already is reserved by a user task
 An attempt was made to use a FILLFILLFILLFILL command on a pipe that has been reserved by

a user task. Stop the procedure that contains the task and try again.

Error 1170: output procedures must have at least one output
channel pipe

 Output procedure configurations must define one or more channel pipes.

Error 1171: previous input procedure still is active
 An attempt was made to start an input procedure while another input procedure

still was active. Stop the active input procedure and try again.

Error 1172: task(s) reading from input channel pipe(s) still
are active

 An attempt was made to start an input procedure while another input procedure
still was active. Stop the active input procedure and try again.

Error 1173: previous output procedure still is active
 An attempt was made to start an output procedure while tasks reading data

generated by the previous input procedure were still active. Stop the procedure
that contains these tasks and try again.

Error 1174: task(s) writing to output channel pipe(s) still
are active

 An attempt was made to start an output procedure while tasks writing to the output
channel pipes of the previous output procedure still were active. Stop the
procedure that contains these tasks and try again.

Error 1175: pipe is not empty
 An attempt was made to EDITEDITEDITEDIT the width of a communication pipe while it is not

empty. Empty the pipe and try again.

Error 1176: cannot FILL an input com pipe - '...'
 The FILLFILLFILLFILL command is not available for input communication pipes. It can only be

used to fill a user-defined pipe or an output communication pipe.

Chapter 18 DAPL 2000 Messages 389

Error 1178: output count must be a multiple of output channel
pipes

 The COUNTCOUNTCOUNTCOUNT parameter in an output procedure must be an integral multiple of the
number of output channel pipes.

Error 1180: outputwait must be a multiple of the number of
channel pipes

 The OUTPUTWAITOUTPUTWAITOUTPUTWAITOUTPUTWAIT parameter in an output procedure must be an integral multiple
of the number of output channel pipes.

Error 1183: cannot deallocate a communication pipe
 An attempt was made to delete a communication pipe using an ERASEERASEERASEERASE command.

For most Data Acquisition Processor models, communications pipes can only be
removed through the services of the driver control panel application.

Error 1184: slave mode does not support input burst mode
 If the clock source for an input procedure is the master Data Acquisition Processor

in a multiple Data Acquisition Processor system, UPDATEUPDATEUPDATEUPDATE cannot be set to burst
mode for that procedure. See the SLAVESLAVESLAVESLAVE and UPDATEUPDATEUPDATEUPDATE commands for additional
information.

Error 1185: slave mode does not support output burst mode
 If the clock source for an output procedure is the master Data Acquisition

Processor in a multiple Data Acquisition Processor system, UPDATEUPDATEUPDATEUPDATE cannot be set
to burst mode for that procedure. See the SLAVESLAVESLAVESLAVE and UPDATEUPDATEUPDATEUPDATE commands for
additional information.

Error 1187: cannot FILL a system pipe - '...'
 The FILLFILLFILLFILL command is not available for system command pipes. FILLFILLFILLFILL can only be

used to fill a user-defined pipe or an output communication pipe.

Error 1188: illegal system pipe edit parameter - '...'
 When editing the predefined $CMDIN pipe, only the ECHO or NOECHO option may

be changed.

Error 1189: invalid configuration for fast input sampling -
increase the TIME parameter

 In order to use �fast input sampling� to sample faster than the maximum analog
sampling rate, you need to interleave enough digital channels between each analog
channel so that the analog sampling interval is not smaller than minimum interval
allowed. Either rewrite the procedure to use an adequate number of digital
channels, or increase the TIMETIMETIMETIME parameter.

390 Chapter 18 DAPL 2000 Messages

Error 1190: all the output channels in the procedure must be
specified

 The number of output channels specified in the ODEFINEODEFINEODEFINEODEFINE command does not
match the number of channels defined by SETSETSETSET commands in the output procedure
body. Unlike input procedures, in which channels may be skipped, output
procedures must assign each channel to a physical device.

Error 1191: output burst mode cannot be used with CYCLE
 Remove the CYCLECYCLECYCLECYCLE parameter in the output procedure and try again.

Error 1192: fast input sampling is not available with
CLCLOCKING and external clocks

 If an input procedure enables both channel list clocking and external clocking, no
fast-input-sampling configuration is valid. Increase TIMETIMETIMETIME and try again.

Error 1193: illegal CLCLOCKING parameter - '...'
 An invalid option is specified on the CLCLOCKINGCLCLOCKINGCLCLOCKINGCLCLOCKING command line in an input or

output configuration. The only valid parameters are ON or OFF.

Error 1195: illegal input buffer parameter - '...'
 In the BUFFERSBUFFERSBUFFERSBUFFERS command, only the STATIC or DYNAMIC options are valid.

Error 1199: cannot have multiple output channel pipes in one
task

 A task can write to only one output channel pipe. In most cases, the desired results
can be achieved using a single output channel pipe with a channel list. Either
multiplex the data for the output channel pipes as the data is loaded into the output
channel pipe, or transfer the data through multiple user pipes and combine the
streams using a MERGEMERGEMERGEMERGE command.

Chapter 18 DAPL 2000 Messages 391

Error Messages 1200-1499 - Task Operating Errors
Error 1200: <task> - too many parameters (exceeds max line
length)

 The FORMATFORMATFORMATFORMAT task is unable to format the specified data list for printing because the
resulting line length would exceed the available length of 236 characters. Try a
shorter output list, or use the slash notation to break the output line into a sequence
of shorter lines.

Error 1206: <task> - too many tasks writing to a pipe
 Multiple processing tasks are attempting to write data to the same pipe. In the case

of the output channel pipe, only one task can place data into an output channel
pipe. Usually this error occurs because of an invalid processing configuration, but
it can also occur if processing procedures are started without first using the STOPSTOPSTOPSTOP
command to end previous processing.

Error 1207: <task> - cannot read from an output COM pipe
 A processing procedure is attempting to open an output communication pipe for

reading data. Output COM pipes transmit data to output communication ports; data
cannot be read from these pipes.

Error 1208: <task> - cannot write to an input COM pipe
 A processing procedure is attempting to open an input communication pipe for

writing data. Input COM pipes receive data only from input communication ports.
Data cannot be written to these pipes.

Error 1209: <task> - too many tasks being signaled
 When a trigger is defined, and the legacy notation is used that specifies the exact

number of tasks that must receive the signal, the specified number is too large.

Error 1210: <task> - too many tasks asserting a trigger
 When starting a processing configuration, the DAPL system detected that multiple

tasks were attempting to assert trigger events into the same trigger pipe.

Error 1211: <task> - channel number out of range
 During task initialization, the system determined that a task was trying to access an

input channel pipe that is not within the range defined by the current input
procedure. Check the range of channel pipe parameters for all processing tasks in
the configuration.

392 Chapter 18 DAPL 2000 Messages

Error 1214: <task> - parameter n - '...' should not be a ...
 The nth parameter to a task has the wrong type. (The correct type could not be

determined.)

Error 1215: <task> - too few parameters
 A task determined that the wrong number of parameters were supplied.

Error 1216: <task> - too many parameters
 A task determined that the wrong number of parameters were supplied.

Error 1217: <task> - parameter error
 A task found an unspecified error during parameter processing.

Error 1218: <task> - stack overflow error
 A custom task has insufficient stack to continue executing. Verify that the task is

not pushing data onto the processor stack without releasing it, and verify that the
stack size is sufficient to support task operation.

Error 1221: <task> - out of memory
 All memory is used and a request to allocate more memory cannot be granted.

Task execution is terminated. Issue a STOPSTOPSTOPSTOP command before running the
configuration again.

Error 1223: <task> - cannot write to an input channel pipe
 A processing procedure is attempting to open an input communication pipe for

writing data. Input channel pipes receive data from digital or analog-to-digital
input ports; data cannot be written to these pipes.

Error 1224: <task> - cannot read from an output channel pipe
 A processing procedure is attempting to open an output channel pipe for reading

data. Output channel pipes transmit data to digital or digital-to-analog output
ports; data cannot be read from these pipes.

Error 1225: <task> - tasks in more than one procedure are
reading from a pipe

 Processing tasks in two or more different processing procedures are attempting to
read from the same pipe source. All tasks reading from one pipe must reside in one
procedure.

Error 1226: <task> - illegal pipe open option
 A custom command uses an invalid option in the OPEN_PIPE function parameter

list. See the Developer�s Toolkit for DAPL manual for information about the
options available for opening a pipe.

Chapter 18 DAPL 2000 Messages 393

Error 1228: <task> - expecting a user defined or output com
pipe

 Only a user-defined pipe or an output communication pipe can be emptied using
the EMPTYEMPTYEMPTYEMPTY command.

Error 1229: <task> - coprocessor floating point is not
available

 A custom command attempted to access a math coprocessor on a Data Acquisition
Processor model and DAPL operating system that does not support floating-point
math.

Error 1230: <task> - this service is not available
 There was an attempt to do an operation other than a pipe GET, pipe PUT, or pipe
NUM on a system command pipe. Other pipe operations such as OPEN, CLOSE,
block GET, block PUT, REM and PURGE are not allowed on system command
pipes.

Error 1231: <task> - cannot re-start input tasks without re-
starting the input procedure

 After stopping a procedure that contained tasks reading data from input channel
pipes, restart the procedure only after restarting an input procedure.

Error 1232: <task> - cannot re-start output tasks without re-
starting the output procedure

 After stopping a procedure that contained tasks writing data to output channel
pipes, restart the procedure only after restarting an output procedure.

Error 1234: <task> - data flag value out of range
 A data source or destination flag in a data stream processed by a SEPARATEFSEPARATEFSEPARATEFSEPARATEF

command is inconsistent with the number of destination pipes specified in the task
parameter list.

Error 1235: <task> - expecting a complete input channel list
pipe parameter

 The task requires an input channel parameter to be a complete channel list. For
example, if an input procedure has 5 channels, only the channel list
�IPIPES(0..4)� or �IPIPES(0,1,2,3,4)� is valid for the task. This
restriction applies to tasks using specialized non-blocking pipe access operations
provided by the Developer�s Toolkit for DAPL.

Error 1236: <task> - parameter <number> - ...
 A task found an unspecified error in the indicated parameter position.

394 Chapter 18 DAPL 2000 Messages

Error 1237: <task> - this task is not compatible with the
operating system version

 An attempt was made to execute a custom command task that is not supported by
the version of DAPL installed on the Data Acquisition Processor. Call Microstar
Laboratories Customer Support and ask for information about recompiling the
command code using a newer version of the Developer�s Toolkit for DAPL.

Error 1248: <CmdName> - cannot restart trigger, already active
 If any task using a software trigger is stopped, all tasks using that trigger must stop

before the trigger becomes available to new tasks.

Error 1249: <CmdName> - out of 16-bit selectors; task
terminated

 For applications using 16-bit custom commands, making a large number of
dynamic memory allocations can result in exhausting all of the processor�s selector
table entries available for this purpose. If this occurs, consider converting to a 32-
bit downloadable module. This eliminates almost all memory allocation
restrictions.

Chapter 18 DAPL 2000 Messages 395

Warning Messages 1500-1599
Warning 1501: time is being rounded down to XXX.XX uS

 The time interval value specified on a TIMETIMETIMETIME command is not an exact multiple of
the time resolution interval supported by this Data Acquisition Processor model.
For example, some models might have a time resolution of 0.1 microsecond, while
others might have a resolution of 0.02 microseconds. The sampling time is
rounded down to the nearest multiple of the time resolution interval.

Warning 1504: more than one input procedure
 More than one input procedure exists when a STARTSTARTSTARTSTART command is invoked without

parameters. Only one of the input procedures can start.

Warning 1505: more than one output procedure
 More than one output procedure exists when a STARTSTARTSTARTSTART command is issued without

parameters. Only one of the output procedures can start.

Warning 1509: earliest saved options overwritten
 When using an OPTIONSOPTIONSOPTIONSOPTIONS SAVE command, the depth of the option stack is 5, and

the stack is full. The earliest saved option is overwritten.

Warning 1510: nothing to restore
 An OPTIONSOPTIONSOPTIONSOPTIONS RESTORE command was issued before any OPTIONSOPTIONSOPTIONSOPTIONS SAVE

command. The option stack is empty; so nothing is done.

Warning 1530: input channel pipe overflow at sample #
 All buffer memory has been filled by the active input procedure. See Chapter 11.

The input sampling procedure is terminated, but samples already collected remain
buffered in memory for processing.

Warning 1531: output channel pipe underflow at sample #
 No data were available at the time when synchronous outputs were supposed to be

updated. The output updating procedure is terminated.

Warning 1532: maximum number of counter/timer channel pipes is
exceeded

 Too many channel pipes are configured for using a counter/timer accessory card.
Check the hardware manual for the timer/counter board for information about
configuring the signal channels.

Warning 1534: input hardware overflow at sample # <number>
 The DAPL system was unable to respond to a hardware interrupt for servicing a

buffering device quickly enough, and this broke the continuity of the sampling.

396 Chapter 18 DAPL 2000 Messages

The hardware sampling procedure is shut down, but processing of data samples
already in memory can continue. The sample number indicates the sequence
number of the last retained data sample, where samples are numbered starting with
zero. This error should never occur unless a custom control task interferes with
interrupt processing, leading to a timing fault. If this error occurs for any other
reason, please call Microstar Laboratories Customer Support.

Warning 1535: counter/timer not supported in SLAVE mode
 Data Acquisition Processors operating in SLAVESLAVESLAVESLAVE mode cannot access timer/counter

accessories.

Warning 1536: ... hardware overflow at sample # ...
 This is basically the same error condition as Warning 1534, except it is used for

the iDSC series boards.

Warning 1537: option value is not supported by this model
 This message can appear in special circumstances when using the OPTIONSOPTIONSOPTIONSOPTIONS

command.
 - The FLOATERROR option is enabled for versions of DAPL and Data

Acquisition Processor models that do not support hardware-based Floating Point
processing.

 - The AINEXPAND option is selected for Data Acquisition Processor models
that do not support input expansion pin remapping.

Warning 1538: redundant or conflicting specification
 A configuration command duplicates, overrides, or contradicts a previous

specification. For example, this message might occur if a legacy form of the
IDEFINEIDEFINEIDEFINEIDEFINE command specifies a number of input channels, but later the CHANNELSCHANNELSCHANNELSCHANNELS
command also define this same number. This warning could mean that the
configuration will not behave as expected.

Chapter 18 DAPL 2000 Messages 397

Error Messages 2201-2272 - Configuration Errors
Error 2201: requires DAPL floating point extensions

 An operation that requires floating-point extensions was attempted using an
incompatible Data Acquisition Processor.

Error 2202: division by zero interrupt
 This error should not occur when using built-in DAPL commands. The error

occurs when a custom command attempts to divide by zero or attempts to divide a
32-bit number by a 16-bit number and gets a 32-bit result.

Error 2203: interrupt #<number> at <segment>:<offset>
 A spurious interrupt occurred � it could be the result of incorrect custom

command or downloadable module programming, otherwise it could indicate a
serious system error. Contact Microstar Laboratories Customer Support.

Error 2204: general protection at <segment>:<offset> Error
code = <hex>

 This message indicates a location where an illegal memory access occurred. If the
application does not use custom DAPL commands or modules, please report this
error to Microstar Laboratories Customer Support. Faults of this kind usually
occur through: improper use of pointers or indexing, memory allocations of the
wrong size, or initializations that were not performed as intended. Examine the
code for custom commands and modules carefully, checking for problems in these
areas.

Error 2205: fault exception #<number> at <segment>:<offset>
Error code = <hex>

 A hardware-related fault condition was detected. This message displays the
additional processor-generated fault code as part of the message text. If the
application does not use custom DAPL commands or modules, please report this
error to Microstar Laboratories Customer Support. An application using a 16-bit
custom command or 32-bit downloadable module can cause faults of this kind
through: improper use of pointers or indexing, improper use of segment registers,
stack and dynamic memory range errors, and some floating point control
instructions. Examine the code for custom commands and modules carefully,
checking for problems in these areas.

Error 2206: undefined interrupt
 A software-requested interrupt occurred. This usually results from execution of

invalid program code, such as an invalid downloadable module or assembler
coding with an invalid branch instruction. If the application does not use custom

398 Chapter 18 DAPL 2000 Messages

DAPL commands or modules, please report this error to Microstar Laboratories
Customer Support.

Error 2207: floating point exception 16 : ...
 A floating point exception occurred after the OPTIONSOPTIONSOPTIONSOPTIONS FLOATERROR=ON was set,

or after a custom command adjusted the floating point unit control word directly.
DAPL 2000 catches the interrupt and produces this message. No mechanism is
available for vectoring the interrupt to relocatable user-defined code. Setting
OPTIONSOPTIONSOPTIONSOPTIONS FLOATERROR=OFF or directly masking the interrupts in a custom
command will avoid floating point errors and allow the task to continue.

Error 2209: command format is not compatible with the
operating system version

 An attempt was made to download 16-bit custom command binary code for a
version of the operating system prior to DAPL 2000. Recompile the custom
command using an updated version of the Developer�s Toolkit for DAPL and try
again.

Error 2211: IPIPES or OPIPES used in the wrong context
 An attempt was made to use IPIPES to define channels in an output procedure or
OPIPES to define channels in an input procedure.

Error 2213: invalid channel range specification
 The channel range notation in a channel list has terms that are not valid integer

values within feasible ranges.

Error 2214: channel numbers in a channel list must be in
ascending order

 Some channel pipe numbers in a channel list are not in ascending order.
Reorganize the terms in the channel list.

Error 2217: illegal SCHEDULING option - '...'
 The only options available for OPTIONSOPTIONSOPTIONSOPTIONS SCHEDULING are ADAPTIVE and FIXED.

Error 2218: illegal BUFFERING option - '...'
 The only options available for OPTIONSOPTIONSOPTIONSOPTIONS BUFFERING are OFF, MEDIUM, and
LARGE.

Error 2219: scheduling quantum must be smaller than <number>uS
 The QUANTUM option must be set in the range 100µs to 5,000µs. The range

depends on the Data Acquisition Processor model.

Chapter 18 DAPL 2000 Messages 399

Error 2220: scheduling quantum must be larger than <number>uS
 The QUANTUM option must be set in the range 100µs to 5,000µs. The range

depends on the Data Acquisition Processor model.

Error 2221: out of memory
 The command to define a new element or task cannot be completed because all

memory was previously allocated for other purposes and not released. Issue a
STOPSTOPSTOPSTOP command and try again.

Error 2222: out of 16-bit custom command stack memory
 There is a 64K heap-space limitation for all 16-bit custom command tasks

combined. Either do not run as many instances of the custom command tasks, or
reduce the custom command stack sizes.

Error 2223: illegal channel group specification
 This error occurs when an incorrect IPIPES specification is found in a SETSETSETSET

command for a DAP 3400a, DAP 4400a, or DAP 5400a series Data Acquisition
Processor input configuration. The specifications for simultaneous sampling
groups allow only certain restricted channel sets, so the most likely problem is an
incorrect channel number in the channel list notations.

Error 2224: all channels in the procedure must be specified
 In an input processing configuration for a DAP 3400a, DAP 4400a or DAP 5400a

series Data Acquisition Processor, one or more input channel groups specified by
the GROUPSGROUPSGROUPSGROUPS command does not have a corresponding input pin group assigned by
a SETSETSETSET command.

Error 2225: auto cycle must be longer than holdoff interval
 For a software trigger definition with AUTO mode, the CYCLECYCLECYCLECYCLE property must not be

less than the HOLDOFF property, otherwise, the trigger would attempt to generate
artificial events during the time that events are to be suppressed.

Error 2226: holdoff must be specified for DEFERRED mode
 The DEFERRED mode of a software trigger requires the HOLDOFF property to

determines when to assert delayed events.

Error 2227: property '...' not available or already defined
 In a software trigger, either a trigger property is specified that is not compatible

with the selected triggering mode, or a redundant property specification attempts
to override a value previously defined.

Error 2228: invalid trigger option - '...'
 There is an incorrect number value assignment for one of the optional parameters

on a TRIGGERSTRIGGERSTRIGGERSTRIGGERS command line.

400 Chapter 18 DAPL 2000 Messages

Error 2229: previously specified - '...'
 There is a redundant and possibly contradictory specification. A command line

parameter appears more than once. For example, MAXSIZE=1000 and
MAXSIZE=2000 are both present on the same PIPE definition line.

Error 2230: error in command keyword syntax
 Unexpected text was encountered in a processing definition command line where a

keyword notation in the form �<keyword> = <value>� was expected.

Error 2231: unrecognized command syntax = '...'
 The command interpreter was not able to interpret the text found in a command

line. Check spelling and structure of the command line.

Error 2232: invalid constant - '...'
 There is a command syntax error. A numeric or named constant value was

expected, but an unrecognized notation was encountered instead. Check the
command description in the �DAPL Commands� chapter of the manual or help
file.

Error 2233: time is too small for counter/timer inputs
 A sampling rate for an input sampling configuration is within the capabilities of

the Data Acquisition Processor but too fast for operating a counter/timer card. Use
a longer sampling interval for the input sampling configuration. See the
counter/timer hardware documentation for information about sampling rate
constraints.

Error 2234: unable to shutdown communication; DAPL is not
restarted

 A RESTARTRESTARTRESTARTRESTART command cannot be executed when communications activity is
underway on communication channel pipes. If RESTARTRESTARTRESTARTRESTART is necessary, shut down
all communications activity first.

Error 2235: cannot deallocate a system default pipe
 A request to remove one of the system command interpreter channels is denied.

These built-in channels are reserved and cannot be removed.

Error 2236: name '...' is too long
 In a DAPL command, a user-assigned name for a configuration element such as a

pipe or procedure has too many characters. Specify a name with 23 or fewer
characters.

Chapter 18 DAPL 2000 Messages 401

Error 2237: name '...' contains invalid character(s)
 In a DAPL command, a user-assigned name for a configuration element such as a

pipe or procedure contains invalid special characters. Check the DAPL command
syntax documentation for information about assigned names.

Error 2239: invalid number of channels or channel groups
 The number of channels specified in an IDEFINEIDEFINEIDEFINEIDEFINE or ODEFINEODEFINEODEFINEODEFINE command is not a

value within the range supported by the Data Acquisition Processor hardware.

Error 2240: invalid time interval syntax '...'
 In a TIMETIMETIMETIME command, either in an input sampling configuration or an output

updating configuration, the numeric notation for the time interval is not
recognized.

Error 2241: invalid IPIPE or OPIPE specifier
 In a SETSETSETSET command, there is an unrecognized specification where an IPIPE or
OPIPE channel or channel group specifier is expected. See the �Channel Pipe
Notations� section of Chapter 2 for information about channel specifiers and
acceptable abbreviations.

Error 2242: invalid channel pipe syntax - '...'
 The channel pipe range notation following the IPIPE or OPIPE keyword is

invalid. Check that the values cover the correct ranges and are properly enclosed
in parentheses.

Error 2243: invalid internal clock specifier - '...'
 To use the counter/timer card�s internal oscillator as a timing source, a SETSETSETSET

command can accept an additional positional keyword ICLOCK after the CT pin
specifier. Other options are not allowed with CT pin specifiers.

Error 2245: invalid gain specifier
 On a SETSETSETSET command in an input sampling configuration, the optional notation

analog input gain is unrecognized or has an invalid value.

Error 2246: invalid one-shot gating option - '...'
 When attempting to edit the GATE setting of a software trigger configured in
MANUAL operating mode, only the keywords ARMED or DISARMED are allowed.

Error 2247: invalid numeric value - '...'
 In a DAPL command, an expression that was expected to evaluate to a number

value is not recognized .

402 Chapter 18 DAPL 2000 Messages

Error 2248: invalid command stack size
 A command stack specifier field in a BDOWNLOADBDOWNLOADBDOWNLOADBDOWNLOAD command is not recognized or

evaluates to a value that is out-of-range.

Error 2249: invalid command code size
 A code size specifier field in a BDOWNLOADBDOWNLOADBDOWNLOADBDOWNLOAD command is not recognized or

evaluates to a value that is out-of-range.

Error 2250: invalid hardware trigger option - '...'
 The HTRIGGERHTRIGGERHTRIGGERHTRIGGER command in an input sampling or output updating configuration

can accept only the options GATED, ONESHOT, or OFF.

Error 2251: ... is not a communication pipe
 An attempt to remove a communication pipe from service failed because the

specified pipe was not one of the communications pipes currently configured in
the DAPL system.

Error 2252: symbol '...' reserved or used, cannot erase
 An ERASEERASEERASEERASE command is not able to remove the specified procedure, command or

data element because the element is currently active, or because the element is a
built-in part of the operating system.

Error 2253: temporary access conflict '...', could not be
accessed

 There is a temporary resource conflict. The specified object cannot be accessed at
this moment.

Error 2254: temporary access conflict '...', could not be
created

 There is a temporary resource conflict. The specified object cannot be created at
this moment.

Error 2255: temporary access conflict '...', could not be
removed

 There is a temporary resource conflict. The specified object cannot be removed at
this moment.

Error 2259: <CmdName> - memory page fault
 Cause : ...
 Code address : <segment>:<offset>
 Fault address: DS:<offset> (linear address <address>)
 Access mode : ...
 Task terminated
 This message provides diagnostic information for a serious memory access fault

detected at the hardware level when memory expected by a task is not available.

Chapter 18 DAPL 2000 Messages 403

This message usually indicates a programming error involving memory allocation,
pointer initialization or memory indexing in a custom module. If this message
names a DAPL system built-in task, please contact Microstar Laboratories
Customer Support.

Error 2260: out of selectors
 16-bit custom command tasks made too many requests for dynamic memory

allocations of intermediate size memory blocks, and the processor�s selector table
was exhausted. Try allocating larger blocks with fewer dynamic allocations. Also
consider converting to 32-bit module form by recompiling with a newer version of
the Developer�s Toolkit for DAPL.

Error 2261: invalid floating point value

Error 2262: invalid word integer value

Error 2263: invalid long integer value
 A number specifier, even if it has the right syntactic form, cannot be evaluated to

produce a representable value of the required data type. This usually indicates a
numeric value that is out of range.

Error 2264: inconsistent data type
 In a command that needs values of a certain data type, the values provided are of a

different type. For example, a floating point value is not acceptable where a 16-bit
fixed point constant is needed.

Error 2265: missing initializer expression
 In a command such as VECTORVECTORVECTORVECTOR where an initialization value or list is required, that

list is missing.

Error 2266: invalid left-side term for DAPL expression
 A DAPL expression specifies on its left hand side an element such as a constant or

input communication pipe that cannot accept computed expression results.

Error 2267: bitwise operation with floating point operand
 Bitwise operations such as shift and or logical OR cannot be applied to floating

point terms or intermediate values that are floating point. If bit operations of this
sort must be performed, produce an intermediate output in a fixed point form, then
use a separate DAPL expression to operate upon the data bits of the intermediate
values.

Error 2268: unexpected end-of-line
 This error occurs when a command line ends without specifying all required

elements. This error can occur if a separator character promises that additional
elements will appear in the command line, but these are omitted.

404 Chapter 18 DAPL 2000 Messages

Error 2269: bad command syntax near '...'"
 The DAPL system is not able to interpret the command line because of invalid text

appearing at, shortly before, or shortly after the displayed text.

Error 2270: cannot read from output com or channel pipe '...'
 An output communication pipe or output channel pipe appears in a processing

command or DAPL expression at a place where a pipe must supply data.

Error 2271: symbol '...' has invalid type
 An otherwise valid symbol name is used in a manner that is not meaningful or not

allowed. For example, a pipe name cannot be used to specify an initial value for a
variable.

Error 2272: MAXSIZE parameter is too small
 The storage size requested by a MAXSIZE parameter in a PIPESPIPESPIPESPIPES command is too

small. Try increasing this value.

Chapter 18 DAPL 2000 Messages 405

Error Messages 2273-2282 - Downloadable Module Errors
Error 2273: installing '...' failed

 There is an unspecified structure error in the downloaded module. This usually
indicates that the module binary file is corrupted.

Error 2274: installing '...' failed: insufficient memory
 The amount of storage necessary to install the module in the DAPL system

memory is unavailable. Verify that a STOPSTOPSTOPSTOP or RESETRESETRESETRESET command has been used to
free storage prior to loading the module. If possible, use smaller storage arrays
within the module.

Error 2275: installing '...' failed: bad module name
 The name assigned to a module must conform to the requirements of other DAPL

system names. The name can contain only alphanumeric characters and
underscores.

Error 2276: installing '...' failed: bad binary image
 The binary content areas are missing or corrupted in the downloadable module

file.

Error 2277: installing '...' failed: missing dependency module
'...'

 This module cannot be loaded until another module providing required data or
functional elements is loaded first.

Error 2278: installing '...' failed: could not find '...'
export '...'

 A resource expected to be imported from another installed module is not available
from that module. This is usually a problem with incompatible versions.

Error 2280: installing '...' failed: could not register one of
its components

 An element provided by the module could not be recorded in the DAPL system, so
that element is not accessible. This usually occurs because of a name conflict. For
example, a variable with the same name already exists, or the programmer has
assigned the same name to a module and a command defined within that module.

Error 2281: installing '...' failed: incompatible with one of
the system components'

 When a downloaded module contains a validation function to be called by the
DAPL system after module loading, and this validation function reports an error,
this error message is issued. This is usually a problem with incompatible versions.

406 Chapter 18 DAPL 2000 Messages

Error 2282: installing '...' failed: incompatible with '...'
interface version ... build version ...

 When a downloaded module contains a version compatibility function to be called
by the DAPL system after module loading, and this compatibility function reports
an error, this error message is issued. This is usually a problem with incompatible
versions.

Chapter 18 DAPL 2000 Messages 407

Error Messages 2283-2288 - Information Channel Query
Errors
Error 2283: query buffer is too small; need at least ... bytes
of space

 A request packet did not provide for sufficient storage space to return all of the
requested information.

Error 2284: invalid processing command property structure
 A request packet did not provide for sufficient storage space to return all of the

requested information about command properties.

Error 2285: missing query parameter(s)
 A request packet did not specify the serial number or range for the elements whose

properties are to be accessed.

Error 2286: symbol serial number '...' is undefined
 A request packet asks for information about a symbol that does not exist. In some

cases, other independent processes can delete the symbol before a query can be
completed.

Error 2287: '...' does not own the '...' property
 A request packet requests property information about a symbol that does not have

the specified property.

Error 2288: '...' symbol query does not support the '%s'
property

 The information query feature does not have any means to locate the information
requested. This message can occur if the property name in the request is
misspelled.

408 Chapter 18 DAPL 2000 Messages

Error Messages 2289-2399 - General Errors
Error 2289: illegal STATISTICS parameter - '...'

 A STATISTICSSTATISTICSSTATISTICSSTATISTICS command line specifies a command option that is not ON, OFF,
CLEAR, or DISPLAYALL.

Error 2290: STATISTICS collection is currently OFF
 An attempt was made to display a STATISTICSSTATISTICSSTATISTICSSTATISTICS report without first starting task

statistics collection using the STATISTICS ON command line.

Error 2291: invalid VRANGE specification
 For a Data Acquisition Processor model that supports software-programmable (as

opposed to jumper-selectable) voltage range settings, the voltage range specified
by the VRANGEVRANGEVRANGEVRANGE command is not one of the range configurations supported by the
hardware model.

Error 2292: GROUPS or CHANNELS command required
 The number of channels for an input sampling configuration was not specified.

Add a CHANNELSCHANNELSCHANNELSCHANNELS command to the configuration if your Data Acquisition
Processor model uses multiplexed single-channel sampling, or a GROUPSGROUPSGROUPSGROUPS
command if your Data Acquisition Processor model uses simultaneous grouped
input channel sampling.

Error 2293: specified FORMAT line exceeds ... character limit
 The formatted line is too large to fit the output line buffer size. Try adjusting the

field widths, or use the slash notation in the parameter list to split the displayed
data into multiple lines.

Appendix A. Previous Versions of DAPL 409

19. Appendix A. Previous Versions of DAPL

This appendix summarizes obsolete DAPL features that either cannot be supported
now or will necessarily become unavailable in future releases.

The DAPL operating system has evolved substantially in response to users�
requirements. In the course of this evolution, considerable effort has gone into
maintaining compatibility among operating system versions to protect users�
investments in applications software. Yet some changes are inevitable, as new
generations of high-performance components with greatly increased speed and
capacity replace older components that are no longer available. Usually, new DAPL
systems cannot both take advantage of the new device capabilities and yet operate
within all of the constraints of older devices. Where possible, the DAPL system
supports obsolete features by providing special software hooks, allowing applications
to continue to operate much as before. It is only a matter of time, however, until the
obsolete features become too difficult to maintain in this manner and then they will
cease to be available.

New applications should not use the obsolete features listed in this chapter, even if
they seem to work. Unless otherwise noted, the features listed are still available and
applications that have depended on them in the past will continue to work as before, at
least for a while. Existing applications requiring commands or other features that are
no longer available must be modified to work with current DAPL system versions. In
most cases, there is no loss of functionality because equivalent or superior
functionality is available using newer commands.

Reference sheets for selected obsolete commands are provided at the end of this
appendix.

410 Appendix A. Previous Versions of DAPL

System Commands Now Obsolete

BDOWNDLOAD 16-bit custom commands are becoming obsolete as all new
systems support 32-bit modules. Applications can download
commands using the DAPIO32 programming interface or
available utility software such as CDLOAD32.EXE

BUFFERS This command was introduced to optimize latency in
extremely demanding 16-bit custom command optimizations.
This command has no benefits in 32-bit systems.

CPIPE NO LONGER AVAILABLE. This previously was needed to
support ISA-bus Data Acquisition Processor interfaces.

DIAGNOSTIC NO LONGER AVAILABLE. This command provides no useful
information in 32-bit systems.

RESTART The RESETRESETRESETRESET command now covers this. Control of system
initialization is now under the Accel32 application rather than
the DAPL command interpreter.

TASKSTAT The new SSSSTATISTICSTATISTICSTATISTICSTATISTICS command is a general replacement and
superior in all regards.

Appendix A. Previous Versions of DAPL 411

Processing Commands Now Obsolete

AUTORANGE NO LONGER AVAILABLE. The command did not perform
well in 32-bit systems and had no users.

FFTFFTFFTFFT mode 7 While the results of mode 7 had a plausible interpretation,
nobody used this. If you think you need this, use mode 4 and
multiply every output term by 2 using a DAPL expression.

FFT32 FFTFFTFFTFFT replaces this. If you specify FFT32, what you will
actually get is FFTFFTFFTFFT. The previous version of FFTFFTFFTFFT used a
reduced accuracy algorithm for higher speed, but improved
32-bit numerical processing obviated the speed disadvantage.
If you think you need the old algorithm exactly as before, use
undocumented processing command FFT16. This links to the
old algorithm code and does not support new data types.

MAXTIME Obsolete. You can achieve the same effect using the
TRIGGERSTRIGGERSTRIGGERSTRIGGERS CYCLE property when a trigger is defined.

MINTIME Obsolete. You can achieve the same effect using the
TRIGGERSTRIGGERSTRIGGERSTRIGGERS HOLDOFF property when a trigger is defined.

RETRIGGER Obsolete. You can achieve the same effect using the
TRIGGERSTRIGGERSTRIGGERSTRIGGERS AUTO property when a trigger is defined.

Sampling Procedure Notations

The IDEFINEIDEFINEIDEFINEIDEFINE command previously required specification of a number as a command
parameter. This parameter is now obsolete. The new CHANNELSCHANNELSCHANNELSCHANNELS or GROUPSGROUPSGROUPSGROUPS input
configuration command should be used instead.

When assigning a CT pin type to an input channel using a SETSETSETSET command, the keyword
notation ICLOCK should be used to activate the counter-timer board internal clock
rather than the “magic number” notation. The “magic number” notation was a
workaround for parsing ambiguities corrected long ago.

Processing Command Changes

In some cases, old commands have been renamed for consistency with new commands
or applications. In other cases, new commands have different syntax to allow for

412 Appendix A. Previous Versions of DAPL

additional options. In all cases, the functionality of the old commands is available
using new commands described in the main body of this manual.

The following table lists synonyms or replacements for old commands:

Old New
CORRELAT CORRELATECORRELATECORRELATECORRELATE
DELTA2 Use DAPL expression to subtract
DISPLAY SAMPLE DISPLAY ICOUNTDISPLAY ICOUNTDISPLAY ICOUNTDISPLAY ICOUNT
DISPLAY OSAMPLE DISPLAY OCOUNTDISPLAY OCOUNTDISPLAY OCOUNTDISPLAY OCOUNT
EXTRACT Use DAPL expression bitwise operations
FILTER FIRFILTERFIRFILTERFIRFILTERFIRFILTER
LOWPASS FIRLOWPASFIRLOWPASFIRLOWPASFIRLOWPASSSSS
PID PID1PID1PID1PID1
SCALE Use DAPL expression arithmetic

Support for the BPRINTBPRINTBPRINTBPRINT command has changed. In previous version of DAPL BPRINTBPRINTBPRINTBPRINT
previously had two undocumented, but supported, command forms. These
undocumented behaviors are not supported in DAPL 2000.

not supported equivalent
BPRINT COPY (<in_pipe>, $BINOUT)
BPRINT (<in_pipe>, <out_pipe>) COPY (<in_pipe>, <out_pipe>)

Old TRIGGERS Command Syntax

The TRIGGERSTRIGGERSTRIGGERSTRIGGERS command in earlier version of DAPL and DAPL 2000 also supported
a different command syntax. The old syntax required a single optional number
parameter <readers> specifying the number of trigger reader tasks to expect. The
triggering operating modes and properties were not available. After enough tasks were
started to satisfy the <readers> specification, the trigger began to allocate and
release memory dynamically to support continuous processing. It is not supported for
new applications.

Name Conflicts

Older applications might define symbol names that conflict with new DAPL keyword
and command names. Such conflicts can be solved by changing the user defined
symbol names to other names not reserved by the DAPL system.

Appendix A. Previous Versions of DAPL 413

Options

The default setting for OPTIONS SCHEDULINGOPTIONS SCHEDULINGOPTIONS SCHEDULINGOPTIONS SCHEDULING changed. For Data Acquisition
Processor boards for the ISA bus, SCHEDULING=ADAPTIVE has been the default. For
current Data Acquisition Processor boards for the PCI bus, SCHEDULING=FIXED is
the default setting.

The following OPTIONSOPTIONSOPTIONSOPTIONS are obsolete.

FFTSIZE No longer needed. The DAPL system defers construction of
FFT coefficient tables until an FFT task is created.

LLATENCY Newer options for buffer configuration and scheduling
provide better control.

OPTIMIZE This was misleading. Newer options for buffer configuration
and scheduling provide better control.

ROUNDING The option is accepted but ignored. Less accurate rounding no
longer provides any speed advantage.

Hexadecimal Notations

The OPTIONS DECIMAL=OFFOPTIONS DECIMAL=OFFOPTIONS DECIMAL=OFFOPTIONS DECIMAL=OFF command previously determined the interpretation of
all numerical constants for configuration, input, and output. This led to ambiguous
interpretations of DAPL commands and dependencies of current system state upon
prior system operation, despite intervening RESETRESETRESETRESET commands. In newer versions of
the DAPL system, command grammars are not influenced by the DECIMAL option. To
use hexadecimal constants when defining a configuration, use the �$� prefix notation.
To control displays generated by the FORMATFORMATFORMATFORMAT command, use its HEX command line
option.

Hexadecimal notations in DAPL expression are now treated as 32-bit representations
of bit patterns, where in prior DAPL versions the data type varied depending on the
number of digits in the representation. The 32-bit pattern can be converted to a 16-bit
number if the high-order 16 bits form a valid sign extension. For example, the
constant $FFFFFFF0 would be the equivalent of the decimal value �16, while the
constant $FFFF means the same thing as $0000FFFF and would be the equivalent of
the value 65535. As 65535 has no 16-bit representation, the DAPL expression would
saturate the numerical value to +32767.

Low Latency Tasks

414 Appendix A. Previous Versions of DAPL

The DAPL system command OPTIONS BUFFERING=OFFOPTIONS BUFFERING=OFFOPTIONS BUFFERING=OFFOPTIONS BUFFERING=OFF is treated as advisory by all
tasks. Buffering improves system throughput, but it typically results in real-time
delays. If there is a means by which a command can move small amounts of data
through the system quickly in response to events, then those means will be employed
when BUFFERING=OFF is specified. If a command has no such means, or if moving
small amounts of data is not the purpose of the command (for example, an FFT always
processes data in blocks), the command can ignore this configuration option.

Appendix A. Previous Versions of DAPL 415

Variables in Parameter Lists

Some DAPL commands that require constants also accept variables in their parameter
lists for compatibility with earlier versions of DAPL. The value of the variable is read
when the task starts. Further changes to the variable have no effect on the task. New
applications always should use constants for these commands to avoid confusion
about their operation. The following commands fall into this category.

CHANGECHANGECHANGECHANGE DECIBELDECIBELDECIBELDECIBEL EXTRACTEXTRACTEXTRACTEXTRACT
FREQUENCYFREQUENCYFREQUENCYFREQUENCY MINTIMEMINTIMEMINTIMEMINTIME POLARPOLARPOLARPOLAR
TFUNCTION1TFUNCTION1TFUNCTION1TFUNCTION1 TFUNCTION2TFUNCTION2TFUNCTION2TFUNCTION2 WAITWAITWAITWAIT

Obsolete Commands

On the following pages, reference sheets for several newly obsolete commands are
provided as a courtesy to customers who must support legacy applications. Use of
these commands in new and updated systems is not recommended. See the tables in
this chapter for information on what should be used in place of these commands.

416 Appendix A. Previous Versions of DAPL

BDOWNLOAD (obsolete command)

Download a 16-bit custom command binary to the Data Acquisition Processor
onboard RAM.

BDOWNLOAD <command_name> <stacksize> <length> <in_pipe>

Parameters
<command_name>

Name of custom command to be downloaded.
Alphanumeric text, one to eleven characters

<stacksize>
Maximum stack size of the custom command.
WORD CONSTANT

<length>
Number of binary data bytes that are read from <in_pipe>.
WORD CONSTANT

<in_pipe>
Input data pipe.
BYTE PIPE | WORD PIPE

Description
BDOWNLOAD defines a command that is downloaded from the PC to the Data
Acquisition Processor onboard RAM. The name of the command is specified,
followed by the command�s maximum stack size and the length of the command�s
code, in bytes. These parameters are followed by the name of a byte or word pipe.

BDOWNLOAD reads <length> bytes of binary data from <in_pipe>. The bytes
contain the code for the custom command. The binary codes are generated using the
tools provided in the Developer�s Toolkit for DAPL.

In most situations, it is easiest to use the downloading utilities such as DAPview for
Windows or CDLOAD32. The CDLOAD32 utility is available with the source code
in the DAPDEV\EXAMPLES install directory on the DAPtools CD. These utilities
will generate a BDOWNLOAD command and format the data stream automatically.

If <in_pipe> is a word pipe, <length> must be an even number.

Appendix A. Previous Versions of DAPL 417

Note: RESETRESETRESETRESET does not remove any custom command definitions.
 ERASEERASEERASEERASE removes custom command definitions selectively.

Example

BDOWNLOAD TEST 800 100 $BININ

Define the command TEST with a stack size of 800 bytes and a code size of 100
bytes; and then read 100 bytes of data from the $BININ communication pipe.

See Also
ERASEERASEERASEERASE

418 Appendix A. Previous Versions of DAPL

BUFFERS (obsolete command)

Specify the input buffer mode of an input configuration.

BUFFERS <type>

Parameters
<type>

A keyword, either STATIC or DYNAMIC

Description
BUFFERS specifies the input buffer mode of an input configuration. <type> is
STATIC or DYNAMIC. The default mode is DYNAMIC.

In DYNAMIC input buffer mode, a system task allocates input buffers for an input
configuration on demand. The memory used by buffers in the input configuration
grows and shrinks dynamically. This is the normal input buffer mode and is
appropriate for almost all applications.

In STATIC input buffer mode, DAPL pre-allocates a certain number of input buffers
for an input configuration. Input processing cycles through these buffers
continuously until the input configuration stops or an overflow occurs.

The STATIC command is used with certain obsolete multitasking control functions
provided in earlier versions of the Developer�s Toolkit for DAPL.

Example

BUFFERS STATIC

Set the input buffer mode to STATIC.

Appendix A. Previous Versions of DAPL 419

CPIPE (obsolete command)

Note: This command is used only for older models of Data Acquisition Processors
that use an ISA bus interface.

Define a binary communication pipe.
CPIPE <name> PC <port> <direction> BINARY [<options>]

Define a text communication pipe.
CPIPE <name> PC <port> <direction> TEXT [<options>]

<options> = [<data_size>] [<echo>] [<buffer_size>] [<blocking>]

Parameters
<name>

Assigned communication pipe name.

<port>
A keyword expression NUM = <n> where <n> is a WORD CONSTANT that specifies
the DAPL com pipe number.

<direction>
A keyword specifying direction of data transfer, INPUT | OUTPUT

<data_size>
A keyword option selecting a data type BYTE | WORD | LONG | FLOAT.
BYTE can be used only with text pipes. The other types can be used only with
binary pipes. Defaults are BYTE for text pipes and WORD for binary pipes.

<echo>
A keyword selecting a command echo option, ECHO | NOECHO

<buffer_size>
An option specifying the maximum number of data storage locations of size
<data_size> available to the com pipe. The default is 2K.

<blocking>
For binary pipes only, the number of data that must be available in the com pipe
buffer before data transmission begins. The default is 1.

420 Appendix A. Previous Versions of DAPL

Description
CPIPE creates a communications pipe. The command must specify the hardware
communication port as PC for all Data Acquisition Processors currently supported
by DAPL 2000. The PC option specifies high-speed parallel communication over
the PC bus.

For PC, the NUM=<n> option also must be specified. <n> is an integer that specifies
the DAPL com pipe number, which is used to establish a unique path to a
corresponding com pipe in the PC. Com pipe numbers range from 0 to 119. Com
pipe number 0 is reserved for system communication pipes, and com pipe number 1
is reserved for binary communication pipes. The ACCEL driver in the PC supports
com pipe numbers from 0 to 31.

INPUT specifies that DAPL receives data from the com pipe. OUTPUT specifies that
DAPL sends data to the com pipe.

BINARY or TEXT selects the type of data contained in the com pipe. Text com pipes
contain data formatted into lines terminated by carriage returns. DAPL transmits
only whole lines from text com pipes.

BYTE, WORD, or LONG selects the width of the data stored in the pipe. Text pipes
default to BYTE width, and cannot be declared as WORD or LONG pipes. The com pipe
width must match the width of the corresponding PC com pipe. Communications
pipes declared as FLOAT can be used with custom commands created with the
Developer�s Toolkit for DAPL.

ECHO or NOECHO select whether an input text com pipe echoes each received
character to the system output pipe $SYSOUT. The ECHO parameter is allowed only
for input text com pipes.

The MAXSIZE parameter specifies the maximum number of entries in a com pipe.
DAPL statically allocates enough buffer memory to hold MAXSIZE values. MAXSIZE
should be large enough to allow efficient communication, but not so large as to
waste buffer memory. Typically, a communication buffer should permit between
512 and 2048 entries. Input com pipes on a-Series boards must hold at least 1024
bytes.

The BLOCKING parameter selects whether DAPL forces an output com pipe to
contain a minimum number of values before data transmission begins. Using
blocking reduces communication overhead in applications that generate large
quantities of output data. BLOCKING can be specified only for binary pipes, since
text pipes always perform blocking in units of lines.

Parameter defaults for CPIPE are OUTPUT, TEXT, BYTE, NOECHO, and BLOCKING=1.
MAXSIZE defaults to 1024.

Appendix A. Previous Versions of DAPL 421

Note: On all DAPs except for PCI DAPs, communication pipes are removed by
RESTARTRESTARTRESTARTRESTART. Com pipes are not removed by RESETRESETRESETRESET, so RESETRESETRESETRESET does not cause loss of
buffered data.

Example

CPIPE EKGOUT PC NUM=10 OUTPUT BINARY LONG BLOCKING=16

Define an output com pipe named EKGOUT that sends its data to the PC. The com
pipe�s number is 10 and it contains 32-bit binary data. Data are transferred to the PC
in blocks of 16 values (64 bytes).

See Also
PIPESPIPESPIPESPIPES

422 Appendix A. Previous Versions of DAPL

DIAGNOSTIC (obsolete command)

The DIAGNOSTIC command is available only on older Data Acquisition Processor
models that use an ISA bus interface.

Test Data Acquisition Processor hardware.

DIAGNOSTIC

DIAG

Description
DIAGNOSTIC tests Data Acquisition Processor hardware. The hardware tests take up
to four seconds, depending on the model of Data Acquisition Processor. After
hardware tests are completed, DIAGNOSTIC sends an error flag to the PC. The error
flag is formatted as a single integer; zero indicates no hardware errors, a nonzero
number indicates a hardware error. A description of error numbers is provided in the
file ERR.TXT on the DAP Software diskettes.

If DIAGNOSTIC detects a memory error, it sends an error message to the PC before
the error flag. The error message takes the following form:

!! YY ZZ XXXXX

YY, ZZ, and XXXXX are hexadecimal numbers. XXXXX is the memory address of an
error, YY is the incorrect value, and ZZ is the correct value.

All communication should be finished before sending a DIAGNOSTIC command.
After DIAGNOSTIC finishes, a RESTARTRESTARTRESTARTRESTART is performed. This is equivalent to a power-
up reset. The PC should not attempt to communicate with a Data Acquisition
Processor until one second after the error flag is returned. After RESTARTRESTARTRESTARTRESTART, all data
and symbols in the Data Acquisition Processor are lost.

The RESTARTRESTARTRESTARTRESTART command that follows a DIAGNOSTIC command resets several system
options such as command echoing. If a DIAGNOSTIC command is sent from
DAPview for Windows, these options must be restored. The easiest way to restore
the system options is to exit DAPview and run it again.

Appendix A. Previous Versions of DAPL 423

MAXTIME (obsolete command)

Define a task that restricts the maximum number of samples between trigger
assertions.

MAXTIME (<t1>, <max>, <t2>)

Parameters
<t1>

Input trigger containing the original event sequence.
TRIGGER

<max>
A value that specifies the maximum number of sample counts to wait for a trigger
assertion to occur.
WORD CONSTANT | LONG CONSTANT

<t2>
Output trigger receiving the modified event sequence.
TRIGGER

Description
MAXTIME enforces a maximum number of samples between trigger assertions. This
command can add extra trigger assertions during periods when there are no events.
Each trigger assertion is passed from trigger <t1> to trigger <t2>. If no trigger
assertion occurs within <max> sample counts of the previous assertion, an extra
trigger assertion is generated each <max> sample counts after the previous trigger
assertion.

Note: New applications can achieve the same result without using this command by
configuring the software trigger MODE=AUTO.

424 Appendix A. Previous Versions of DAPL

Example

MAXTIME (T1, 100, T2)

Pass each trigger assertion from trigger T1 to trigger T2,adding additional trigger
assertions to make sure a trigger assertion occurs at least 100 samples after each
previous assertion.

See Also
MINTIMEMINTIMEMINTIMEMINTIME, NTHNTHNTHNTH, RETRIGGERRETRIGGERRETRIGGERRETRIGGER, WAITWAITWAITWAIT, TRIGGERSTRIGGERSTRIGGERSTRIGGERS

Appendix A. Previous Versions of DAPL 425

MINTIME (obsolete command)

Define a task that enforces a minimum number of samples between trigger assertions.

MINTIME (<t1>, <min>, <t2>)

Parameters
<t1>

The trigger assertion containing the original event sequence.
TRIGGER

<min>
Minimum number of sample counts that the triggers must be separated by.
WORD CONSTANT | LONG CONSTANT

<t2>
The trigger receiving the modified event sequence.
TRIGGER

Description
MINTIME enforces a minimum number of samples between trigger assertions. This
command can be used to remove excess trigger assertions. A trigger assertion is
passed from trigger <t1> to trigger <t2> if the trigger assertion is separated from
the previous assertion by at least <min> sample counts.

Note: For new applications it is better to use the HOLDOFF property of a trigger
operating in NORMAL or DEFERRED mode rather than use this command. This
suppresses trigger events immediately rather than creating them and later removing
them.

Example

MINTIME (T1, 100, T2)

For each assertion from trigger T1, pass the assertion to trigger T2 if the assertion
occurs at least 100 samples after the previous assertion.

See Also
MAXTIMEMAXTIMEMAXTIMEMAXTIME, NTHNTHNTHNTH, RETRIGGERRETRIGGERRETRIGGERRETRIGGER, WAITWAITWAITWAIT

426 Appendix A. Previous Versions of DAPL

RESTART (obsolete command)

Note: This command only applies to Data Acquisition Processor models that use
the ISA bus interface. Other models might respond, in a limited way, by clearing
OPTIONSOPTIONSOPTIONSOPTIONS to defaults or performing a RESETRESETRESETRESET.

Stop all configurations and perform a power-up system restart.

RESTART

Description
RESTART stops all configurations and performs a power-up system restart. User-
defined communication pipes and downloaded commands are erased. All other
communication pipes are reinitialized. All buffered data are lost. Jumper
configurations are read and all OPTIONSOPTIONSOPTIONSOPTIONS are set to their default values. Most
applications should use the RESETRESETRESETRESET command rather than the RESTART command.

All communication should be finished before sending a RESTART command. After a
RESTART, the host PC should not send data for one second to allow the Data
Acquisition Processor to reinitialize communication.

Note that when RESTART sets the options to their default values, the Data
Acquisition Processor is no longer in interactive mode. Echoing and prompting are
turned off. If RESTART is issued from DAPview for Windows, the Data Acquisition
Processor does not show any response to characters typed from the keyboard until
the options are restored to their interactive settings. This can be performed by
exiting and reentering DAPview for Windows, or by entering the following option
line:

OPTIONS PROMPT=ON,SYSINECHO=ON,TERMINAL=ON,\
OVERFLOWQ=OFF,ERRORQ=OFF

See Also
EMPTYEMPTYEMPTYEMPTY, ERASEERASEERASEERASE, RESETRESETRESETRESET

Appendix A. Previous Versions of DAPL 427

RETRIGGER (obsolete command)

Define a task that reads trigger events and creates a modified trigger sequence.

RETRIGGER (<t1>, <len>, <t2>)

Parameters
<t1>

Input trigger.
TRIGGER

<len>
Maximum number of samples to delay a secondary trigger event.
WORD CONSTANT

<t2>
New modified trigger sequence.
TRIGGER

Description

Note: In most applications, it is easier to configure a trigger with MODE=DEFERRED,
which achieves exactly the same effect.

A RETRIGGER task reads trigger events from trigger <t1> and creates a modified
trigger sequence in trigger <t2>. The purpose of RETRIGGER is to ensure that data
blocks cover clusters of trigger events. If trigger events occur close together, the
data for those events can be covered by multiple data blocks so that all data is
retained. RETRIGGER normally is used with a WAITWAITWAITWAIT task.

RETRIGGER modifies the position of secondary trigger events to ensure that WAITWAITWAITWAIT
transfers at least pre-trigger and post-trigger values for every trigger. WAWAWAWAITITITIT ignores
any trigger events that occur while transferring a block of data. If RETRIGGER is
used, any trigger event where WAITWAITWAITWAIT already is transferring values for its pre-trigger
count and post-trigger count causes a new trigger event after that data block. The
following description explains how RETRIGGER works with a WAITWAITWAITWAIT task:

428 Appendix A. Previous Versions of DAPL

� The first trigger event in <t1> is passed to <t2> unchanged.
� If one additional trigger event occurs within <len> samples of the previous trigger

event, a new trigger is asserted in <t2>. The sample count for this assertion occurs
<len> samples after the previous assertion, which is the first sample count that the
WAITWAITWAITWAIT task will accept. This causes WAITWAITWAITWAIT to transfer data with no gaps or overlaps.

� If two or more trigger events occur within <len> samples of the previous trigger
event, one new trigger is asserted in <t2> to cover all of these events.

� If a trigger event is greater than <len> samples past the previous event, the new
event is passed to <t2> unchanged.

Example

CONSTANT PT5=5, PT10=10, PT15=15
...
RETRIGGER(T1, PT15, T2)
WAIT(P1, T2, PT5, PT10, P2)

RETRIGGER reads trigger events from trigger T1 and replaces them with trigger
events in T2, making sure that all trigger events are separated by at least PT15
samples so that the WAITWAITWAITWAIT command covers all trigger events. WAITWAITWAITWAIT reads data from
P1 in blocks of 15, then places the values in P2.

See Also
MINTIMEMINTIMEMINTIMEMINTIME, NTHNTHNTHNTH, WAITWAITWAITWAIT

Appendix A. Previous Versions of DAPL 429

TASKSTAT (obsolete command)

Report information about running tasks.

TASKSTAT CLEAR | STATUS <option>

TS CLEAR | STATUS <option>

Parameters
<option>

Keyword to select operation, must be CLEAR or STATUS

Description
The TASKSTAT command prints statistics about CPU utilization.

The command TASKSTAT CLEAR resets all CPU utilization variables. This
command normally is issued after all configurations have been started. Then, after a
time interval, the TASKSTAT STATUS command can be used to examine task
activity during the interval.

While an application�s configurations are active, a TASKSTAT STATUS command
prints a table similar to the following:

Task CPU Time Used (in ms)
DAPL 394
OVR_CHK 272
UND_CHK 272
MEM_TSK 407
AVERAGEAVERAGEAVERAGEAVERAGE 1096
ALARMALARMALARMALARM 1102
system idle/overhead 6101
Average task cycle latency (in ms): 594

The table lists the total time in milliseconds used by the CPU for each task since the
last TASKSTAT CLEAR command. The first four tasks are system tasks that always
are executing. All remaining tasks are defined in active processing procedures.

A large value for system idle/overhead typically indicates that the Data Acquisition
Processor is performing well. When the Data Acquisition Processor has excess

430 Appendix A. Previous Versions of DAPL

computational power for an application, it spends much of its time switching tasks
while it waits for data. As the demands on the Data Acquisition Processor increase,
it spends more time processing data and less time switching tasks. Its efficiency
increases as the amount of time spent on system overhead decreases. On the other
hand, a heavily-loaded CPU cannot respond to real-time events as quickly.

When OPTIONSOPTIONSOPTIONSOPTIONS SCHEDULING=FIXED has been selected, TASKSTAT STATUS also
displays the average task latency. The average task latency is the typical number of
microseconds of real time between activation of a particular task. See the OPTIONSOPTIONSOPTIONSOPTIONS
command and Chapter 13.

Glossary 431

20. Glossary

The following definitions explain terms that refer to various hardware and software
features of the Data Acquisition Processor.

a Series
 a Series refers to Data Acquisition Processor models that use the letter �a� in the

model name.

Analog Input
 An analog input is a hardware pin that connects a continuous voltage signal to the

input amplifiers that precede an analog-to-digital converter. When analog input
expansion boards are used, the number of available analog input pins is increased.

Analog Output
 An analog output is a hardware pin where a continuous voltage is driven by a

digital-to-analog converter. A Data Acquisition Processor provides two onboard
analog outputs. When analog output expansion boards are used, the number of
available analog output pins is increased.

Asynchronous
 This is a descriptive term for processes, events or activities that are not

coordinated by a sampling or updating clock. Updates of analog outputs using the
DACOUTDACOUTDACOUTDACOUT command are asynchronous because updates could occur in rapid
irregular bursts depending on data arrival time and the number of samples
received. Changes of variable values are asynchronous because tasks might
process more or less data before they see a change in the variable value, causing
the apparent time that the change takes effect to be indeterminate.

Binary Fraction
 A fixed point number can be interpreted as a fraction, where the most-significant

bit indicates sign, and a binary point is assumed just after the sign bit. The first bit
after the binary point is equivalent to a value of 1/2. The next bit is equivalent to a
value of 1/2 to the second power, or 1/4. The next bit is equivalent to a value of
1/2 to the third power, or 1/8, and so forth. This pattern continues down to the last
available bit. As an example, the binary fraction interpretation is useful when
representing FFT windows as a vector of fixed point numbers.

Block
 Used as a noun, a block is a collection of associated samples. The samples can be

closely related, in the manner of spectrum blocks produced by an FFTFFTFFTFFT command,

432 Glossary

or the association can be temporary in the manner of data buffered for a bulk
transfer. Used as a verb, a task is blocked if it cannot proceed with execution
because data is unavailable or because processing of another task prevents it.

Built-in Command
 The task definition commands provided with each distribution of the DAPL

operating system and described in this manual are called built-in because they are
loaded by default when the DAPL system starts. There is usually much difficulty
and little to be gained from unloading the command module that provides these
commands.

Burst Mode
 Burst mode is a method for input sampling or output updating. During burst mode,

a hardware trigger signals for input or output to begin, and sampling or updating
continues for a predefined number of samples. When another hardware trigger
event occurs, input or output starts again. So, data is received or sent in �bursts.�

Channel Group
 For Data Acquisition Processor models that support simultaneous sampling

groups, a channel group is a logical assignment of channels in the input sample
pipe to simultaneously-captured samples from an associated input pin group. The
channels are numbered consecutively, and correspond in fixed order to the
sampled pins. Restrictions on defining channel groups are discussed with the SETSETSETSET
command.

Communication Pipe
 A communication pipe (abbreviated �com pipe�) is a special pipe used to

coordinate transfers of data between the Data Acquisition Processor and its host
PC through the PC bus.

Custom Command Module
 A custom command module is a dynamically downloadable 32-bit code module

providing specialized processing commands. Tasks defined by commands in a
custom module are equivalent in status to tasks defined by built-in processing
commands. They have the same access to internal system features.

DAPL Expression
 A DAPL expression defines a task that reads from pipes, input channel pipes, or

variables, performs arithmetic and bitwise operations, and puts results into a pipe,
output channel pipe or variable. DAPL expressions provide flexible means for
performing arithmetic and logical operations on data streams.

Glossary 433

DAPL Symbols
 DAPL symbols are names assigned to elements and recorded within the DAPL

system. DAPL symbols can refer to system variables, processing commands, user-
defined variables, constants, pipes, and triggers.

DAPL System Tasks
 DAPL system tasks are hidden tasks, including the DAPL command interpreter

and various system tasks that manage buffers, gather statistics, and perform run-
time optimizations.

Differential Input
 A differential input is a pair of analog input pins. One of the pins is designated the

�positive� input pin and the other is designated the �negative� or �inverting� input
pin. The voltage difference between the positive input pin and the negative input
pin is measured.

Digital Input Port
 A digital input port is a set of digital input pins, typically 8 or 16, that are captured

simultaneously. The bits in a fixed-point number represent the state of the pins
when sampled. Notations for associating an input channel with a digital input port
are discussed with the SETSETSETSET command. The number of available digital input ports
is increased when digital input expansion boards are used.

Digital Output Port
 A digital output port is a set of digital input pins, typically 8 or 16, that are

updated simultaneously. For applications that must control output bits
individually, some processing commands provide �masking� ability, so that the
updates change the values only of specified pins within the output port. The
number of available digital output ports is increased when digital output expansion
boards are used.

Fast Input Sampling
 Fast input sampling is an interleaving strategy for SETSETSETSET commands in an input

procedure. By defining a sampling order such that each analog input pin is
preceded by a sufficient number of digital input pins, some of the setup time
associated with the analog channels can be overlapped with the sampling of the
digital channels, allowing a smaller TIME interval than sampling of analog
channels alone would allow.

Input Channel Pipe
 An input channel pipe is a special pipe into which Data Acquisition Processor

hardware places analog conversion values and digital input data. Each input
channel is associated with an analog input pin, input pin group or digital input
port. Voltages at input pins or pin groups are captured and digitized, and the

434 Glossary

values stored in multiplexed order. There does not have to be a one-to-one
relationship between analog inputs and input channels. Some input channels may
be ignored, and some input channels may result from repeated sampling of the
same input pin, possibly at different gains. There is really only one input channel
pipe, corresponding to the active input procedure, but any number of tasks can
read data from the same input channel pipe in different combinations, making it
appear as if multiple input channel pipes exist.

Input Communication Pipe
 An input communication pipe is a communication pipe that accepts data from the

host PC for transfer to the DAPL system.

Input Configuration Command
 An input configuration command is a command located within a command group

between an IDEFINEIDEFINEIDEFINEIDEFINE command and its associated ENDENDENDEND command. An input
configuration command controls the sampling configuration of the Data
Acquisition Processor.

Input Pin Group
 An input pin group is a set of single-ended analog input pins, determined by the

Data Acquisition Processor hardware architecture, for which voltages are captured
simultaneously.

Input Procedure
 An input procedure is a set of commands between an IDEFINEIDEFINEIDEFINEIDEFINE command and its

associated ENDENDENDEND command. An input procedure specifies a configuration that
samples various combinations of analog and digital inputs, placing the digitized
data into the input channel pipe.

Multiplexed Input
 Multiplexed input is a configuration of digital or analog input pins, sampled by

Data Acquisition Processor architecture in sequence. Samples from input pins
appear interleaved in the captured data stream. When the architecture organizes
pins into input pin groups, the data blocks from pin groups are multiplexed within
the data stream. When an input channel pipe is used with a channel list notation in
a task definition parameter list, data from those channels appear in a multiplexed
sequence.

Multitasking
 Multitasking is a capability of an operating system such as DAPL to allow

multiple processing tasks to execute as though they were completely independent
and running simultaneously. The physical processor can only execute one
instruction sequence at any given time, so a multitasking system provides a means

Glossary 435

of temporarily suspending some processing while resuming other processing, thus
allowing all tasks to make progress even if they do not truly run at the same time.

Output Communication Pipe
 An output communication pipe is a communication pipe that transmits data from

the DAPL system to the host PC.

Output Channel Pipe
 An output channel pipe is a special pipe from which Data Acquisition Processor

hardware takes values for clocked digital-to-analog conversion or clocked digital
output. Each channel in the output channel pipe is associated either with an analog
output pin or with a digital output port.

Output Configuration Command
 An output configuration command is a command located within a command group

between an ODEFINEODEFINEODEFINEODEFINE command and its associated ENDENDENDEND command. An output
configuration command controls the output update configuration of the Data
Acquisition Processor.

Output Procedure
 An output procedure is a set of commands between an ODEFINEODEFINEODEFINEODEFINE command and its

associated ENDENDENDEND command. An output procedure specifies a configuration that
updates analog or digital outputs in any combination.

Pipe
 A pipe is a high level first-in-first-out buffer for temporary storage of data. Com

pipes, input channel pipes, and output channel pipes are special types of pipes. In
concept, data are added to one end of a pipe and removed from the other end. The
size of elements within the pipe depends on the data type of the pipe. Storage
space is allocated and released automatically, allowing a pipe to grow or shrink as
required. If data are added to a pipe faster than they are removed, the size of the
pipe increases up to its maximum capacity. Attempting to place data into a pipe
that has reached its capacity limit, or attempting to remove data from a pipe that
has no data, results in the requesting task being blocked. Each task receives data
from the pipe in the order in which the data entered. If multiple tasks read data
from a pipe, each reader task sees a complete independent copy as if the other
readers were not there.

Predefined Pipe
 When the DAPL system is started, several communication pipes are automatically

established: $SYSIN, $SYSOUT, $BININ, and $BINOUT. The DAPL interpreter
reads commands from the $SYSIN input com pipe. Text output produced by the
DAPL interpreter and by processing commands is sent to the $SYSOUT output com

436 Glossary

pipe. $BININ is an input com pipe and $BINOUT is an output com pipe reserved
for high-speed binary data transfers between the DAPL system and the PC host.

Print
 A task is said to print data when it sends the data to the PC encoded in a text form.

Printing sends data to the screen of the PC or to a printer only under control of a
PC application program or utility such as Microstar Laboratories DAPview for
Windows.

Processing Procedure
 A processing procedure is a set of commands between a PDEFINEPDEFINEPDEFINEPDEFINE command and

its associated ENDENDENDEND command. Each command within a processing procedure
defines a processing task. Tasks can be defined using built-in processing
commands, DAPL expressions, or commands from user-developed custom
command modules. All the tasks in a processing procedure are started and stopped
together.

Prompt Character
 When DAPL is requesting input from the user in an interactive mode of operation,

a character is displayed at the beginning of the input line. This character, usually
�#�, is called the prompt character. The prompt character changes within input,
output and processing procedure definitions.

Scheduling
 Scheduling is the strategy and its application for selecting and running tasks in a

multitasking operating system. The DAPL system uses two scheduling strategies.
�Round robin scheduling� allows tasks each to run in sequence. �Preemptive
scheduling� temporarily suspends tasks using too much computing time, so that
other tasks can run.

Scheduling Quantum
 The scheduling time quantum is a parameter configured by the
OPTIONS QUAOPTIONS QUAOPTIONS QUAOPTIONS QUANTUMNTUMNTUMNTUM command. The time quantum specifies how much computing
time a task can consume at each opportunity before the preemptive scheduling
policy takes effect. System throughput is typically better if a longer time quantum
is specified, so that processing completes with the least interruption. However,
real-time response is typically better when the scheduling quantum is small, so that
tasks do not delay response to a critical real-time event.

Single-ended Input
 A single-ended input is an analog input for which voltages are measured with

respect to a common reference ground.

Glossary 437

Synchronize
 In the context of task scheduling, synchronization is a process of temporarily

imposing sequence constraints on tasks that might otherwise run independently.
For example, a task that reads data from a pipe must wait until some other task has
placed the data into the pipe. Access policies to preserve referential integrity are
sometimes called synchronization. For example, a request to delete a pipe must be
denied if a processing configuration uses that pipe. In the context of data streams,
two streams are considered synchronized if effects observed at approximately the
same place in both streams correspond to the same real-time event. In the context
of sampling and updating, synchronization means using a precision oscillator to
establish timing intervals for sampling and updating events.

String
 In the DAPL system environment, a string is a sequence of characters enclosed in

quotation marks (“ ”). DAPL converts all characters in these strings to upper
case. Strings used locally in a custom module programming environment can
contain a mix of upper and lower case characters.

Task
 A task is a unit of data processing that occurs when a processing configuration is

running. Tasks are defined by commands in a processing definition, but the tasks
do not exist until the processing runs. Once processing is started, a task can access
data from user-defined, input channel, or communication pipes; modify the data;
generate new data; update shared variable values; adjust certain direct outputs
asynchronously; process software trigger events; generate message texts; and place
results in user-defined, output, or communication pipes.

Task Definition Command
 Each command following the PDEFINEPDEFINEPDEFINEPDEFINE command up to its corresponding ENDENDENDEND

command is a task definition. Tasks can be defined using built-in processing
commands, DAPL expressions, or commands from user-developed custom
command modules. A task definition command can be entered several times with
different parameters to define separate tasks that execute independently.

Timestamp
 A timestamp is a sample number, determined by a cumulative count of all samples

that pass through a pipe. In most applications, the timestamp also equals the
number of samples captured by the active input procedure and processed by the
task that asserts a trigger.

Trigger
 In the context of hardware, a trigger is a digital logic signal that controls when

sampling or updating activity is to start. Subsequent to the trigger event, sampling

438 Glossary

activity can continue under control of an independent clock. In the context of
processing software, a trigger is a special pipe for synchronizing task data
processing. When a trigger is asserted, the sample number of the data value that
caused the assertion is placed in the trigger. One task can assert a trigger, and one
or more tasks can wait for the assertion of the trigger. When a waiting task
receives a trigger assertion, it processes data relative to the exact sample number
of the trigger event. Because the triggering is relative to positions within a data
stream, rather than real time, a software trigger event can be used to locate data
before or after the position of the trigger event.

Trigger Assertion
 A trigger assertion is recognition by a task of a special condition, typically a data

sequence that satisfies special properties, followed by posting of a trigger event in
a trigger pipe.

Trigger Event
 In the context of a hardware trigger, a trigger event is the occurrence of a signal

feature that activates the triggering hardware. For software triggering, a trigger
event is a trigger assertion indicated by the presence of an event timestamp in a
trigger pipe.

Truncation, Saturation
 In some cases it is impossible to fit the result of a calculation in the storage space

allocated for the result. For example, if a DAPL expression adds the values 30000
and 31000 from two word data pipes, the sum of 61000 is greater than the
maximum +32767 that can be represented by a 16-bit word value. The range limit
depends on the data type. If the data is made to fit by chopping away some of the
bits, this is called truncation. For example, if a DAPL expression computes a 32-
bit bitwise expression and then stores the results in a 16-bit word pipe, the higher-
order 16 bits are truncated. If the data is made to fit by finding the nearest value
that is representable, this is called saturation. For example, if a DAPL expression
computes a floating point value of 32800.0 and assigns this to a word value, the
word value is saturated to +32767 because that is the largest available positive
number.

 Almost all DAPL operations use saturation, which correctly indicates the sign of

the result, and does not yield an artificially small number when the correct result is
large.

Variable
 In the context of the DAPL system, a variable is an element of storage defined by

the VARIABLESVARIABLESVARIABLESVARIABLES command. The storage of a variable is available for shared access
by DAPL processing tasks and PC applications. In the context of a custom module

Glossary 439

programming environment, a variable is storage known only to the task, and it is
not accessible by other tasks. A variable always contains the most recent value
transferred to it.

Index 441

Index
$BININ ... 56, 58, 435
$BINOUT ... 56, 57, 435
$SYSIN... 56, 58, 435
$SYSOUT... 56, 435
16-Bit Memory Allocation .. 61
About Efficiency ... 16
ABS... 129
Accel32 ... 99
Adaptive scheduling.. 77
Adding communication pipes.. 99
Additional Com Pipes ... 58
AINEXPAND ... 253
ALARM .. 130
Aliasing... 115
ALLSYMBOLS .. 180
Analog input ... 431
Analog Input Voltages .. 43
Analog output ... 431
Analog Voltages.. 45
Anti-aliasing.. 115
Applying Software Triggers .. 84
Applying Trigger Operating Modes .. 93
Architectural Basics .. 6
Arithmetic expression ... 33
Asynchronous ... 431
Asynchronous Events and PCASSERT .. 102
AVERAGE.. 86, 105, 132
BAVERAGE... 87, 134
BDOWNLOAD (obsolete command) ... 416
Benchmarking ... 67
Binary Fractions.. 47, 431
Binary Representation... 46
Binary transfer rate.. 64
BINTEGRATE.. 136
Bipolar .. 43
Block... 431
BMERGE.. 57, 138
BMERGEF.. 57, 140
BPOUTPUT.. 253
BPRINT .. 57, 65, 142
Buffer overflow... 69
Buffering ... 39
BUFFERING .. 253

442 Index

Buffering Control.. 76
Buffering During Expression Evaluation.. 39
BUFFERS (obsolete command) ... 418
Built-in Command .. 432
Burst mode.. 73, 432
CABS.. 143
CALIBRATE.. 145
CHANGE.. 147
Channel group .. 432
Channel lists ... 6
Channel Pipe Efficiency ... 64
Channel pipe list optimizations... 64
Channel Pipe Notations .. 14
Channel pipe overflow.. 70
Channel pipes ... 6
CHANNELS... 148
CLCLOCKING... 150
CLOCK... 151
Com pipe .. 55, 432
COMMANDS... 180
Communication Formats... 64
Communication pipe... 55, 99, 432
Complex Exponentials.. 116
Complex integer.. 50
COMPRESS ... 152
Configuration Commands... 25
CONSTANTS... 33, 155
Conversions Between Integer Types... 51
COPY ... 157
Copyrights and Trademarks ... i
COPYVEC ... 158
CORRELATE... 159
Cosines ... 118
COSINEWAVE.. 162
COUNT .. 66, 69, 71, 73, 164
CPIPE (obsolete command).. 419
CROSSPOWER.. 165
CTCOUNT ... 167
CTRATE... 168
Custom Command .. 432
Custom Module .. 432
Custom Processing Commands... 18
CYCLE ... 73, 169
DACOUT.. 170
DAPL.. 5
DAPL Commands... 127
DAPL Expressions.. 33, 432

Index 443

DAPL symbols .. 433
DAPL System Task... 433
DAPL2000 Error Messages .. 377
Data Extraction ... 40
Data Processing Configuration ... 8

Defining commands.. 9
Input Configuration Commands ... 9
Output Configuration Commands... 10
System commands .. 8

Data Transfer... 55
Data Types .. 34
DECIBEL.. 172
DECIMAL .. 253
Defining Commands ... 9
Defining Software Triggers... 82
Definitions .. 431
DELTA ... 174
Destructive Tests and One-Shot Events .. 94
DEXPAND ... 175
DIAGNOSTIC (obsolete command) ... 422
Differential input... 433
Digital Filtering... 63, 105
Digital input .. 433
Digital Input Voltages... 44
Digital output .. 433
Digital Readings.. 50
Digital Signal Processing .. 63
DIGITALOUT .. 178
Direct Interaction with the Interpreter... 16
DISPLAY.. 180
DISPLAY CPIPES.. 180
DISPLAY PIPES .. 71
DLIMIT... 184
DLOG32 ... 65
Dummy channel pipes... 71
DVARIANT.. 181
EDIT ... 186
Efficiency.. 16
EMPTY... 188
EMSG ... 181
END .. 189
ENUM... 181
Equalizing Data Rates ... 86
ERASE.. 190
Error Messages 0-99 ... 378
Error Messages 1000-1049 ... 379
Error Messages 1050-1099 ... 381

444 Index

Error Messages 1100-1149 ... 384
Error Messages 1150-1199 ... 387
Error Messages 1200-1499 ... 391
Error Messages 1500-1599 ... 395
Error Messages 2201-2272 ... 397
Error Messages 2273-2282 ... 405
Error Messages 2283-2288 ... 407
Error Messages 2289-2399 ... 408
ERRORQ.. 254
Errors in the FFT .. 122
Evaluating Task Latency... 79
Event Counting Application ... 94
Example Command... 128
Expression terms... 33
EXTRACT.. 191
Fast Fourier transform .. 63

Window vectors.. 112
Fast Fourier Transform ... 109
Fast input sampling... 338, 433
FFT ... 63, 109, 192
FFT Commands .. 110
FFT Modes ... 111
FGEN.. 107
FILL.. 58, 199
Filter coefficients .. 106
FINDMAX.. 16, 200
Finite Impulse Response Filters.. 106
FIR filters.. 106
FIRFILTER .. 106, 107, 202
FIRLOWPASS ... 106, 207
Fixed scheduling... 77
Float.. 51
FLOATERROR .. 254
Floating Point ... 51
Floating Point Types... 51
FORMAT.. 47, 56, 211
FREQUENCY .. 216
General Rules for Command Syntax... 12
Generating Filter Coefficients... 106
Glossary .. 431
GROUPS .. 217
GROUPSIZE .. 219
Hardware triggering.. 66
HELLO ... 221
Hexadecimal ... 52
Hexadecimal Notations Changes .. 413
Hexidecimal Notations and Integers ... 52

Index 445

HIGH .. 222
High Speed Triggering.. 66
HMEMORY.. 181
How Software Triggering Works .. 85
HTRIGGER .. 224
ICOUNT ... 181
IDEFINE... 25, 225
Input Channel group ... 432
Input channel pipe... 433
Input com pipe .. 434
Input Configuration Commands.. 9, 25, 434
Input procedure ... 434
Input voltage ranges .. 43
Integer ... 50, 51, 52
Integers Used by DAPL .. 50
INTEGRATE .. 227
Interleaving of Output ... 60
INTERP .. 229
Interpreting the FFT.. 120
Interpreting the FFT for Real Data.. 121
Introduction... 3
LCOPY ... 231
LET ... 58, 232
LIMIT ... 16, 66, 234
LOGIC .. 236
Long.. 50
LOW ... 238
Low Latency.. 75
Low Latency Commands... 79
Low Latency Tasks ... 414
MASTER .. 100, 240
Mathematical expression... 33
MAXTIME (obsolete command) .. 423
MEMORY .. 181
Memory Allocation ... 60
Memory overflow.. 69
MERGE .. 57, 241
MERGEF .. 57, 244
Minimum sampling time ... 336
MINTIME (obsolete command).. 425
Multiplexed Input ... 434
Multitasking .. 59, 434
Name Conflicts ... 412
New and Changed Information ... 3
NMERGE.. 57, 246
NTH .. 248
Nyquist Frequency .. 115

446 Index

Obsolete Commands ... 415
Obsolete Options .. 413
OCOUNT.. 181
ODEFINE ... 27, 249
OEMID... 181
OFFSET.. 251
Old TRIGGERS Command Syntax... 412
One-shot events .. 94
Operands... 33
Operator Precedence... 38
Operators .. 35
Optimizing channel pipe lists ... 64
Optimizing performance ... 63
Optimizing Processor Performance .. 63
Optimizing software triggering ... 66
OPTIONS ... 181, 252

BUFFERING.. 76
QUANTUM ... 77
SCHEDULING .. 77

Oscilloscope Emulation Application .. 93
Other Notes on Expressions.. 40
OUTPORT.. 182, 258
Output channel pipe.. 435
Output com pipe ... 435
Output Configuration Commands... 10, 27, 435
Output procedure .. 435
OUTPUTWAIT .. 73, 260
Overflow and Underflow .. 69
Overflow Messages... 70
OVERFLOWQ ... 70, 182, 254
PAUSE ... 261
PCASSERT .. 102, 262
PCOUNT .. 264
PDEFINE.. 29, 265
PEAK.. 266
Phase Response... 107
PID1.. 268
Pin Group ... 434
Pipe... 34, 435
PIPES ... 182, 272
POLAR ... 274
Precedence.. 38
Precision ... 43
Predefined com pipe ... 435
Preventing Overflow... 71
Preventing Underflow... 73
Previous Versions of DAPL ... 409

Index 447

PRINT... 56, 276
PROCEDURES... 182
Process Monitoring Application ... 93
Processing Command Changes ... 411
Processing Commands Now Obsolete... 411
Processing Configuration Commands ... 10
Processing procedure .. 29, 436
Processing speed ... 63
Processor and Memory Allocation .. 59
PROMPT .. 254
Prompt character ... 436
PULSECOUNT... 277
PVALUE... 278
PWM... 279
QUANTUM .. 77
QUANTUM .. 255
RANDOM... 281
RANGE... 283
Range Notations.. 15
RAVERAGE... 86, 105, 284
Reading Binary Data from the PC... 58
Reading Text from the PC... 58
Reducing Processor Load.. 63
Region Notations .. 15
REPLICATE ... 286
Representing Sampled Data .. 114
Representing Sampled Data with Cosines and Sines .. 118
RESET .. 287
RESTART (obsolete command).. 426
RESTORE... 255
RETRIGGER (obsolete command) ... 427
RMS.. 288
Running Average .. 105
Sample Command ... 128
SAMPLEHOLD.. 289
Sampling Procedure Notations.. 411
Saturation .. 438
SAVE.. 255
SAWTOOTH .. 290
SCALE.. 47, 51, 292
Scaling in the FFT... 113
SCAN.. 294
Scheduling .. 77, 436
SCHEDULING ... 255
Scheduling Options... 64
Scheduling Quantum... 436
SDISPLAY ... 295

448 Index

Section 1. Overview.. 1
Section 2. Reference ... 125
Sending Binary Data to the PC... 57
Sending Text to the PC... 56
SEPARATE .. 58, 296
SEPARATEF.. 58, 298
SET... 300
SET (multiple channel simultaneous sampling).. 303
SET (output updating) .. 307
Sign Extension.. 51
Sines ... 118
SINEWAVE ... 309
Single-ended input.. 436
SKIP ... 71, 311
SLAVE ... 100, 313
Software Triggering .. 66, 81
Speed, Optimizing performance ... 63
SQRT.. 314
SQUAREWAVE .. 315
Standard Com Pipes.. 56
START.. 317
Starting and Stopping Triggers ... 88
STAT .. 319
STATISTICS .. 71, 79, 319
STATUS ... 321
STOP .. 322
Streaming Data ... 65
String .. 437
STRING.. 323
SYMBOLS ... 182
Symmetry Around the Nyquist Frequency.. 119
Synchronize .. 437
Syntax ... 12, 33
SYSINECHO.. 255
System Commands.. 8, 21
System Commands Now Obsolete.. 410
System Element Definition Commands .. 23
System messages... 377
TAND ... 96, 324
Target (of DAPL expression).. 33
Task .. 437
Task Definition Commands .. 29, 437
Task latency .. 79
Task parameter notations .. 15
Task Parameter Notations ... 15
Task Scheduling Control .. 77
Task switching .. 59, 77

Index 449

TASKSTAT (obsolete command) ... 429
TCOLLATE .. 97, 326
TERMINAL.. 255
Text transfer rate ... 64
TFUNCTION1 .. 328
TFUNCTION2 .. 330
TGEN.. 332
THERMO.. 333
TIME... 336
Timestamp... 437
Timestamp Modifying Commands.. 96
TMEMORY .. 182
TOGGLE... 97, 341
TOGGWT ... 97, 343
TOR .. 96, 347
TRIANGLE... 348
TRIGARM .. 91, 94, 350
Trigger... 66, 69, 437
Trigger Performance ... 65
Triggering mode

AUTO... 91
CYCLE... 92
DEFERRED ... 90
GATE ... 91
HOLDOFF.. 92
MANUAL... 91
NATIVE ... 90
NORMAL... 90
STARTUP .. 92

Triggering Modes.. 90
Triggering with Multiple DAPs .. 99
TRIGGERS ... 82, 182, 352, 412
Triggers and On Off Events .. 97
TRIGRECV... 99, 355
TRIGSCALE... 87, 98, 357
TRIGSEND... 99, 360
Truncation... 438
TSTAMP... 362
TTL ... 44
Underflow Messages ... 72
UNDERFLOWQ... 182, 256
Unipolar .. 43
Unused channel pipes ... 71
UPDATE... 363
Using Custom Commands to Reduce Latency .. 80
Variable... 438
VARIABLES .. 34, 182, 365

450 Index

Variables in Parameter Lists ... 415
VARIANCE.. 367
VECTOR .. 368
Vectors.. 112
VECTORS.. 183
Voltage ranges .. 43
Voltages and Integers ... 43
VRANGE.. 370
WAIT.. 66, 85, 86, 102, 372
Warning messages .. 377
WAVEFORM... 374
Window Vectors ... 107, 112
WMSG.. 183
WNUM ... 183
Word ... 50

	DAPL 2000 Manual
	Contents

	Section I. Overview
	Introduction
	New and Changed Information

	Introduction to DAPL
	Architectural Basics
	Data Processing Configuration
	General Rules for Command Syntax
	About Efficiency
	Direct Interaction with the Interpreter
	About Custom Processing Commands

	System Commands
	System Element Definition Commands
	Input and Output Configuration Commands
	Input Configuration Commands
	Output Configuration Commands

	Task Definition Commands
	Task Definition Using DAPL Expressions
	Expression Syntax
	Expression Operands
	Expression Data Types
	Expression Operators
	Operator Precedence
	Buffering During Expression Evaluation
	Data Extraction
	Other Notes on Expressions

	Voltages and Number Representations
	Analog Input Voltages
	Digital Input Voltages
	Interpreting Integers as Analog Voltages
	Binary Representation
	Interpreting Readings as Binary Fractions
	Digital Readings
	Integers Used by DAPL
	Floating Point Types
	Conversions Between Integer Types
	Hexadecimal Notations and Integers

	Data Transfer
	Standard Com Pipes
	Sending Text to the PC
	Sending Binary Data to the PC
	Reading Text from the PC
	Reading Binary Data from the PC
	Additional Com Pipes

	Processor and Memory Allocation
	Multitasking
	Interleaving of Output
	Memory Allocation
	16-bit Custom Command Stack Memory Allocation

	Optimizing Processor Performance
	Reducing Processor Load
	Digital Signal Processing
	Communication Formats
	Channel Pipe Efficiency
	Scheduling Options
	Streaming Data to the PC
	Trigger Performance
	High-Speed Triggering
	Benchmarking an Application

	Overflow and Underflow
	Overflow Messages
	Preventing Overflow
	Underflow Messages
	Preventing Underflow

	Low Latency Operation
	Buffering Control
	Task Scheduling Control
	Evaluating Task Latency
	Low Latency Commands
	Using Custom Modules to Reduce Latency

	DAPL Software Triggering
	Defining Software Triggers
	Applying Software Triggers
	How Software Triggering Works
	Equalizing Data Rates
	Starting and Stopping Triggers
	Triggering Modes
	Applying Trigger Operating Modes
	Timestamp-Modifying Commands
	Triggers and Independent ON/OFF Events
	Triggering with Multiple-Data Acquisition Processors
	Asynchronous Events and PCASSERT

	Digital Filtering
	Average and Running Average
	Finite Impulse Response Filters
	Generating Filter Coefficients
	Window Vectors
	Phase Response and Time Delay

	Fast Fourier Transform
	FFT Commands
	FFT Modes
	Window Vectors
	Scaling in the FFT
	Representing Sampled Data
	Nyquist Frequency
	Representing Sample Data with Complex Exponentials
	Representing Sampled Data with Cosines and Sines
	Symmetry Around the Nyquist Frequency
	Interpreting the FFT
	Interpreting the FFT for Real Data
	Errors in the FFT

	Section II. Reference
	DAPL Commands
	EXAMPLE
	ABS
	ALARM
	AVERAGE
	BAVERAGE
	BINTEGRATE
	BMERGE
	BMERGEF
	BPRINT
	CABS
	CALIBRATE
	CHANGE
	CHANNELS
	CLCLOCKING
	CLOCK
	COMPRESS
	CONSTANTS
	COPY
	COPYVEC
	CORRELATE
	COSINEWAVE
	COUNT
	CROSSPOWER
	CTCOUNT
	CTRATE
	CYCLE
	DACOUT
	DECIBEL
	DELTA
	DEXPAND
	DIGITALOUT
	DISPLAY
	DLIMIT
	EDIT
	EMPTY
	END
	ERASE
	EXTRACT
	FFT
	FILL
	FINDMAX
	FIRFILTER
	FIRLOWPASS
	FORMAT
	FREQUENCY
	GROUPS
	GROUPSIZE
	HELLO
	HIGH
	HTRIGGER
	IDEFINE
	INTEGRATE
	INTERP
	LCOPY
	LET
	LIMIT
	LOGIC
	LOW
	MASTER
	MERGE
	MERGEF
	NMERGE
	NTH
	ODEFINE
	OFFSET
	OPTIONS
	OUTPORT
	OUTPUTWAIT
	PAUSE
	PCASSERT
	PCOUNT
	PDEFINE
	PEAK
	PID1
	PIPES
	POLAR
	PRINT
	PULSECOUNT
	PVALUE
	PWM
	RANDOM
	RANGE
	RAVERAGE
	REPLICATE
	RESET
	RMS
	SAMPLEHOLD
	SAWTOOTH
	SCALE
	SCAN
	SDISPLAY
	SEPARATE
	SEPARATEF
	SET (individual channel sampling)
	SET (multiple channel simultaneous sampling)
	SET (single channel output updating)
	SINEWAVE
	SKIP
	SLAVE
	SQRT
	SQUAREWAVE
	START
	STATISTICS
	STATUS
	STOP
	STRING
	TAND
	TCOLLATE
	TFUNCTION1
	TFUNCTION2
	TGEN
	THERMO
	TIME
	TOGGLE
	TOGGWT
	TOR
	TRIANGLE
	TRIGARM
	TRIGGERS
	TRIGRECV
	TRIGSCALE
	TRIGSEND
	TSTAMP
	UPDATE
	VARIABLES
	VARIANCE
	VECTOR
	VRANGE
	WAIT
	WAVEFORM

	DAPL 2000 Messages
	Error Messages 0-99 - System Errors
	Error Messages 1000-1049 - Configuration Errors
	Error Messages 1050-1099 - Configuration Errors
	Error Messages 1100-1149 - Configuration Errors
	Error Messages 1150-1199 - Configuration Errors
	Error Messages 1200-1499 - Task Operating Errors
	Warning Messages 1500-1599
	Error Messages 2201-2272 - Configuration Errors
	Error Messages 2273-2282 - Downloadable Module Errors
	Error Messages 2283-2288 - Information Channel Query Errors
	Error Messages 2289-2399 - General Errors

	Appendix A. Previous Versions of DAPL
	System Commands Now Obsolete
	Processing Commands Now Obsolete
	Sampling Procedure Notations
	Processing Command Changes
	Old TRIGGERS Command Syntax
	Name Conflicts
	Options
	Hexadecimal Notations
	Low Latency Tasks
	Variables in Parameter Lists
	Obsolete Commands
	BDOWNLOAD (obsolete command)
	BUFFERS (obsolete command)
	CPIPE (obsolete command)
	DIAGNOSTIC (obsolete command)
	MAXTIME (obsolete command)
	MINTIME (obsolete command)
	RESTART (obsolete command)
	RETRIGGER (obsolete command)
	TASKSTAT (obsolete command)

	Glossary
	Index

