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1. Introduction

The DAPL 3000 system uses a configuration notation that is highly back-compatible with the DAPL 2000 system. 
With the introduction of the xDAP family of Data Acquisition Processors, however, the traditional configuration 
commands are no longer sufficient. They cannot completely control configurations of hardware supporting multiple 
channel selectors that operate in parallel. In addition, there are new operating modes for asynchronous input activity 
not covered by the usual clocked sampling configurations. 

This manual covers  the command variants  added to the DAPL 3000 system to support  these new features.  No 
additional  software systems are required to use these commands. They are already included in the DAPL 3000 
system software that is installed with xDAP products.

The xDAP family devices  also  include  embedded  processors  with  a  considerably  larger  reserve  of  processing 
capacity.  This capacity can be exploited using new processing commands and variants  that  are  covered in this 
manual.
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2. New Notations

This discussion expands on the section “General Rules for Command Syntax” in the DAPL 3000 Manual, Chapter 2, 
“Introduction to DAPL.” 

Number Notations

DAPL 3000 configurations use fixed point and floating point number notations. These notations are very similar to  
the notations used in the C++ language, except that precision of the hardware I/O devices rather than the CPU 
architecture motivates the data type defaults.

Fixed-point numbers are represented by sequences of numeric characters, optionally preceded by a minus sign. A 
hexadecimal notation is also supported. Some examples:

    16   -65535   301991898   0x0000FF00   

Floating point numbers are represented by a sequence of numeric characters, optionally preceded by a minus sign,  
followed by a fraction or exponent notation. The fraction notation consists of a decimal point optionally followed by 
numeric character digits. The exponent notation consists of an optional fraction notation, the letter e, optional minus 
sign, and up to three numeric characters indicating a power of 10. Some examples:

  16.0   -65535e0   526.11e22   -4.29144e-102

Since the DAPL 3000 system supports signed  and unsigned  numbers  of  various precision,  it  often must make 
assumptions about the appropriate data type when it encounters a number notation in a configuration script. 

•  Integer data types can have precision 8, 16, 32, or 64 bits. Data produced by input sampling or transferred  
through user-configured data pipes default to signed 16-bit integers. Integers used to define constant values 
or task parameters default to the unsigned data type of minimum precision, unless the constant value has an 
explicit minus sign, in which case it defaults to the signed integer type of minimum precision. 

• Floating point numbers can have IEEE 754 single precision of 32 total bits, or double precision of 64 total 
bits. The default data type used to represent floating point numbers is 32-bit IEEE 754 floating point. 

• The default  data type  used internally for  DAPL Expression tasks  is  64-bit  IEEE 754 double-precision 
floating point. 

Some contexts specify prior information about data types, and in these situations, more flexibility is allowed in the 
number notations. In  the following examples, the DAPL system knows the data types specified for the defined 
constant elements mylong, mydouble, and myfloat, so it can represent the number value in the specified data type 
even if the notations are not completely consistent.

  constant  mylong    long    = 100
  constant  mydouble  double  = mylong
  constant  myfloat   float   = 1

There are other contexts in which the data type cannot be determined in advance. The most common of these is 
explicit constant values in a task definition parameter list. In the following example, the  SKIP command assumes 
initially  that  the  three  numeric  parameters  are  unsigned  8-bit  integers,  since  all  three  values  can  be  properly 
represented by this data type. 
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  SKIP ( inpipe,  99,1,99,  outpipe )

Later, when the SKIP command parameter requirements are compared to the parameters actually provided, it can be 
determined that the command needs 16-bit integer values, and these conversions are applied automatically.

If the default notations would result in an incorrect data type for a number, you can override the default data type  
assumptions using a suffix notation. The following are examples of type-coercion postfix notations:

  99L, 99l     --  Represent the value as 32-bit integer
  99f, 99.0F   --  Represent the value as 32-bit floating point
  99.l, 99.0L  --  Represent the values as 64-bit floating point

Signal Routing Notations

An extended notation for DAPL 3000 input sampling configurations is available for xDAP models that have I/O 
modules mounted in one or more panel slots.

An xDAP can establish connections to signals received by a compatible a-Series analog expansion module mounted 
in a designated a-Series analog backplane slot.  The addressing of analog expansion modules can vary with the 
xDAP model, but for any given model, the hardware manual for the xDAP will define certain routing codes telling 
the xDAP how to reach the signals on the expansion module. Check the hardware manual for your xDAP model to  
determine which expansion modules are present, where the connectors are located, and the routing codes to access  
the physical connectors. 

For each expansion module, 8 differential input signals typically will be received, though this can depend on the 
modules.  The analog  signals  will  be identified  by differential  pin identifiers  d0, d1, etc.  That  is,  local  pin 
numbering starts at zero on each module. 

The syntax of the SET command for an xDAP input channel definition is extended to include the routing information 
prefix codes along with the pin identifier.

SET <channel> [<route_code>:] <input_pin>  [<gain>]

For example, suppose that you want to address all 8 differential input pins on an expansion module that your xDAP 
manual says is addressed using routing code  c1. Then you could encode your input definition something like the 
following.

IDEFINE   sampling
  CHANNELS  8
  SET  ipipe0  c1:d0
  SET  ipipe1  c1:d1
  SET  ipipe2  c1:d2
  SET  ipipe3  c1:d3
  SET  ipipe4  c1:d4
  SET  ipipe5  c1:d5
  SET  ipipe6  c1:d6
  SET  ipipe7  c1:d7
  SCAN   2.50
END

If you omit the [<route_code>] notation from a channel declaration, the signal routing defaults to the standard input  
connector on the xDAP front panel. 
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Multiple-Sampling Notations

The DAPL 3000 system supports multiple concurrent sampling configurations. This feature might not be available 
for all xDAP models, but higher-end models will support it. 

Through multiple generations, the DAPL system has used a channel pipe notation such as IPIPE1 to indicate that a 
data stream is a channel from the input channel pipe, delivering data from sampling. The data flow begins when the  
configuration starts. You could define more than one input sampling configuration, but at most one of them could  
run at any given time. 

The restriction on running only one input sampling configuration is relaxed in DAPL 3000, which now allows 
multiple samplers to run concurrently — provided that they conform to certain restrictions to be discussed shortly.  
Concurrent  sampling  processes  start  their  respective  converter  hardware  devices  simultaneously,  within  the 
limitations of very small digital propagation delays. The concurrent sampling processes continue using a common 
internal time reference, so they never diverge from each other, but they can operate on different time-scales or use  
different operating modes. 

For example, an application might require intensive high-rate sampling on a few channels, while a lower rate would 
be sufficient  for  monitoring a relatively large  number of  channels  for status information. If  limited to a single 
sampling configuration, the scan interval would need to be very small to capture the high-rate data. But the same 
rate would then apply to the slow channels as well, wasting a lot of resources. If two sampling configurations are 
used, one could support the high-rate channels, while the other supports the low-rate samples independently, making  
much better use of resources. 

To configure multiple input sampling, start by defining the input sampling procedures in an ordinary manner. For  
example, define one fast procedure and one slow one as follows:

// Fast simultaneous sampling
idefine  faster
  channels 2
  set  ipipe0  d0
  set  ipipe1  d2
  scan  4.0
end

// Slow sampling, simultaneous does not matter
idefine  slower
  channels  2
  set  ipipe0  d12
  set  ipipe1  d13
  scan  1000
end

For processing, this makes the usual IPIPE notations in the processing section ambiguous. Should these refer to the 
faster configuration, or to the slower one? To specify which, you need to use qualified channel pipe references 
such as the following.
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// Mixed rate processing
  pdefine   fast_and_slow
  // High rate data
  copy( faster.ipipes(0,1), $BinOut )
  // Low rate data
  baverage( slower.ipipes(0,1),2, 20, Cp2Out )
end

The qualifier notation used to designate input channel pipes is similar to notations used for object composition in C+
+, Visual Basic, extended Pascal, Java, and many other programming languages.

Now, the restrictions. 

1. With multiple independent input processes, if they happen to address the same input selector device, this 
would produce a conflict when they tried to connect to two different analog input signals simultaneously.  
To avoid hardware conflicts of this sort, at most one input sampling procedure can reference channels that 
go to any given input channel selector. For example, on xDAP 7420 there are 8 converter channels, and 
channel selectors for these converters route input signals from pins d0 and d1, from pins d2 and d3, from 
pins d4 and d5, etc.  Thus, if you reference pin d0 in one input sampling procedure, you are forbidden from 
referencing either  d0 or  d1 in another procedure. This is the hardware consistency condition. Each input 
procedure must satisfy the hardware consistency condition before it can be started. 

2. The notion of start groups is extended to include processing procedures that reference the input sampling 
configurations. A  start group consists of the input sampling and processing configurations listed on one 
START command.  Input  procedures  are  called  designated  input  procedures if  referenced  by  name, 
explicitly, within one or more of the processing configurations listed on the  START command, or if they 
were started by a separate START command and are already running.

3. If the start group lists an input procedure configuration that is not explicitly referenced by qualified channel  
pipe references anywhere in the list of new processing procedures, or in any currently running processing 
procedures,  the DAPL system will  attempt  to  start  that  input  processing procedure  as  a  default  input  
configuration. A default input procedure will provide data for any input channel pipe references that do not 
use qualified channel pipe notations to explicitly designate an input procedure.

4. At  most  one  input  configuration  can  be started  as  a  default  input  configuration.  After  a  default  input  
procedure is started, any attempt to start another one as default will be diagnosed as an error. It  is not  
possible to start more processing procedures to “upgrade” an input procedure currently running as a default  
to make it into a designated procedure, so that some other configuration could serve as the default. 

5. It is tricky but possible to start procedures using separate  START commands. The input procedures must 
satisfy the  hardware consistency condition,  and no input procedure should be started prematurely as a 
default  input  configuration if  that  procedure  is  also  needed  as  an  explicitly  designated  procedure  for  
processing to be started later.  

6. Most applications are relatively simple, and they can use a  START command that specifies no input or 
processing procedures.  When this is  done, the system will  attempt to start  all  of  the currently-defined 
procedures  as one  start  group.  All  input sampling configurations referenced by  qualified channel pipe 
notations, in any of the defined processing procedures, will be started as  designated input procedures. If 
any unstarted input procedure remains, it will be started as a default input configuration. 
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Avoid defining sampling configurations that are never used. Suppose, for example, that a processing procedure  P 
and input procedures A and B are defined. Processing procedure P uses only explicitly designated input channel pipes 
from  A. A  START command listing no procedure names will start the processing procedure  P and the two input 
sampling procedures without error.  Input procedure  B,  which is not explicitly referenced, is started as a default 
configuration. But, since the processing procedure P provides no tasks to read data from procedure B, the samples 
from procedure B accumulate in buffer memory, and can lead to a buffer memory overflow condition. 

When using software triggering to detect events in a sample stream from one input procedure, and then selecting  
data from a sampling stream produced by another input procedure,  you must use  TRIGSCALE processing of the 
events to account for the differences between the data rates. 

Be  careful  when  transferring  binary  data  from  channels  at  different  rates.  This  applies  in  general,  but  it  is 
particularly easy to  encounter  rate  problems when using  multiple  sampling  processes.  For  the  example  of  the 
faster and slower processing configurations, as shown previously, the following would lead to disaster:

// Take data from fast and slow sources at equal rates
BMERGE  ( faster:IPIPES(0,1), slower.IPIPES(0,1), 100, $BinOut )

The fast stream produces 250 samples for each sample produced by the slow stream. Thus, after the first transfer of 
100 samples from each stream, 24900 samples from the fast stream remain backed up in memory, because there are  
no corresponding samples from the slow stream to pair with them for the BMERGE processing. Buffer memory will 
quickly overflow. One way to account for the rate differences is to force the transfer of data in the correct ratios.

// Transfer data blocks using a 250-to-1 ratio
NMERGE  ( 500, faster.IPIPES(0,1),  2, slower.IPIPES(0,1),  $BinOut )   

Another way is to configure a supplemental communication pipe using DAPcell services, so that data produced at 
different rates use independent transfer paths.

// Transfer fast and slow data independently
COPY  ( faster.IPIPES(0,1),  $BinOut )   // fast data channels
COPY  ( slower.IPIPES(0,1), Cp2Out )     // slower supervisory channels

High-Rate Sampling Configurations

When configuring xDAP models that support extended sampling rate modes, there are some additional constraints 
for using channel notations. At the extended rates, the number of channels you can use is limited by the transfer  
capacity, not the number of hardware connections available. For example, if your xDAP model has 8 input channel  
selectors (simultaneous sampling in groups of 8) and supports an extended sampling rate of 2.0 million samples per  
second, but with an 8 million samples per second transfer rate limit, you can use no more than 4 channels at one 
time. 

To achieve maximum rates, each signal channel must connect to a different channel selector device and separate 
converter unit. For example, on an xDAP 7420 model, channels d0, d2, d4, and d6 connect to separate channel 
selectors, hence they can operate in parallel and achieve the full rate with a  SCAN interval of 0.5 microseconds. 
However, channels d0, d1, d2, and d3 connect to only two of the available channel selectors. If these channels 
operate at their maximum rate, each of the channel selectors must be used twice to capture the connected signals,  
and the maximum rate you can get for each channel is 1 million samples per second, limiting the SCAN interval to 
1.0 microseconds.
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If you don’t need the maximum number of channels at the maximum rate, you can take advantage of multi-sampling 
notations described in the previous section to measure other channels at lower rates, using the available data transfer 
capacity to advantage. For example, an xDAP 7420 unit has an 8 million samples per second transfer capacity, but if  
only 2 channels are needed at their 2 million samples per second maximum rate, you have 4 million remaining 
samples per second capacity.  That leaves 6 channel selectors free,  each with two available input channels. You 
could measure 12 input channels at a 0.25 million samples per second rate, as discussed in the previous section on 
multi-rate sampling, which would use an additional 3 million samples per second of the available transfer capacity.  
This is a valid configuration because the total utilization of 7 million samples per second does not exceed the 8  
million samples per second limit.
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3. DAPL Expression Tasks

DAPL expression tasks provide highly configurable calculation options, applied on a value by value basis. This style 
of  computing  is  less  efficient  than  performing  calculations  on  massive  blocks  of  data.  But  in  return,  DAPL 
expression tasks make many things very easy to do. 

The DAPL 3000 system supports much more versatile DAPL expression processing than previous versions of the 
DAPL system. 

• more data types

• higher precision 

• configurable data type conversions

• more kinds of operations

• if-then-else style conditional calculations

Form of a DAPL expression task definition

A DAPL expression task looks like an assignment statement from a typical programming language. Rather than a 
single action, however, it is an ongoing process that operates on streams of data. You can think of it as having a  
built-in receive – process – send loop that runs continuously.

The task definition consists of the following:

• a specification for the target destination to receive the results of calculations

• an equal sign operator indicating the transfer of data into the target destination

• an expression made from a combination of  data sources  and operators,  defining the calculations to be 
performed to generate the data stream

Example:
   // Calculate the average values of data taken from two signal 
   // channels from input sampling.
   pTarget  =  (IPipe0 + Ipipe1)*0.5
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Data sources for DAPL expression tasks

DAPL expression tasks accept data in the following forms:

•  pipes (data streams)

•  explicit literal constants

•  symbolic shared constants

•  symbolic shared variables

Scalar values (the constants and variables) are implicitly expanded into streams of data that can be combined with 
other data streams as calculations proceed.

When the DAPL expression makes multiple references to the same named element, the values for each reference are 
the same.

 Example:

// An inefficient but valid way to calculate 3*P1
   ThreeP1  =  P1 + P1 + P1 
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Data Elements and Types

Data types

All data values used in DAPL expressions, whether they are from shared scalar sources,  data transfer pipes, or  
previous intermediate calculations, have data types. These data types are available for various kinds of elements  
within the DAPL system, but they can also appear within the context of DAPL expression tasks.

The supported data types are very similar to representation specific data types available in the C and C++ languages. 

int8    signed two's complement 8-bit fixed point, the normal representation of sampled data 

uint8   unsigned 8-bit fixed point

int16   signed two's complement 16-bit fixed point (like most sampled data)

uint16  unsigned 16-bit fixed point

int32   signed two's complement 32-bit fixed point

uint32  unsigned 32-bit fixed point

int64   signed two's complement 64-bit fixed point

uint64  unsigned 64-bit fixed point 

float   32-bit IEEE floating point

double  64-bit IEEE floating point

bool    logic data type, 'false' or 'true'

Data destinations 

A DAPL expression task delivers the stream of calculated values to the destination location indicated. A destination  
location can be one of the following.

•  pipe (data stream, all values)

•  symbolic shared scalar variable (last value placed into variable storage)

If the data type of the destination is not the same as the data type of the calculated result, an implicit cast converts  
the value to the data type of the destination. If the data type of the destination is not capable of representing the  
provided value, this is not an error, but it can mean a loss of information.
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Example:
// Float value becomes double by transfer into a pipe of type double
pDoubPipe  = pFloatPipe * 9 / 5 + 32 

// Result of of integer calculations reduced to 'true' or 'false' 
boolVar  =  (IPipe7 – 10 * IPipe6) 

Scalar elements

Scalar values can be obtained from a shared variable, a shared constant, or an explicit literal constant. Shared scalar  
elements must be previously defined by a CONSTANT or VARIABLE command. The definition assigns a name, data 
type, and value. 

Examples:
1000      // explicit constant
OneK      // symbolic shared constant, previously defined  

Data types from sources

Every data value used in a DAPL expression task has an associated data type. The data type of a previously-defined 
symbolic name determines the data type of the value obtained from that element. The data type of a pipe data stream  
determines the data type of the values obtained from that pipe. The data type for number notations is determined by 
default type-assignment rules, unless there is an explicit notation overriding the default.

Inferred data types of explicit constant notations

The data type of an explicit constant notation, if not specified by a special override notation such as a data type cast  
or  postfix  notation,  is  inferred  from  the  represented  value.  Special  notations  are  rarely  necessary  in  DAPL 
expressions, since values without any special cast or postfix notations are automatically assigned an efficient data 
type.

Examples:
1.0         // implicit double, no explicit typing specified
-100        // implicit signed int8, no explicit typing specified
100ul       // explicit typing, data type forced to 32-bit unsigned
double(10)  // cast conversion from implicit integer to double 

Integer data type postfix notations 

You sometimes might want to force a specific data type for a term in a DAPL expression, rather than allowing the  
DAPL expression parser to select a data type automatically. There are two kinds of  postfix notations that can be 
applied to explicit numeric constant notations for this purpose. These notations are placed at the end of an explicit  
numeric constant expression.
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The first kind of postfix notation is very much like a C++ suffix. These notations apply additional properties to force 
the value to an unsigned form, or to extend the length of the representation.

   <none> allow the DAPL expression to select a minimal data type

u    force an unsigned data type (applied to 8-bit, 16-bit, 32-bit, 64-bit integers)

i    force a signed data type (applied to 8-bit, 16-bit, 32-bit, 64-bit integers)

l    force a longer data type (extend to 32-bit integer)

ll   force an extra long data type (extend to 64-bit integer)

ul   force both unsigned and a long data type (32-bit unsigned integer)

ull  force both unsigned and extra long 64-bit integer 

Examples:
 101         // implied 8-bit unsigned integer, no postfix
 101i        // force to 16-bit signed integer, i postfix
 101l        // explicit 32-bit signed integer, l postfix
 100000ull   // explicit 64-bit unsigned integer, ull postfix

The second type of postfix notation restricts the data type to one specific representation. Most of these notations 
have no correspondence to C++. 

u8   force an 8-bit unsigned integer data type 

i8   force an 8-bit signed integer data type 

u16  force a 16-bit unsigned integer data type 

i16  force a 16-bit signed integer data type 

u32  force a 32-bit unsigned integer data type 

i32  force a 32-bit signed integer data type 

u64  force a 64-bit unsigned integer data type 

i64  force a 64-bit signed integer data type 

If you provide a value expression using an explicit data type notation, but the value is not representable within the  
range of that specified data type, the notation is treated as a configuration error and the task will not run. 
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Floating point data type postfix notations

The precision of explicit floating point constants can be forced using the following postfix notations, following all of 
the other characters that define a floating point literal value. 

 <none>  64-bit floating point
 f      32-bit floating point
 l      64-bit floating point 

Examples:

202.0      64-bit floating point (double by default)    

201.0f     32-bit floating point (float forced by f postfix)

203.0l     64-bit floating point (double forced by l postfix)

There is little penalty for selecting double rather than float as the data type for calculations, but there are some 
processing efficiencies that result from consistently using one floating point data type.

Examples:
// Expression with all floating point calculations in float type
floatDegC  =  float(intDegF) * (5.0f/9.0f) -  32

// Expression with multiple conversions between double and float types
floatDegC  =  (intDegF * 5.0f)/9.0 - float(32)

Data type cast

A type casting operation has a notation and a meaning similar to a cast notation in the C++ language. Type casts  
result in a different representation of the specified value. In some cases, when the specified value does not conform  
to the restrictions of the new data type, value adjustments are also applied. Most applications can avoid explicit type  
casts and use the implied casts provided automatically by the DAPL expression compiler.

The two main differences between type casts and postfix notations are:

1. Type casts can be applied to symbolic values and intermediate sub-expressions as well as explicit scalar  
constant terms. 

2. Type casts  will  produce a value result  of some kind, even when the data type  is unable to accurately 
represent the value given.

Casts can be applied to 

•  complete expressions

•  sub-expressions

•  streams

•  boolean values

•  symbolic or explicit scalar values
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Type casts have the following form:

 type-of-cast <new-data-type> ( value-to-cast )

The new-data-type can be any of the supported data types listed at the beginning of this Data Elements and Types section. 
The value to cast can be a single term, or a set of terms combined by operators.

Three types of casts are currently supported. These are:

1. static_cast<  >

The results closely conform to the type casts implemented by the C++ language. The values of bits are 
taken from the value to cast, and inserted into the storage provided for the new data type. If the new data 
type has more bits of precision, the value is extended or reduced.

*  signed integer types are extended to fill additional storage bits with a sign bit matching the sign bit of the 
original value

*  unsigned integer types are extended by filling additional storage with 0-bits

*  any integer types are reduced by eliminating any bits for which there is no available storage

*  float types are extended or reduced by finding the closest floating point representation in the specified 
new type, which sometimes has limiting or round-off error side effects

Examples:
  static_cast<int32>( -16384 ) // Representable, value remains -16384 
  static_cast<int16>( 36000 )  // Truncated to 16 bits, value -29536, caution
  static_cast<float>( -10.0e105 )  // Result -INF can preserve only sign 

2. saturate_cast<  >

The results have a value as close to the specified value as possible. Casts of floating point values are the 
same as for static_cast. Casts of fixed-point numbers are saturated to the nearest high representable 
value or the nearest low representable value when the value to cast is beyond the representable range.

This cast is free from some of the artificial and unexpected sign-reversal effects that can result when using 
static_cast operations to reduce the precision of a result. However, reduced efficiency is a side effect, 
since every calculated value must be compared to the range limits.

3. bit_cast<  >

The results are obtained by taking bits from the specified value, much like static_cast, but the bits are 
always treated like the bits of an unsigned integer. If the new data type provides more bits of storage, the 
extra high-order bit locations are always filled with 0-bits. If the new data type provides an insufficient 
number of bits, high-order bits are dropped until the remaining bits will fit in the storage available.

Bit casts cannot be applied to values with a float or double data type.

When applied to an explicit constant notation, the cast has the same effect as if it were a separate operation applied 
to a previous valid numeric value. Intermediate results can be "folded together" when the expression is compiled 
prior to execution.
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Simplified cast notations

While the C++ cast style gives full control over type conversions, it is simpler to let the cast style default to the  
ordinary static_cast form, and specify only the new data type you want. You can do this using the function call 
or constructor casting notation, similar to the notation supported in C++. To use these simplified casts, specify the  
name of the data type as if it were a function, and place the value to be converted inside of parentheses. 

The following cast notations are supported:

int8( ) convert to 8-bit signed integer

uint8( ) convert to 8-bit unsigned integer

int16( ) convert to 16-bit signed integer

uint16( ) convert to 16-bit unsigned integer

int32( ) convert to 32-bit signed integer

uint32( ) convert to 32-bit unsigned integer

int64( ) convert to 64-bit signed integer

uint64( ) convert to 64-bit unsigned integer

float( ) convert to 32-bit floating point

double( ) convert to 64-bit floating point

bool( ) interpret as a 'true' or 'false' result

Examples:
  int16( TWOPI )   // Truncate a pre-defined value to short integer
  double( 1000 )   // Equivalent to 1000.0
  bool( 10 )       // Equivalent to 'true' for nonzero value 

Cast operations preserve  sign and value when the new data type  has  compatible sign  properties  and sufficient  
precision.

Examples:
  int32( -16384 )    // Result -16384 in 32-bit form
  uint64( 15 )       // Result 15 represented in 64-bit form
  double( -10.0e24 ) // Result -10.0e24 represented in double form

Sign preservation is not guaranteed if the value to cast is beyond the range of the specified data type.

Examples:
  int32( -16384 )    // Representable, value remains -16384 
  int16( 36000 )     // Truncated to 16 bits, value -29536, use caution
  float( -10.0e105 ) // Result -INF can preserve only sign 

If  you want to avoid peculiar  sign reversal  anomalies when you apply casts,  you  should use the  saturate_cast  
notation instead of the simplified cast form.
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Examples:
  saturate_cast<uint32>( -16384 )   // Closest value 0
  saturate_cast<int16>( 36000 )     // Closest value 32767 
  saturate_cast<float>( -10.0e105 ) // Closest value -1.0e37

Hexadecimal integer notations

Hexadecimal number notations typically are most useful for representing individual bits of a digital I/O port, but  
they can  also be  used  to  represent  unsigned  integer  values.  A hexadecimal  number  is  indicated  by the  prefix  
characters  0x,  similar to the C and C++ programming languages.  Following this are the digits for the base-16 
number representation from 0 (zero) through F (fifteen). 

A negative value can be indicated by placing a minus sign before the  0x hexadecimal prefix. The final value is 
calculated as if a separate inversion operator is applied to the positive number. 

Examples:
    0xFFFF         Value 65535 
   -0x0001         Value  -1
    0x0a           Value 10

Decimal integer notations

Explicit decimal notations represent unsigned integer values. The digits for the base-10 number representation range 
from 0 through 9. The base value is the numeric value before a minus sign is taken into account. A minus sign can  
precede the digits to indicate negative values, but it is treated as if it were as separate inversion operation applied to 
the base value. 

Examples:
 100         // positive integer
 -320000     // large negative integer
 -0x00FF     // equivalent to integer -255

A postfix notation that follows the base value notation causes the base value to be coerced to the specified type. If  
the base value is not consistent with the representable range of the specified new data type, the notation is incorrect  
and produces a configuration error as the script is compiled. 

When there is no postfix notation, the base value is presumed to have the first data type in the following sequence  
able to correctly represent the unsigned value.

uint8
uint16
uint32
uint64

Examples:
  32760        // representable as 16-bit unsigned integer
 0xCFF0        // representable as 16-bit unsigned integer
  32800        // representable as 16-bit unsigned integer
 100000        // representable as a 32-bit unsigned integer
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If the base value is prefixed by a minus sign, the resulting value is equivalent to forming the additive inverse of the  
base value. The assumed data type is then the first implied type in the following list capable of representing the  
negative value.

int8
int16
int32
int64

Examples:
-32760         // 16 bit signed integer type
-0x0FFF        // 16 bit signed integer type
-32770         // 32 bit signed integer type
-0xFFFF        // 32 bit signed integer type
-3270i64       // 64 bit signed integer type, forced by postfix
-0xFF000000    // 64 bit signed integer type

Floating point number notations

Floating point constants consist of an optional sign, a value specifier,  an optional exponent scale factor, and an  
optional precision postfix notation. 

For negative numbers, the notation begins with a minus sign. 

Examples:   
-5.0 
10e6

The value specifier consists of some decimal digits specifying an integer part, a decimal point, and some additional  
digits for a a decimal fraction part. Decimal digits can appear before or after the decimal point, or both, but at least  
one digit is required.  

Examples:
-5. 
.001 
0.6175

If an optional exponent scale factor is specified, the decimal point and fraction digits are not required. Otherwise, a  
decimal point is required.

Examples: 
5e6

A floating point exponent scale factor notation consists of 'e', an optional sign, and an unsigned explicit decimal 
number specifying the exponent for a power of 10 scaling factor to multiply the base value.  Hexadecimal notations 
are not allowed. Exponent values are limited by the range that floating point notations can represent.  

Examples:
1.0e5
5.5e-19
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Finally, an optional floating point suffix notation is allowed, to force the selection of a 32-bit or 64-bit floating point  
precision for the data type. The available options are:

<none> 64-bit floating point by default

f 32-bit floating point

l 64-bit floating point

Examples:
-6.28e-7l       (force double)
3.14159f        (force float)

Here are more examples:

 -32.05    // double constant, default type

 .0001     // double constant, fractional-valued 

 -1.e-4    // equivalent to double constant -0.0001

  2e5      // decimal point is optional with 'e' notation

  2.e4     // equivalent to double constant 20000.0

  100.0f   // 32-bit 'float' constant without scaling, value 100.0

  2.6e3l   // 64-bit 'double' constant with scale term, value 2600.0
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Operations and calculations
Operators specify the actions that are to be taken to combine the data elements specified and obtain calculated  
results. There are four categories of operations in DAPL expressions.

1. Unary prefix operations. These operations are applied to the value on the right side of the operator, before 
the modified value is used for further calculations. (The minus sign on an explicit constant can be 
considered a special case of a unary prefix operation.)

Examples: 
- TERM
! TERM
- ( group of calculations )

2. Infix operations. These operations combine two values to produce a new third value.

Examples: 
P1 + 10

      BITS << 5

3. Conditional operations. These operations calculate three values, a predicate (boolean) and two consequents 
(other data), to select a result value.

Examples: 
A>B ?  A : -32678

4. Grouping. These operations do not perform calculations, but instead they control the sequence in which 
other calculations are performed. The value and data type of a group is considered to be the final value and 
data type produced by the terms inside. Terms inside of a cast are treated much the same as terms inside 
grouping parentheses, except that an additional data type conversion operation is applied.

Examples: 
((P1 + 10)*2) << 4 

      int16( DoubPipe + 1.e-13 )

Some general rules about what to expect when using operators:

1. Arithmetic operators attempt to preserve numerical  value, sometimes at the expense of changes in data  
type.

2. Bitwise operators attempt to produce results with the number of bits matching the operand with the most 
bits precision. 

3. Calculations involving only unsigned data in general produce unsigned results. When applying an operation 
to a mix of signed and unsigned data types, the result is deemed to have a signed data type, even for the 
case of bitwise operations where a numerical meaning of the result is unclear.

4. When  padding  a  signed  value  to  achieve  a  certain  number  of  bits  precision,  the  extension  bits  used 
(consistent with the rules of C and C++) will depend on the sign bit of the original value. This can cause 
unexpected bit values, and yield incongruous results, when there is a mix of signed and unsigned types. For 
the most consistent results, favor unsigned data types for performing bitwise logic operations. If you don't 
start with unsigned values, it is recommended to apply static casts or bit casts to obtain an unsigned type.
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Implicit conversions for operations

Most operators have restrictions on the kinds of data they can use. The most common restriction is that the data  
types of the operand elements must be of the same data type. Data of other types will be converted by an implied  
cast first, to force the data types to be compatible (if this is possible).

The following kinds of implied conversions can be imposed, depending on the kind of operation applied.

1. Higher integer precision for one or both operands. 
int8   -->  int16
uint8  -->  uint16
int16  -->  int32
uint16 -->  uint32
int32  -->  int64
uint32 -->  uint64
float  -->  double

2. Cast to a floating point type.
double with 'other type'  -->  cast 'other type' to double
float with 'other type' except double  -->  cast 'other type' to float

3. Mixed integer types preserving value. 
mixed signed and unsigned --> cast to sufficiently large signed type

4. Mixed integer types preserving bit alignment. 
mixed signed and unsigned --> cast to signed type of larger 

5. Mixed boolean and arithmetic types.
arithmetic types  -->  bool type 
bool type  -->  numerical type matching other argument

These implicit casts do not lose information. Casts from arithmetic types to bool types appear to lose information, 
but this information would have been discarded in any case when logic operators or final assignments are applied. 

Unary operations

Unary operations are applied to the term to the right of the operator before any other calculations involving that term 
can be done. Casts receive the same treatment as unary operators.

1. - operator.  Additive inversion. Forces negative values to positive, positive values to negative. 

2. ~ operator.  Bitwise complement. Toggles the value of all bit positions in integer.

3. ! operator.  Logical negation. Converts 'true' to 'false', or 'false' to 'true'. If applied to a numeric value, 
automatically casts to a bool value first. 

 

Arithmetic operations

There are five binary infix operations that perform arithmetic combining the terms on each side of the operator.

1. + operator.  Adds values, after promotions to compatible data types.
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2. - operator.  Subtracts values, after promotions to compatible data types. Result are signed. 

3. * operator.  Multiplies values, after promotions to compatible data types.

4.  / operator.  Divides values, after promotions to compatible data types.

5.  % operator. Divides values after promotions to compatible data types, returning the remainder value that 
is not an integer multiple of the divisor. 

Bitwise operations

There are three bitwise operations that treat the binary digits of two integer values as if they were individual boolean 
bits. These typically do not have a meaning as integer arithmetic, but they can be very useful for isolating individual 
bits from digital signals. 

If the two integer argument types do not have the same length, one or both arguments are first cast implicitly into a 
compatible integer type having the necessary length. 

1. & operator.  Performs bitwise AND operations after promoting terms to compatible integer types. The result 
bits are 1 if and only if corresponding bits of both integers are 1.

2. | operator.  Performs bitwise OR operations after promoting terms to compatible integer types. The result 
bits are 0 if and only if corresponding bits of both integers are 0. 

3.  ^ operator.  Performs bitwise EXCLUSIVE OR operations after promoting terms to compatible integer 
types. The result bits are 1 if and only if corresponding bits of both integers are different. 

Boolean logical operations

There are two boolean operations, applying to arguments of bool data type. If the arguments are of some other 
type, they are first implicitly cast into a bool type.

1. && operator. Performs a logical combination of the two arguments. The result is 'true' if and only if both of 
the arguments are 'true'.

2. || operator. Performs a logical combination of the two arguments. The result is 'false' if and only if both of 
the arguments are 'false'.

Bit shift operations

There are two operations that treat the integer value in the first argument as a sequence of bits, and shift the 
positions of bits in the first argument by the number of positions specified in the second argument. The second 
integer argument must have a non-negative integer value; if the data type is signed, an implied cast will force it to be 
unsigned.

1. << operator. This left-shifts the bits the positive integer number of positions specified by the second 
operator toward higher-order positions. For a small initial value, this is equivalent to multiplying by 2. Any 
vacated low-order bit positions are filled with 0 bits. 

2. >> operator. This shifts the bits the positive integer number of positions specified by the second operator 
toward lower-order positions. Bits previously in lower-order positions are discarded. Vacated high order 
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bits are filled by replicating the sign bit. When the first argument is unsigned, the sign bit position 
implicitly is 0, but when the first argument is signed, the sign bit position depends on the value prior to 
applying the shift.

Comparison operations

There are six operations that compare the values on the two sides of the operator. The operations promote arguments 
to a compatible data type if necessary before testing. The result of the test is always a bool value, 'true' or 'false'. 

1. < operator. The result is 'true' if and only if the numerical value of the first argument is strictly less than the 
numerical value of the second argument.

2.  > operator. The result is 'true' if and only if the numerical value of the first argument is strictly greater 
than the numerical value of the second argument.

3.  <= operator. The result is 'true' if and only if the numerical value of the first argument is less than or equal 
to the numerical value of the second argument. 

4.   >= operator. The result is 'true' if and only if the numerical value of the first argument is greater than or 
equal to the numerical value of the second argument. 

5.  == operator. The result is 'true' if and only if the value of the first argument is equal to the value of the 
second argument. This applies to bool or numerical arguments.

6.  != operator.  The result is 'true' if and only if the values of the two arguments are not equal. This applies 
to bool or numerical arguments.

Conditional operator

This is a compound (tertiary) operator that combines three arguments. The first argument is the predicate, which 
must be of type bool. If not of type bool, it is implicitly cast to that type first.

The value selected for the result depends on the value of the predicate. If the predicate has a value 'true', the 
resulting value is set equal to the first value expression (the second argument), and the value of the third argument is 
discarded. If the predicate has a value 'false', the resulting value is set equal to the second value expression (the third 
argument), and the value of the second argument is discarded. 

The two value expressions could have any data type. However, to enforce the restriction that every operation 
produces an unambiguous data type, both value expressions must result in the same data type, which will then be the 
data type of the combined expression. The expressions are considered to be numerical values, and automatic casts 
are applied as necessary to put both values into a common data type. For very simple expressions, it can be obvious 
when the data types match. For complicated expressions, trying to predict the data types from the terms and 
operators can be extraordinarily difficult. Rather than doing that analysis, you are likely to know what kind of values 
to expect, and you can cast both value terms to the same appropriate data type.
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Example:
// Take the larger value from two pipes, both uint16 data
( pipe1 > pipe2 )?  pipe1 : pipe2

// Tricky! The arithmetic can change one of the data types 
test ?  pipeA16 :  (pipeB16+const16)

// Casts can select data types for complicated value expressions
test ? static_cast<uint16>(pipeA16) : static_cast<uint16>(pipeB16+const16) 

Internal data type promotion

As sequences of operations are performed, the possible range of intermediate results from the calculations can grow.  
The DAPL expression processing is allowed to select a data type for intermediate results that is more likely to cover  
any possible requirements for expanding precision, if such a data type is available. It is usually not necessary to  
worry about intermediate types, except when calculations become really complicated. However, promotion of data 
types can't guarantee complete preservation of information in all possible expressions.

Example:

  // The DAPL expression can select a 64-bit integer representation
  pProduct = pA16 * pB16 * 32768/10000

  // There is no guarantee that any data type can represent the result
  pRisky = 16000 * pPipe1 * 16000 * pPipe2 * 16000 * pPipe3 * 16000

The following kinds of internal type promotions are allowed.

1. Short integer types are promoted to long integer types having the same signed or unsigned properties.

2. Operands converted to the same common data type before applying the operation. 
  - double if either operand is double
  - double if one operand is float and the other is a 64-bit integer
  - float if either operand is float
  - a signed integer type of the size of the larger operand if either operand is signed
  - an unsigned integer type of the size of the larger operand if both operands are unsigned

3. For certain operations, the intermediate data type of the result is determined directly from the kind of 
operation and the common argument types. 
  - integer subtraction and negation always results in a signed integer
  - shift operations always produce the type of the left operand
  - modulo operation always produce in the type of the left operand

4. For most arithmetic operations, the compilation of the command tracks whether it would be possible to 
produce an integer overflow condition as a result of combined operations. Promotion to a higher degree of 
internal precision is allowed, if needed, and if a suitable data type of higher precision is available. 
Otherwise, value limits can be imposed.
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Casts involving booleans

When bool variables are cast to become a numerical data type, by an assignment, explicit cast, or implicit cast, the  
result of the cast has value 0 for 'false' and 1 for 'true'. This will be represented as values 0.0 or 1.0 for floating point. 

Any numerical value can be cast to a  bool. The boolean value is set to 'false' if the numerical value is zero or 
undefined, and is set to 'true' otherwise. 

Examples:
// if numeric pipe contains zero, use -100, otherwise use +100
bool( p1 )?   -100 : 100

// negate the value from pipe p1 when boolean flag is false
flag*p1 - !flag*p1

Casts on final transfer

A DAPL expression task finishes its calculations by taking the final result value and placing this into the destination  
location indicated. If the data type of the destination is not the same as the data type of the calculated result, an  
implicit cast converts the value. If the data type of the target does not have sufficient precision to contain the result,  
this can mean a loss of information.

For  back-compatibility,  any  cast  automatically  applied  for  this  final  transfer  is  a  kind  of  hybrid  between  
saturate_cast and static_cast. Signed values can be sign extended when transferred to larger data elements, 
or saturated when transferred to smaller ones. Unsigned values are generally treated as patterns of bits, transferring 
as many bits as the target can accept starting with low order bits. An exception is when the value to be transferred  
comes directly from a single term without any calculations; these cases apply a  saturate_cast. If you do not 
want this behavior, apply the style of cast that you choose, and explicitly cast the final result to the data type of the  
target to avoid an automatically-supplied cast.

Incompatible terms

There  are  some  combinations  of  operators  and  data  types  that  cannot  be  made  compatible.  The  following 
inconsistent combinations will result in configuration errors.

1. Any bitwise operation (shift, multi-bit OR, etc.) with a floating point value. There is no attempt to cast a  
floating point value to make it become an integer value so that this operation could be performed. 

2. Any explicit  postfix condition applied to an explicit  numerical  value that cannot  be represented in the 
forced data type.

Combining multiple operations

Expressions can consist of a number of terms combined by a number of operators. Parenthesis grouping can be 
specified to bracket a sub-expression – a set of terms to be calculated first – thus controlling the order of evaluation.
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Examples:
// Sum scaled terms from pipes P1, P2, and P3
pResult =  P1*10 + P2*2 + P3*20

// Multiply the sums and differences of values from two streams.
pResult =  (P1 + P2) * (P1 - P2)

Precedence and order of evaluation

Precedence rules for operators determine the order in which operations should be applied. Otherwise, expressions 
such as the following would be ambiguous.

pResult = P1  *  10+P2  *  2+P3  *  20

Is  the  expression  above  evaluated  by  performing  the  two  additions,  followed  by  three  multiply  operations  in  
succession?

It  might  seem so,  but  if  we rearrange  the  white  space  within the  expression,  we get  the  following equivalent 
expression.

pResult = P1*10  +  P2*2  +  P3*20

Now it looks like each value from a pipe is multiplied by a scalar value,  and the calculation finishes with two 
addition operations. Clearly this is not the same thing. Which one is correct? 

According  to  the  precedence  rules,  only the second interpretation  is  valid.  These  rules  are  very similar  to  the  
precedence rules in C and other programming languages. "Highest precedence" is equivalent to "lowest level detail"  
in the sense that “low level details” must be decided before “higher-level operations” that depend on them can 
continue. 

If there is a sequence of operations at the same level of precedence, those operations are performed in left-to-right  
order.

Example:
// The following two expressions are equivalent
P1 + P2 + 1000 - vShared
((P1 + P2) + 1000) - vShared

The complete set of precedence rules follows. The operations appearing sooner in the list must be applied before the 
operations that appear later. These follow the operator precedence rules of C and C++.

  1. Operations involving parenthesized grouping or implied grouping of terms for casts, sub-expressions, or 
conditional evaluations

// the addition is first, then the division, then the cast
double( (p1+p2)/10 )
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// the grouped sub-expressions are independently evaluated first 
test ?   (a + b)/2  :  (a – b)/2

  2. Unary arithmetic, bitwise, and boolean operations
      <cast> ( sub-expression )
     + <item>
     - <item>
     ~ <item>
     ! <item>

// Value is -15, not -5 -- left item is negated before subtraction
-10 - 5

// Value is 10, not 1 --  left term 'true' casts to 1 prior to multiply 
!0 * 10

  3. Multiplicative arithmetic operations 
     <item> * <item>
     <item> / <item>
     <item> % <item>

// Value 101, not 110 -- the multiplication is performed first
10 * 10 + 1

   4. Additive arithmetic operations
     <item> + <item>
     <item> - <item>

// Value is 2 * P1 value, plus 20. The addition is performed first.
P1 + 10<<1

  5. Shifting bitwise arithmetic operations
     <item>  >>  <positions>
     <item>  <<  <positions>

Be  very  careful  with  this.  It  is  not  unusual  for  a  “bit  shift”  operation  to  be  interpreted  as  equivalent  to  a 
multiplication or a division by a power of 2. Even if the effect is the same as a multiply operation, the operator  
precedence is very different.

// Value 320, not 82. Both arithmetic operations performed before shift. 
4 * 10 << 1 + 2

// A clearer equivalent expression using explicit grouping
(4 * 10)<<(1 + 2)

  6. Inequality comparison operations
     <item>  >  <item>
     <item>  <  <item>
     <item>  >=  <item>
     <item>  <=  <item>

// Arithmetic first, then check value range, result 'true' or 'false'
P1 + 5 > 2 + P2

  

27



  7. Equality comparison operations
     <item>  ==  <item>
     <item>  !=  <item>

// Multiplication is first, then inequalities are checked. 
// Result is 'true' when both inequalities are satisfied.
P1 > 5  ==  2*P1 < 12

   8. Bitwise AND operations
     <item> & <item>

// Tricky, value 6, not 14. Multiplications first, then bit operations. 
     2 * 15&7 * 1
// Clearer equivalent expression with explicit grouping.
     (2*15) & (7*1)

   9. Bitwise  XOR operations
     <item> ^ <item>

// The two bitwise '&' operations are performed first
AVALUE & 0xFF ^ BVALUE & 0x0011
// Clearer equivalent expression with explicit grouping
(AVALUE & 0xFF) ^ (BVALUE & 0x0011) 

   10. Bitwise OR operations
     <item> | <item>

// Always equals P2, the 2^2 term reduces to zero first 
P2 | 2 ^ 2

// The bitwise XOR is calculated, then three terms combined by OR
AVALUE | 0x00C ^ BVALUE | 0x003 

   11. Logical  AND operations
     <item> && <item>

// Arithmetic and comparison tests done before logical combinations
P1/10 > 1  &&  1 > P2
// Expression with equivalent grouping
(P1/10 > 1)  &&  (1 > P2)

   12. Logical  OR operations
     <item> || <item>

// Arithmetic and comparison tests done before logical combinations
P1/10 > 1  ||  1 > P2
// Tests on the left and right combined before evaluating logical OR 
     P1 > 1 && P2 > 2  ||  P1 < -1 && P2 < -2
// Expression with equivalent grouping
     ((P1 > 1) && (P2 > 2))  ||  ((P1 < -1) && (P2 < -2))
// Value is always 'true' since OR operation is done last
     P1 && 0 || 1
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   13. Decision operations
     <test> ? <item> : <item>
     
// All three sub-expressions fully evaluated before selection
P1+P2 > 0   ?   P1>>1 ^ 0x0020  :   P2<<1 | 0x0001
// Sub-expressions with cast for type safety 
P1+P2 > 0   ?  uint16(P1>>1 ^ 0x0020)  :  uint16(P2<<1 | 0x0001)
// Invalid. Sub-expression can't change execution order within decision 
     P1+P2 > 0   ?   ( P4>5 || P5<0  :  P5>10 )
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Hazards and Side Effects

Visibility of results

When results are transferred to data pipes, every calculated result will be visible to other tasks that read data from 
the pipe.

When results are transferred to shared variables, the only visible values are the ones that happen to be stored in the  
variable at the moments when task scheduling allows other tasks to run. When changes occur quickly, there is no  
guarantee that the other tasks will see all the delivered values before they overwritten by further changes.

A seeming time-shift paradox can occur when time-critical  information is exchanged among tasks using shared 
variables.  (In  theory,  all  DAPL processing tasks are exposed to these hazards,  but  the effects  tend to be most 
noticeable with DAPL expression tasks.) Symptoms occur when one task establishes the value of a shared variable 
using data that by chance other tasks have not yet seen. Later, when another task (such as a DAPL expression) gets 
its chance to run, it processes the slightly older data and “catches up,” but it does this using the variable value that  
was produced by the first task from newer data. The effects can appear as if “a variable value change propagated  
backwards in time.” 

As an optimization, DAPL expression processing is allowed to discard data and calculations that other tasks cannot  
possibly see.

Saturation

Despite efforts to avoid overflow of numerical ranges, there are three situations that can lead to overflow hazards.

1. An explicit cast is specified, and the value to be type cast is beyond the range that can be represented by the 
specified data type.

2. The final result of the DAPL expression evaluation task is a value to be stored as a data type with 
insufficient range to store the calculated value. 

3. A calculation runs out of numerical range when using the data type with the highest available precision.

When these conditions occur, a saturated value is assigned. The returned value will be one of the following:

• For a very large positive number or a positive infinity, substitute the largest representable positive number 
for the target data type.

  Example:

  // 16 bit pipe receives saturated values 32767
  pIntPipe  = 32800 

• For a very large negative number or a negative infinity, substitute the lowest representable negative number 
available for the target data type.

  Example:

  // signed 32 bit pipe receives saturated values -2147483648
  pLongPipe  = -2150000000 
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•  For negative results and an unsigned data type, substitute the value of 0.

  Example:

    // unsigned 16 bit pipe cannot represent negative, receives 0
    pUnsigneWordPipe = -1000

•  For certain results with an infinite limiting value, substitute a saturated value with appropriate sign.
  Example:

    // Ratio is undefined. Float pipe receives values 3.4e38.
    pFloat  =  pData / 0

Loss of precision

Operations such as casts and transfers of a calculated final result can force floating point values to be converted to 
integer values. Sometimes these operations are harmless, but other times there are fractional portions of the value 
that cannot be represented in integer form. 

These “rounding” operations will proceed without warning, but the potential problem will be diagnosed with a 
configuration warning when the DAPL expression task is specified.

Example: 

    // Integer pipe cannot represent 2 PI exactly, truncate to 6
    pIntPipe  =  2.0 * PI

Roundoff effects

Rounding can occur with any floating point calculations, but the effects can be particularly visible when values are 
reduced to lower precision.

Example:
// Roundoff error is likely to cause unexpected 'true' boolean 
boolVar  =  0.666666666667f - 2.0/3.0 

Latency and efficiency

An approximate model for effort required per sample to process data in a DAPL expression task is

work per sample  =  
    (block processing cost + scheduling cost) / N  +  calculation cost
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where 

N is the size of the data blocks processed by the DAPL expression task

block processing cost is large and approximately constant

scheduling cost is small and approximately constant

calculation cost is small and approximately constant

The worst case occurs when N = 1, and one output value is produced each time the DAPL expression task is 
scheduled for execution. This incurs the full block processing cost for each calculated result. 

On the other hand, suppose that N is something more like 1000. The DAPL expression processing will be almost 
1000 times more efficient than the N=1 case. But this comes at a cost. To process 1000 values as a block, the 1000 
values must exist in memory. But if they exist in memory, that means a corresponding time delay to collect together 
the data needed to perform the processing.

DAPL expressions do not know which is more important to you, to deliver small amounts of results very quickly, or 
large blocks of results very efficiently. There is no attempt to predict your intent. The expressions will process the 
data in whatever amounts happen to be available, each time execution is scheduled. If you need quickest real-time 
response, at the expense of processing efficiency and overall processing rate, you can force this by restricting the 
buffering size of the data streams passed to the DAPL expression task. (See the PIPES command.)
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Example applications
*   Complement the four low-order bits you receive from a digital port, so that instead of “active low” they are 
“active high.”

Use the “exclusive OR” operator. Apply a “bit mask” with 1-bits in the positions to be inverted, and with 0-
bits elsewhere.

P2 = P1 ^ 0x0000000F

*  Produce statistically unbiased white noise from random numbers.

The RANDOM command produces random numbers in the range 0 to 32767 with uniform probability. If you 
subtract 16384 from every value, this is almost balanced, but not quite, since the adjusted range is from
 –16384 to +16383. To get unbiased random numbers (with triangular distribution on interval –32767 to 
+32767), generate two random number streams and use the following expression to combine them.

rand = rand1 – rand2

*  Apply nonlinear sensor calibration.

Many sensors show nearly linear, but not perfectly linear, characteristics. For example, a desired strain 
measurement is almost proportional to the observed voltage, but not exactly. You can fit a low-order 
polynomial curve that will produce better conversion accuracy than a simple linear approximation. 
Determine calibration coefficients ST1, ST2, and ST3. Provide them as variables. Then apply them to the 
measured strain voltage stream Vmeas. 

strain = ST1 + Vmeas * ( ST2 + Vmeas * ST3 )

*  Detect large noise spikes in a signal.

Apply a highpass filter to the signal. The noise will pass through this filter easily, but lower frequencies 
will not. Test whether filtered signal values are large, and, if so, assign the value 1 to a pipe. Otherwise, 
assign the value 0 to a pipe.

intFlagPipe =  pHighPassed*pHighPassed > NoiseThresh

*  Simulate real-time signal samples by combining multiple waveforms and clock.

DAPL processing commands for computing waveforms have no timing constraints, and they could deliver 
data in massive, irregular bursts. To deliver data on a regular basis, use the arrival of an input sample to 
regulate the timing. The DAPL expression cannot evaluate until each input sample arrives, but when it does 
you don’t need the value of the sample, so force it to zero.

realtime = wave1 + wave2 + noise + IP1 & 0
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*  Preserve a running estimate of a steady value in a shared variable.

While it is possible to perform digital filtering to smooth data and estimate a steady value, filter 
calculations that extend into back history for a very long time tend to be either resource hungry or 
numerically ill-conditioned. You can implement simple exponential filtering (first-order lag filtering) using 
DAPL expression processing and one double shared variable. Select the value WINDOW that is roughly 
the number of past history samples that you want the estimate to span. Because changes are small and 
accumulate slowly, there is no harm if tasks see changed values at slightly unpredictable times.

vSteady = ((WINDOW-1)*vSteady + double(pNewMeasurement) / WINDOW

*  Use a variable value under control of the host application to continuously adjust between highly smoothed and  
unsmoothed measurement data. 

Configure the DAPL system to process the raw data with an aggressive FIRLOWPASS filter, preserving 
the original data rate. Provide a shared floating point variable under control of the host application. Set it to 
1.0 initially, which means to “send everything” from the raw signal. Setting the variable to 0.0 uses the 
signal with maximum filtering. Intermediate settings interpolate between the two cases.

iAdjFilt = (fLevel)*pUnfiltered + (1.0f-fLevel)*pFiltered

*  Hide the bits on a digital  port so they cannot produce a trigger  event until the supervisory software sets  an 
enabling variable. 

Initialize variable HOSTMASK to zero. This overrides the values that the following DAPL expression places 
into pipe maskedpipe, forcing all bits to zero and hiding readings of the digital port received through 
channel pipe IPipe(5). To make the bits from the digital port visible, the host sends the DAPL system a 
‘LET HOSTMASK = 0xffff’ command. This allows the bits received from the digital port to pass 
through to maskedpipe unchanged.

maskedpipe = IPipe(5) & HOSTMASK

*  Use a bit on a digital port to determine which of two signals sends data to the host system. 

Use bit masking logic to select the desired bit position from data received from the digital input port via 
logical channel IPipe7. If the bit is clear, echo the data from input channel IPipe0. If the bit is set, echo the 
data from input channel IPipe1. Discard the data values not selected.

( Ipipe7 & 0x0004 ) ?  IPipe1  :  IPipe0 
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4. New Commands and Variants

This chapter provides command reference pages describing in detail the features of special commands and command 
variants used by the DAPL 3000 system to support the xDAP family of data acquisition products. The material in 
this chapter supersedes some of the material presented in the main DAPL 3000 Manual.
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BIRAMP 

Define a task that generates bidirectional linearly-ramped data sequences.

BIRAMP ( <range_1>, <range_2>, <samps_1>, <samps_2>, [<init_phase>,] <out_pipe>  )  

Parameters

<range_1>
The initial extreme value of the output sequence.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<range_2>
The other extreme value of the output sequence.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<samps_1>
The number of sample intervals to transition from the first range limit value to the second.
WORD CONSTANT | LONG CONSTANT 

<samps_2>
The number of sample intervals to return from the second range limit value to the first.
WORD CONSTANT | LONG CONSTANT 

<init_phase>
Initial phase shift specifier, in sample interval units.
FLOAT CONSTANT | DOUBLE CONSTANT 

<out_pipe>
Pipe for output data sequence.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description

A BIRAMP command defines a task that generates a data sequence ramping at a constant rate from the first range 
limit <range_1>  to another range limit <range_2>, then returning at another constant rate to the first limit. The 
resulting data are placed into <out_pipe>. The remaining parameters define the characteristics of the ramp 
sequences. The most common application is to sweep a digital-to-analog converter from one voltage value 
smoothly through a range of values. 

The limit value <range_1> specifies the initial output, where the first ramping transition begins. <range_2> 
specifies the value where the direction of the slope reverses. If <range_2> is chosen to be greater than 
<range_1>, the initial ramp begins in an increasing direction, and the return ramp is decreasing. Or, if <range_2> 
is chosen to be less than <range_1>, the initial ramp begins in a decreasing direction, and the return ramp is 
increasing. Unless specialized phase overrides are applied, the generated waveform starts at the <range_1> limit 
value and reaches both specified limit values.

The durations for ramping are specified in units of sample intervals. <samps_1> specifies the number of samples 
spanned by the first ramping sequence, and <samps_2> specifies the number of samples for the return sequence. 
Both values must be positive integers. The first ramping sequence starts at the <range_1> limit value, and 
produces <samps_1> output values. The returning ramp sequence begins with the second extreme value 
<range_2>, and produces <samps_2> output values. The next operating cycle begins at the <range_1> limit 
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value again. This pattern continues. The total number of samples for each operating cycle is the sum <samps_1> 
+ <samps_2>. 

For some special cases, it may be desired to start the first ramping sequence at a different value than the first range 
limit level. This can be done by specifying an override value, positive or negative, for the optional <init_phase> 
parameter. The shift value can be no larger in magnitude than the number of samples in the operating cycle. The 
effect of a positive phase adjustment is as if the specified number of samples is bypassed to reach the point where 
the first data evaluation is applied. Since the waveform is cyclic, a positive shift of “operating cycle length minus  
N locations” is equivalent to a negative shift of “minus N” locations. When omitted, the default value for the 
<init_phase> parameter is 0.0 samples, which corresponds to a first evaluation occurring exactly at the first range 
limit point. The <init_phase> adjustment is a floating point specification, which means that it can specify either 
an exact integer or a fractional number of sample positions. If the phase override is not an exact integer value, this 
can displace the entire sequence so that the ramped data values might no longer attain the range limit values 
exactly. 

Though similar to some waveform generation commands, the BIRAMP output data sequences are typically easier to 
configure to exactly cover certain specific values. The TRIANGLE or SAWTOOTH commands attempt to preserve 
correct waveform harmonic properties, but generated values might not include the exact values specified as range 
limits. A BIRAMP sequence is similar to a TRIANGLE wave, except that a triangle wave is constrained to ramp 
upward and downward at the same rates. The BIRAMP sequence is similar to a SAWTOOTH wave, except that a 
sawtooth wave has only one ramped slope and a discontinuity point that can sometimes lead to unexpected values. 

Any output data type can be selected for the output pipe. However, whichever data type you select, use the same 
data type to specify the range limit value parameters. 

Examples

BIRAMP(0,32767, 32767,1, PRAMP)

Generate a data sequence that spans the non-negative output range of a 16-bit D-to-A output converter, one 
converter tick at a time. The initial ramp increases from 0 to 32766, one unit at a time, producing 32767 values. The 
return ramp begins at the upper limit value 32767. This return ramp produces only one sample value, the value 
32767 itself. The next cycle will begin by dropping immediately to value 0. Each complete cycle spans 32768 
samples. The data going out to the D-to-A converter are placed in WORD pipe PRAMP.

BIRAMP(-10000.0f,10000.0f, 256,256, 128.0, PTEST)

Produce a cyclic ramped signal with floating point values that ranges from -10000.0 to 10000.0 and then back again. 
The generated data are placed into the PTEST pipe for FLOAT data type. The up and down ramps are equal length, 
with 256 samples each, for a total cycle duration of 512 samples. The specified “phase” offset of 128.0 sample 
positions is exactly halfway through the 256 sample up-slope interval, so the first sample evaluation will yield a 
value of 0.0 exactly, and output values start to increase from there to the upper range limit. The waveform reaches 
both of the specified range limits exactly.
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BIRAMP(-5000,5000, 1000,100, OPipe0)
SKIP(IPipe0, 1100,1001,99, PRAMP)

Drive a system that is somewhat prone to transient oscillations. The desired analog drive values will range from 
-5000 to +5000, slowly, with increases of 10 counts at each of the 1000  updates during the up-ramp. On the down 
ramp, there are 100 steps of 100 output converter ticks per step. This is 10 times faster than the up-ramp, but 
intended to be gradual enough to avoid exciting undesirable transient response. The data are sent directly to the 
digital-to-analog converter channel OPipe0, with updates delivered by a clocked output procedure. The response 
data are observed at input sampling channel Ipipe0, at the same rate as the output updates. The SKIP command 
discards the entire first full cycle of 1100 points, anticipating an undesirable initial transient there. On the next up-
ramp interval of 1000 points, the desired data will span from one extreme value to just short of the other, which is 
covered by the following down-ramp. Thus, the SKIP command retains the 1000 up-ramp points plus one more, then 
discards the remaining 99 samples from the down-ramp to account for the rest of the data cycle. 

See Also

TRIANGLE, SAWTOOTH
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CORRELATE 

Define a task that calculates a cross-correlation profile between two data streams.

CORRELATE (<p1>, <p2>, <n_lead>, <n_lag>, <n_block>, <pOut>)

Parameters

<p1>
First signal input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE  

<p2>
Second signal input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE 

<n_lead>
The number of leading position shifts of the second stream to analyze.
WORD CONSTANT | LONG CONSTANT  

<n_lag>
The number of lagging position shifts of the second stream to analyze.
WORD CONSTANT | LONG CONSTANT   

<n_block>
The number of new samples (data block size) to use for each analysis.
WORD CONSTANT | LONG CONSTANT   

<pOut>
Output pipe for list of correlation values.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE 

Description

The CORRELATE command computes cross-correlation between two real-valued streams of data,  <p1> and <p2>. 
The data streams are analyzed in blocks, taking a data block of length <n_block> from each stream. These 
streams can have any data type, but the two data types must match. For these two blocks, a correlation analysis is 
applied at a number of shift positions specified by the <n_lead> and <n_lag> parameters, plus one more position 
for which there is no data shift. The results of the analysis are returned in pipe <pOut>, delivering  <n_lead> + 
<n_lag> + 1 output terms. For best statistical results,  <n_block> should be much larger than <n_lead> + 
<n_lag> + 1. Outputs can be any data type, independent of the input data type, but floating point data types 
typically offer the best tradeoffs for precision and range. The analysis repeats for each set of input blocks. 

The cross correlation is defined by

corr(p1,p2; k)  =  Ei ( p1(i) * p2(i - k) )
where

p1 and p2 are the data streams from the two input pipes

Ei is the expected value operator, spanning all terms indexed by i in the blocks of input data

k is a shift to be applied to the second data stream before performing calculations.
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In effect, the terms in the first data stream are unshifted, while the terms in the second data stream are shifted some 
number of sample positions indicated by k. After this temporary realignment, term-by-term pairwise products are 
calculated and averaged. Signals with a strong linear relationship will show strong correlations. Signals that are 
statistically independent will show only “random noise” correlation at any lead or lag position.

Interpretation of the shift index k can be a little tricky. Notice how a larger index on the p1 and p2 data sequences 
means using data that arrived at a later sample time, hence a time delay. Increasing the value of the k shift, 
because of the minus operator applied to the k term, reduces the data index and thus represents a time advance. 
Correspondingly, a more negative value of the k shift corresponds to a more positive net index, and thus 
represents a time delay. Results are presented as correlations from the most negative index (the largest lead time 
advance applied to the second signal relative to the reference) to the most positive index (the largest lag time delay 
applied to the second signal relative to the reference). 

Though the operation is described in terms of averaged two-term products, the problem can be recast in the form 
of a convolution, which can then be calculated using FFT methods. This is what the CORRELATE command does. 
The most efficient evaluations happen to occur when <n_block> +  <n_lead> + <n_lag> + 1 is a size 
directly suited for an FFT operation. However, this will rarely matter, since the FFT size will be rounded up 
automatically to the next suitable value if necessary. 

Here are examples of applications that can benefit from a CORRELATE analysis.

1. Search for a pattern match. The first signal is generated from repeated copies of the same pattern vector. 
If the second signal shows a strong positive correlation to the reference pattern at shift position k, this 
indicates the presence of a matching pattern at that location. 

2. Response time. For systems in which a response signal is expected to be very similar to a stimulus signal, 
but attenuated, delayed, and possibly inverted, the amount of shift in the correlation result indicates the 
response delay. 

3. Crosstalk analysis. Determine whether one of your signal lines is coupling stray energy into another 
signal line by driving the first line firmly with a reference signal, while the second channel line is 
terminated to ground and not driven. Look for correlation between the signals from the two lines. 

Correlations are in general statistical estimates, hence calculated results show random variations. For best results, 
use a relatively large number of samples and calculate a relatively limited number of lead and lag positions. 

Example

CORRELATE(IPipe0,IPipe1,47,2,4000,pCorr)

Take the data samples for two signals directly from input sample channels  IPipe0 and Ipipe1. The second 
signal is expected to be lagging the first signal significantly, so a relatively large number of lead shifts is expected 
to be necessary to align it to the first signal for maximum correlation. Specify a correlation analysis for 47 lead 
shifts and 2 lag shifts applied to the second data channel, which will result in 47+2+1 = 50 correlation figures 
returning per block of 4000 samples analyzed from each input channel. Place the correlation values into pipe 
pCorr. 

See Also

MIXRFFT
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COSINEWAVE

Define a task that generates cosine wave data.

COSINEWAVE ( <pk_min>, <pk_max>, <wave_freq>, [<init_phs>,] <samp_time>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

COSINEWAVE ( <amplitude>, <period>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

Parameters

The parameters for a COSINEWAVE command are shared by several waveform commands. The common parameter 
description is provided in the WAVEFORMS command description page. 

Description

A COSINEWAVE command defines a task that generates cosine function data, and places the data in <out_pipe>. 
The sequence is obtained starting from a continuous-time version of the waveform, scaled and phase shifted 
according to the waveform parameters. Locations of samples are selected along that path, according to the timing 
parameter <period>, or the combination <wave_freq> and <samp_time>. For a balanced waveform with no phase 
shift, the output values start at the positive peak value. 

Note: A COSINEWAVE configured with an initial phase angle -0.5 (implicitly, -0.5 π ) is equivalent to a SINEWAVE. 

Note: A COSINEWAVE command configured with the same parameters as a SINEWAVE command generates data 
that can be used for quadrature modulation. 

Examples

COSINEWAVE(1000,100,P2)

Generate a balanced cosine wave with values ranging from  -1000 to 1000, and a period of 100 sample intervals, in 
16-bit format. The first output value generated will be 1000. Place the waveform data into pipe P2.

COSINEWAVE(0.0, 1.0, 60.0, -1.0, 5.0, PWAVE)

Generate samples of a “cosine-on-a-platform” data sequence. The waveform ranges from 0.0 to 1.0. The implicit 
amplitude of the cosine wave portion is 0.5, one half of the peak-to-peak range. The implicit DC offset is equal to 
(0.0 + 1.0) / 2.0, or 0.5. The initial phase angle of -1.0 (-1.0 π radians) inverts the cosine portion. The initial value of 
the inverted cosine wave and the DC offset cancel, so that the first output value equals 0.0, the low limit of the 
output range. The frequency of the cosine portion is 60.0 Hz when the specified updating interval of 5.0 
microseconds is used. The resulting waveform data in a floating point format are placed into pipe PWAVE. 
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See Also

SINEWAVE, TRIANGLE, SAWTOOTH, SQUAREWAVE
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CROSSPOWER 

Define a task that calculates a crosspower spectrum from two real-valued data streams.

CROSSPOWER (<p1>, <p2>, <N>, [<w_key> | <w_vect>], <out_Re>, <out_Im> [, <out_Auto>])

Parameters

<in_pipe1>
First signal input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE  

<in_pipe2>
Second signal input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE 

<N>
The number of terms to use from each signal for each analysis. 
WORD CONSTANT | LONG CONSTANT 

<w_key>
A keyword option to use a predefined window rather than an explicitly defined one.
KEYWORD

<w_vect>
A vector defining explicit window multiplier terms to be used by FFT processing.
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR 

<out_Re>
Output pipe for real-valued component of crosspower spectrum.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE 

<out_Im>
Output pipe for imaginary-valued component of crosspower spectrum.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE 

<out_Auto>
Optional output pipe for real-valued autopower spectrum of first signal. 
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE 

Description

The CROSSPOWER command computes a crosspower spectrum for two real-valued streams of data, <p1> and 
<p2>. Data are analyzed in blocks of length  <N>. The data types for these two pipes must match. Optionally, the 
CROSSPOWER command can also calculate an autopower spectrum for the first data stream. 

For each frequency indexed by k in the Discrete Fourier Transform of input signals x and y,  the value of the 
crosspower spectrum is given by

crosspower(x,y; k) =  [DFT^ (x)]k *  [DFT (y)]k 
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where 

• the x and y terms represent equal-length blocks of data.

• the k (frequency) index selects terms from the spectrum.

• the caret notation indicates a complex conjugate. 

Two FFT operations are required to produce the two blocks of DFT spectrum data. These are then combined 
pairwise, algebraically. Each term is complex-valued, so the pipes  <out_Re> and <out_Im> are required to 
return the real and imaginary parts respectively. If the optional third output pipe is specified, the above crosspower 
formula is applied to the special case of signal x and itself, producing autopower spectrum terms, which are placed 
into pipe  <out_Auto>. 

autopower(x; k) = crosspower(x,x; k) =   [DFT^ (x)]k *  [DFT (x)]k 

From this formula, it is apparent that autopower is always real-valued and requires only one output pipe. The same 
autopower result could be obtained using the MIXRFFT command with the POWER post-processing option. The 
pipes <out_Re>, <out_Im>, and  <out_Auto> must all be of the same data type. When selecting a data type for 
the output data streams, beware of the limited range of fixed point data, particularly WORD data. It is very easy to 
obtain crosspower or autopower terms that exceed the representable range.

The CROSSPOWER command supplies the FFT calculations internally. The parameter <N> specifies the length of 
each data block to analyze. There are many acceptable values for parameter <N>, but with some restrictions. Most 
“nice” sizes that you might want are acceptable:  256, 500, 720, 1000, etc. See the discussion of the MIXRFFT 
command for complete information about restrictions on the block size. 

Chopping a signal into data blocks can have side effects, in the form of spurious smears in the autopower and 
crosspower spectra. These side effects can be diminished by applying a window operation to the data blocks 
before the FFT transforms are calculated. While usually producing more benefits than harm, windowing has its 
own side effects of attenuating spectrum results. Fortunately, the windowing side effects are predictable to a 
certain extent. 

There are two ways to specify windowing, and you must select one of them.. You can use the <w_key> option and 
specify one of the following keywords to select one of the most popular window types. These keywords have no 
quote delimiters.

RECTANGULAR
BARTLETT
VONHANN
HAMMING
BLACKMAN

The RECTANGULAR window is equivalent to chopping the stream into blocks without any numerical modifications 
– in effect, “no windowing is applied.” 

Advanced users who want some other kind of window can specify a window term-by-term, as a DAPL system 
VECTOR element. Then, specify that vector's name as the <w_vect> option, instead of using the <w_key> option. 
See the discussion of the MIXRFFT command for details about windowing for FFT calculations.

For purposes of determining a frequency domain transfer function response of a system output signal y to a system 
input signal x,  observe that the ratio of the crosspower spectrum and autopower spectrum reduces to

[DFT^ (x)]k *  [DFT (y)]k   /   [DFT^ (x)]k *  [DFT (x)]k    =    [DFT (y)]k   /  [DFT (x)]k    

which equals the transfer function. The  TFUNCTION2 command can be used to calculate these ratios. 
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Example

CROSSPOWER(IPipe0,IPipe1,1000,HAMMING,PFreal,PFimag)

Take the data samples for two signals directly from input sample channels  IPipe0 and Ipipe1. Perform a 
crosspower analysis on a block of 1000 samples from each channel, reducing block truncation effects by applying 
a Hamming window before the FFT transforms. Place the crosspower results into floating point data pipes PFreal 
and Pfimag, omitting the optional autopower terms for the first signal. 

See Also

MIXRFFT,    TFUNCTION2
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DEXPAND 

Define a task that encodes multiple channels for clocked output via output expansion.

DEXPAND (<in_pipe>, <output_vector>, <out_pipe>, <type>)

Parameters

<in_pipe>
Input word pipe.
WORD PIPE

<output_vector>
A vector containing a list of the output expansion addresses to which data are sent.
VECTOR

<out_pipe>
A pipe to receive the encoded data stream, typically an output channel pipe.
WORD PIPE

<type>
A string parameter specifying the family of the output expansion board.
STRING CONSTANT

Description

The  DEXPAND  command encodes data and address information for transfer to an expansion board through the Data  
Acquisition Processor digital port. Designated digital or analog I/O expansion boards can receive the encoded data.  
<output_vector> is a vector containing a list of the output ports to which data are sent. <in_pipe> is a word pipe that 
provides the data to be sent. Multiplexed data from the input pipe must be presented in the order of the output ports  
listed in <output_vector>. For each data word read from <in_pipe>, two to four encoded words are generated, with 
these  words  including  both  channel  addressing  information  and  the  data.  The  encoded  data  are  written  to  
<out_pipe>, which is typically an output channel pipe configured to digital output port B0, the port used to deliver 
data to expansion boards. 

The <output_vector> specifies a list of output ports. The port numbers must be within the range 0 through 63 as 
supported by the expansion boards. See your expansion board manual for more information about port addressing. 

The <type> parameter specifies the type of output expansion board. The type specifier must be one of the following 
string keywords, enclosed in double-quotes.

“SI” Use this when the expansion board is one of the “SI series” isolation boards

“ASERIES” Use this for all other expansion boards

The encoding produced by the DEXPAND command is used only for clocked output procedures. Configurations that 
bypass hardware clock control and deliver outputs asynchronously using a DACOUT or  DIGITALOUT command do 
not need the encoding. These two commands generate their own encoding and timing internally. 

An OUTPORT command is required for output expansion ports, both clocked and asynchronous, and must always be 
present when you use a DEXPAND processing command.
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The DEXPAND command is necessary only for certain I/O boards, certain DAP models, and certain versions of the  
DAPL system. You need to check the manual for your particular board model to see whether you need encoding. If 
you do not need it, you must not use it. If present in the data stream but not expected by the processing, various  
encoding bits will be interpreted incorrectly as data. 

You cannot use output expansion boards with a mix of encoding protocols on the same DAP board at the same time. 
Boards using one protocol could incorrectly respond to the encoding bits intended for other boards. 

Note: The encoding generates a data stream with multiple terms used to transfer one value. If an output procedure  
is stopped before a multiple-value group is completely delivered, and then another output configuration is started, 
the first value written to the output expansion port may be invalid.

Example

DEXPAND(P1, (4, 5, 6, 7), OPIPE0,”SI”)
Prepare multiplexed data from pipe P1 for synchronized analog updating. The data are in groups of four values, 
which are to be encoded and sent through the digital port hardware to expansion ports 4, 5, 6, and 7 on the 
expansion board. Encoded data are delivered to the Data Acquisition Processor’s digital connector for clock-
controlled output through output channel pipe OPIPE0. The output expansion board is from the “SI” isolated 
signal interface board series.

See Also
DACOUT, DIGITALOUT, OUTPORT 
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DIGITALIN 

Define a task to observe digital input port signal levels independent of input clocking hardware.

DIGITALIN ( <dest>, <port_number> [, <interval>] )

Parameters

<dest>
Where the bit patterns copied from the input port are placed.
WORD PIPE | WORD VARIABLE

<port_number>
Hardware address of the digital port.
WORD CONSTANT 

<interval>
Optional interval in microseconds between successive reads of digital port. 
WORD CONSTANT | LONG CONSTANT

Description

The DIGITALIN command enables inspection of bit values present on a digital input port. This activity does not 
interfere with timed data capture activities, such as multi-channel data capture at high-rates. It does require that the 
hardware on your Data Acquisition Processor device supports asynchronous access to certain digital hardware 
ports, however; so check the hardware documentation for your particular device before using this command.

The bit patterns observed by reading the digital input port are placed into the location specified by the <dest> 
parameter. This can be a data pipe, or a shared variable. If the data are placed into a pipe, a continuing record of 
all the observed values can be processed. If the data are placed into a variable, only the most recent bit values can 
be examined by other tasks. 

The <port_number> parameter specifies a hardware address for the digital input port from which the digital bit 
patterns are copied. This address must be one of the port addresses for asynchronous input operations supported by 
your Data Acquisition Processor device. Typically, this port address is 0. 

The optional <interval> parameter specifies a time interval, in microseconds, that occurs between successive reads 
of the digital input port. If you do not specify an interval, the  command will read the digital port once at each 
opportunity that the DAPL system allows the DIGITALIN command processing to run. If you specify an interval, 
the DAPL system will not schedule the  command processing to run again until after the interval is completed, 
bounding the amount of processing resources used for watching the digital input port. 

A typical application of the DIGITALIN command is for triggering data capture processing without using any of the 
high-rate data channels for the triggering signal, and without any direct involvement of the host system.

Unlike the hardware-driven timing of an input processing procedure, the <interval> parameter does not specify 
exact time intervals. The actual instants at which the digital port is observed are somewhat unpredictable, 
dependent on the scheduling of other higher-priority or equal-priority tasks. The overall rate should be correct as 
long as the system is not overloaded. 

Examples
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DIGITALIN (VEVENT, 0, 1000)
PCASSERT (VEVENT, T_START, IPIPE0)

Use the  command to check the status of digital port 0 once every 1000 microseconds, placing the latest observed 
bit pattern into the VEVENT variable. If any bit is nonzero, this will activate the PCASSERT task to post an event 
timestamp in the T_START software trigger, noting the location in the input data reference stream IPIPE0 so that 
other tasks can find the selected data. 

See Also

DIGITALOUT
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DISCARD 

Define a task that discards unneeded data from user-defined pipes.

DISCARD (<in_pipe>  [ , <in_pipe>  , <in_pipe>, … ])

Parameters

<in_pipe>
User-defined pipes for which contents are to be discarded.
PIPE  of any data type

Description

The DISCARD command provides a simple way to dispose of unneeded data from certain user-defined data pipes 
specified by the list of <in_pipe> task parameters. For example, the HIGH processing command reports both a 
highest value statistic and an optional output index for locating that term. For special situations where you need 
only the index terms, you still need to do something with the stream of high-value terms, or eventually that pipe 
will fill to capacity and block the HIGH task from performing any further processing.

You do not need to use the DISCARD command to remove unused data from input channels. For example, you 
might configure your xDAP unit to measure 8 channels simultaneously, but then choose to process only three of 
those channels, IPipe0 through IPipe2,  from the input buffers. The remaining channels, IPipe3 to IPipe7, 
can be disregarded, and their data buffers are recycled automatically.

The situation is different for user-defined pipes. When a task you define places data into a pipe that you define, the 
DAPL system will not discard the data until the last reader task has processed it. This presents a problem when 
there is no reader task to trigger this automatic cleanup. The DISCARD command substitutes for normal processing, 
informing the DAPL system that the data are used and can be removed safely from the transfer pipe.

The DISCARD command looks for new data in the first input pipe in your parameter list to determine when to run. 
If you have multiple pipes in your parameter lists, and the data arrive at different rates, put the channel that 
receives data at the highest rate at the front of the list. This will give the  command the best opportunity to perform 
its cleanup operations. If data arrivals are completely unpredictable, you can use a separate DISCARD command for 
each pipe. 

Example

DISCARD(pLowest)
The LOW processing command produced a pipe pLowest containing the lowest-valued data values from a stream, 
and you do not need these values, but you do not want data to accumulate and cause problems. Use the DISCARD 
command to dispose of the undesired data. 

DISCARD(pImag1, pImag2, pImag3, pImag4)
You perform some advanced processing with four FFT commands in complex variables, but at the finish the  FFT 
commands leave imaginary-valued terms that have no useful information. You dispose of the meaningless 
numbers from the pipes pImag1, pImag2, pImag3, and pImag4 using the  DISCARD command. 
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See Also
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FIRFILTER 

Define a task that applies configurable FIR digital filtering with decimation.

FIRFILTER (<in_pipe>, [<channels>, ] <vect>, <length>, <scale>, <decim>, <align>, <out_pipe> )

Parameters

<in_pipe>
The pipe from which data values are read.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<channels>
An optional specification for the number of multiplexed data channels from the input data pipe.
WORD CONSTANT

<vect>
A vector of coefficients defining the filter characteristic.
WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR 

<length>
The number of terms in the coefficient vector.
WORD CONSTANT

<scale>
A final divisor for scaling the filter result after all other calculations.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT 

<decim>
A number that selects the decimation factor to apply for reducing the data rate.
WORD CONSTANT

<align>
The number of additional padding terms added to the input data, for phase alignment.
WORD CONSTANT

<out_pipe>
The pipe to which filtered data values are written.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
The FIRFILTER command provides completely configurable digital filtering with optional decimation, supporting 
filter designs prepared by other software packages such as Development Studio for DAPL (DAPstudio). The data 
stream <in_pipe> provides the input data to filter, and the corresponding filtered data are placed in the output 
stream <out_pipe>. The input stream can contain data from multiple, multiplexed data channels. If data for more 
than one channel are present, the <channels> parameter must specify the number of channels. If no <channels> 
parameter is specified, the <channels> parameter value defaults to 1, and it is assumed that the <in_pipe> data 
stream represents data from a single sampled data source. 

The FIRFILTER command implements finite impulse response filtering, where the filter is represented by a kernel 
vector <vect> to be convolved with an input stream to produce the filtered output stream. When the filter kernel 
has a symmetry property, the filter will have the property of exactly constant group delay, which means zero phase 
distortion, superior to one-sided approximations such as Bessel filters. Any data type can be used for the filter 
vector coefficients. The number of coefficient terms in the filter kernel is specified by the <length> parameter. The 
<length> value must be in the range 1 to 1200 terms (typically 30 to 90). If the value 0 is specified for the length, 
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the FIRLFILTER command will count the number of coefficients present in the vector and use that count for its 
processing. However, it is helpful to explicitly specify the length, so the DAPL system can warn you if there is any 
inconsistency between the number of terms expected from the filter design and the number of terms that are 
actually present in the script. 

Filter design programs such as DAPstudio can represent filter coefficients with integer values, on the assumption 
that the processor will perform calculations directly in a fixed point data type. However, this presents a problem, 
since coefficient values are most often too small for integers to represent them adequately. To avoid accuracy loss, 
the filter coefficients can be scaled by a relatively large number that is canceled out later when the filter is 
evaluated. The FIRLFILTER command assumes the following implicit scale factors for its coefficient data types:

• WORD  32768
• LONG  2147483648
• FLOAT 1.0
• DOUBLE 1.0

You can think of this as: “the true coefficient values are the values listed in the vector divided by the scaling  
factor.”  

However, despite this scaling, the rounding of coefficients to integer quantities can still impair the accuracy of 
filter results. Some of this loss is avoided by allowing coefficients to be larger by an additional factor, and then 
dividing out this additional factor in a manner similar to the implicit scaling for the data type. Filter designs using 
the DAPstudio filter designer will report the value of this extra scale factor, which can then be entered as the value 
of the <scaling> parameter. Mathematically, the scaling factor is just a scalar value, so there is nothing to preclude 
using this divisor for other purposes. 

It is possible for the filtering to produce values that are locally larger than they were in the original signal. This can 
occur when the filtering removes frequencies that previously caused peaks of a waveform to flatten. Though the 
results are correct, they can become a problem when new peak values in filtered data exceed the range that the 
output data type can represent. Range limitations are relatively commonplace when working with 16-bit data 
coming directly from digital sampling. To avoid severe, artificial sign-reversal discontinuities, the results of WORD 
data type filtering are bounded to the nearest representable value in the range -32768 to +32767. Other data types 
have enough bits of precision that numerical range limits are easily avoided, so other data types are given no  
range error protection. When using the DAPstudio filter designer, it will warn you of the largest possible increase 
in the peak values, and, if you wish, you can adjust the <scaling> parameter to remove any theoretical exposure to 
range errors. 

A common application of filtering is removing extraneous high frequency noise from a data stream. A relatively 
high sampling rate is often used, so that high frequencies are correctly represented in the data stream, and harmful 
aliasing side effects from sampling are avoided. After filtering removes the high frequencies from the data stream, 
there is no reason to retain the initial high sample rate. Specifying an integer value greater than 1 for the <decim> 
parameter tells the  FIRLFILTER command to include a post-filtering decimation operation. If you specify 0 (no 
decimation) or 1 (the same thing, 1 sample out per 1 sample in), no decimation is applied. If you specify a larger 
integer value N, then from each group of N filtered output samples, one value is retained, and then the next N-1 
values are dropped from the output stream. The FIRLFILTER command does this in a relatively intelligent way, 
avoiding calculations that do not contribute anything to retained output values. 

The FIRLFILTER command calculations are very basic “multiply and add.”  Before this process can begin, there 
must be one value from the input data stream for each of the vector coefficients. Consequently, the first N input 
stream values yield one output value. After that, each new input value yields one new output value (before 
decimation is applied). When the input and output streams are transferred to the host system, the numbers of terms 
are different for the two data streams, and they do not line up. The FIRLFILTER command provides an <align> 
parameter that can be used to adjust this behavior. 
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• If the value of <align> is 0, there is no adjustment. This is the simplest choice when alignment and signal 
phase are not important. All of the filtered results will be completely valid, based entirely upon input 
data, but the first filtered output value will not appear until  <length> input terms are processed.

• The largest allowed <align> parameter value is <length>-1. If this value is specified,  <length>-1 artificial 
input initial data values of 0 are supplied, so that the first real value from the input stream completes a set 
of <length> values needed for the first calculation. This will result in a data stream with the same number 
of output values as input values, but because of the artificial injected values, the first <length>-1 output 
values will show artificial transient effects.

• If the filter is symmetric (all designs produced by DAPstudio filter designer are symmetric), and the value 
specified for <align> is equal to <length>/2, then artificial 0 values are inserted for <length>/2  input 
terms. There will be <length>/2  output terms affected by an artificial initial transient, but after that, the 
input and output data streams will be aligned in time, exactly zero relative phase shift at any frequency. 

• Since the preceding <length>/2 special case is such an important one, a special shorthand notation is 
provided for it. Specifying the artificial value -1 for the <align> parameter means "perform time 
alignment," and the <length>/2 value is calculated and applied automatically. 

• General non-symmetric FIR filters can have various alignment properties. The alignment might not be to 
an exact integer position. The <align> parameter can be adjusted to the integer value that produces the 
closest phase alignment for purposes of the application. 

Portability notes

This command is very similar to the  FIRLFILTER command from the DAPL 2000 system. Most applications will 
find that a configuration that worked under DAPL 2000 will work unchanged, but there are some differences.

1. The DAPL 3000 version does not support the block-mode skip parameters. If you need blockwise data 
selection, you must do that using a separate SKIP command.

2. Filter computations in DAPL 3000 use higher internal precision, and this could sometimes result in 
integer rounding to a different final decimal digit for occasional individual output values.

3. DAPL 2000 allowed longer filter kernels. This rarely makes any difference, since FFT-based filtering 
methods are significantly more efficient for extremely large filter kernels, and should be used instead of 
the FIRLFILTER command. 

4. The DAPL 3000 version can apply the same filtering to every channel in a multiplexed stream, but the 
DAPL 2000 version supports single-channel filter calculations only.

5. The DAPL 3000 version allows any data type for the scaling factor, which is not restricted to an integer 
value or a power of 2 as in the DAPL 2000 system.

6. The DAPL 2000 version requires matching data types for the input stream, kernel vector coefficients, and 
output stream. The DAPL 3000 versions allows these data types to be selected independently. Most 
importantly, calculations are automatically selected to preserve appropriate precision for the output data 
pipe type, and results are automatically converted to that output data type.
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Examples

FIRFILTER (IPipe3, FVEC, 0, 0, 0, -1, $BinOut)
Apply a lowpass filter using default options. The number of channels is not specified explicitly, since a single 
channel of sampled data is provided by input channel pipe Ipipe3. The filter characteristic  FVEC is a vector 
previously calculated by the DAPstudio filter designer, with no scale factor. The length field is set to 0, which 
means that the number of coefficients is determined from FVEC. Since no extra scaling is required, the scaling 
parameter is set to 0 (equivalent to scaling factor 1). There is no decimation, so the decimation parameter is set to 
0 (equivalent to decimation factor 1). The special -1 alignment option is specified, so that data streams are time-
aligned for plotting on the same graph. The filter results are WORD data that can be sent directly to the host. 

FIRFILTER (Ipipe(0..7), 8, FVEC61, 61, 2, 4, 0, pFilt)
Apply a lowpass filter to each of the 8 channels in the set of multiplexed data channels received directly from the 
input channel pipe, using adjusted options. The FVEC61 vector of filter coefficients is supposed to have 61 terms; 
if there is any other number of terms, a scripting error has occurred. The filter design uses coefficients that have an 
extra scaling factor of 2, so specify this value to be canceled out of the results. This is a lowpass filter, and, after 
the filter calculations,  the data rate is to be automatically decimated by a factor of 4. No artificial samples are 
injected into the input data stream for alignment, hence there are no artificial transients, but the first evaluations 
will not occur until the first 61 input values have been loaded from each channel. The filtered results for the 8 
channels are placed in multiplexed fashion into the specified pipe pFilt, in the data type of that pipe. 

See Also
FIRLOWPASS

55



FIRLOWPASS 

Define a command that automatically applies lowpass digital FIR filtering with decimation.

FIRLOWPASS (<in_pipe>, [<channels>, ] <decim>, <out_pipe> )

Parameters

<in_pipe>
The pipe from which data values are read.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<channels>
An optional specification for the number of multiplexed data channels from the input data pipe.
WORD CONSTANT

<decim>
A number that selects the decimation factor to apply, and therefore indirectly determines the filter characteristic.
WORD CONSTANT

<out_pipe>
The pipe to which filtered data values are written.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
The FIRLOWPASS command combines high-precision lowpass filtering with a decimation operation. FIRLOWPASS 
is a special case of the FIRLFILTER command, using predefined filter characteristics matched to the decimation 
factor  <decim> . The filtering is applied to the sampled signal stream from <in_pipe>, and the filtered data stream 
is placed into <out_pipe>. The input data stream can be a set of multiplexed input signal channels, in which case 
the <channels> parameter must specify the number of signal channels present. If no <channels> parameter is 
specified, the <channels> parameter value defaults to 1, and it is assumed that the data stream represents a single 
sampled data channel. The same filtering characteristic is applied to each channel in the set. An appropriate filter 
characteristic is provided automatically according to the signal data type and the decimation factor. Data types of 
the input and output data pipes must match. 

The FIRLOWPASS  command is useful for filtering that must eliminate high frequency noise, while exactly 
preserving low frequency information. It is simple to use, and does not introduce any aliasing artifacts, so it is a 
safe way to reduce data rates and obtain a more efficient signal representation. It is suitable for anti-aliasing 
applications, but the filtering is generally more aggressive than is strictly necessary for anti-aliasing alone.

The decimation factor <decim> allows a FIRLOWPASS task to perform efficient data rate reductions. The value of 
decimation factor <decim> must be in the range 1 through 12. If the value is 1, filtered values are produced at the 
same rate that new input values are received. For other values of decimation factor <decim>, only one output 
sample is produced for each group of <decim> input samples received, reducing the data rate. This allows more 
efficient representations of the signal when the original sampling rate is much higher than necessary to completely 
represent the required information. This kind of situation occurs frequently when signals are deliberately 
oversampled at a high rate to avoid aliasing contamination, but the bandwidth of  useful information is only a 
small fraction of the bandwidth covered by the high-rate data stream. The FIRLOWPASS filter characteristics are 
specially designed so that the decimation operation produces no aliasing side effects. 

Note:  There is nothing that the FIRLOWPASS command can do if your data set already contains aliasing  
produced at the time sampling was done at the original rate.
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The gain accuracy (flatness) of the filtering depends on the data type.

• WORD data stream:  gain accuracy  14 bits.
• LONG, FLOAT, or DOUBLE data stream:  gain accuracy  18 bits.

For example, 14-bit accuracy means that a digitized signal spanning the full representable range will have an 
attenuation error of no more than 4, compared to the full range of 32767. This corresponds to a passband gain error 
of approximately ±0.001 dB. Stopband output levels can similarly be off by 4 counts, which corresponds to a noise 
floor  -78.3 dB below the passband level. These errors are typically too be small to be distinguished from signal 
noise.

The predefined filter characteristics provide the following properties:

• The filter gain is 1.0 through the first 50% of the new Nyquist frequency after decimation. 
• The frequencies from 75% of the new Nyquist frequency to the original Nyquist frequency are eliminated 

prior to the decimation.

Because of the symmetry property of the FIR filtering characteristic, the phase shift is exactly zero for all 
frequencies, but there is a time lag for the delivery of the filtered results. This can be interpreted in the frequency 
domain as a constant group delay.

Example

FIRLOWPASS (IPipe3, 10, P)
Apply a lowpass filter to the data in input channel pipe IPipe3, and decimate by placing every tenth result into 
pipe P, so that the data rate is safely reduced by a factor of 10 without introducing aliasing into the sampled data.

FIRLOWPASS (IPipe(0..7), 8, 5, P)
Apply lowpass filtering to each channel in the set of 8 multiplexed data channels, from input channel pipes 0 
through 7. Decimate all 8 of these signals using the same lowpass characteristic, and then safely decimate by a 
factor of 5, so that the resulting data stream delivers 1/5 the original number of samples. Place the reduced data 
streams into pipe P.

See Also
FIRFILTER
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MIXRFFT 

Define a task that calculates fast Fourier transforms with flexible data-block sizes. 

MIXRFFT ( <N>, [<direction>,] [<window>, | <windtype>[<alpha>],]
<pipeinR>, [<pipeinI>,]   [<blocks> ,]   <post> ,  <pipeoutR> [, <pipeoutI>]  )

Parameters

<N>
The number of terms in each data block to process.
WORD CONSTANT | LONG CONSTANT

<direction>
An optional keyword parameter specifying the transform direction.
FORWARD | REVERSE

<window>
An optional vector specifying a custom window.
 WORD VECTOR | LONG VECTOR | FLOAT VECTOR | DOUBLE VECTOR

<windtype>
An optional keyword specifying a predefined window type.
RECTANGULAR | BARTLETT | VONHANN | HAMMING | 
BLACKMAN | KAISER

<alpha>
A selectivity parameter used with a Kaiser window type.
FLOAT CONSTANT | DOUBLE CONSTANT

<blocks>
An optional keyword specifying block size reduction.
FULL | HALF

<post>
A keyword specifying the kind of post-processing to apply.
PARTS | POWER | MAGNITUDE | POLAR

<pipeinR>, <pipeinI> 
Pipes for blocks of input data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<pipeoutR>,<pipeoutI>
Pipes for blocks of output data. 
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description

A MIXRFFT task calculates a Discrete Fourier Transform of data blocks using a mixed-radix Fast Fourier 
Transform algorithm, hence the name: MIXed Radix Fast Fourier Transform. Data are taken in blocks of length 

58



<N> from pipes <pipeinR> and optionally <pipeinI> for complex-valued data. If the data are real-valued, omit the 
<pipeinI> parameter. Calculations are performed in three steps:

1. preprocessing is applied,

2. the transform is calculated,

3. postprocessing is applied. 

Processing is configured by optional keywords, represented as reserved keyword names with characters in upper 
case, and without quotation marks. Results are written to <pipeoutR> and <pipeoutI>. Some processing options 
produce only one output stream, and for these omit <pipeoutI>.

When applied to data blocks with restricted lengths that are an exact power of two, the FFT command produces 
equivalent results with slightly more efficiency. The MIXRFFT command, however, is not restricted to blocks that 
are exact powers of 2, nor is it restricted to blocks of length 16384 or less. The speed difference is only a few 
percent. Advantages that result from “fine tuning” the block size are often more significant; for example, it is 
significantly more efficient to calculate a 5000 FFT terms using the MIXRFFT command, rather than rounding <N> 
up to 8192 and applying the FFT radix-2  command.

Block Length
There are some restrictions on the block length parameter <N>, which specifies the number of terms in the input 
data blocks. The block length must be less than 224 (16777216). The block size must be exactly multiple of 
prime factors 2, 3, 5, and a “few more prime number factors” of size 19 or less. 

For example: the following block sizes are acceptable because they have an acceptable factorization.

  1024   210

  1000  23 * 53 
  1020   22 * 31 * 51 * 171

  200000 26 * 55

The following does not have an acceptable factorization, so it cannot be used as the block length.

  860  22 * 51 *431

Direction
You can specify the transform direction using the <direction> keyword parameter. It must be one of the following.

FORWARD from time-sequence to frequency spectrum
REVERSE from frequency spectrum to time sequence

This selection affects the signs of the phase terms and the scaling. Like the FFT command, the 1/N scaling factor 
of a forward-reverse transform pair is applied to the forward direction transform. If you omit the <direction> 
parameter, you will get a FORWARD transform.

Window Preprocessing
Windowing can be applied to the data set during preprocessing. If you provide a window vector, the terms of the 
window are applied in sequence. If you specify one of the pre-determined window types, the window is calculated 
and applied, term-by-term, to each term of the input data. The windowing is less efficient than the pre-computed 
window processing of the FFT command, but avoids allocating very large blocks of extra storage. Unlike the FFT 
command, the windows produced by predefined window options can be used with both forward and reverse 
transform directions. In the forward direction, data significance is best preserved at the center of the block, 
attenuated at the block ends. In the reverse direction, frequency significance is best preserved at low frequencies, 
attenuated at the Nyquist frequency of the sampling.
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The Kaiser window is the only window type with a selectivity parameter, and the only window type that has no 
closed-form expression for the window values. The selectivity parameter has no default, and it must be a positive 
number less than 12.0. High values produce smoother results, with better isolation of widely separated frequency 
bands, but poorer resolution of nearby frequencies so that spectrum peaks are rounded. Kaiser window calculations 
use an approximation formula that is accurate to approximately 8 decimal digits.

If you omit both windowing options, the RECTANGULAR window is the default. This is the same thing as making no 
changes to the input data before the transform.

Postprocessing
The <post> keyword parameter must be specified to select the kind of post-processing to apply. Raw FFT results 
are complex numbers. Often, it is helpful to convert these to alternative forms for analysis. The <post> option must 
be one of the following:

PARTS return the raw complex terms unmodified
POWER convert the results to power spectral density
MAGNITUDE convert the results to magnitude (square root of power)
POLAR convert the results to polar form, magnitude and phase

See the FFT chapter in the DAPL manual for a discussion of how phase angles for the POLAR option are 
represented in each data type.

The PARTS and POLAR post-processing options produce two output data streams, <pipeoutR> and <pipeoutI>. For 
PARTS post-processing, the two output streams must have the same data type as each other.

The POWER and MAGNITUDE post-processing options produce only one output data stream, <pipeoutR>. For these 
options, omit <pipeoutI> from the parameter list. 

The POWER, MAGNITUDE, and POLAR postprocessing calculations behave differently for the case when the 
second half of the spectrum is discarded (see the next section) and pipe <pipeinI> is omitted. When there are no 
imaginary terms, frequencies above and below the Nyquist frequency at location <N>/2 in the data block cannot 
be distinguished in sampled data. Assuming that the sampling was valid, the transform will show above the 
Nyquist frequency an artificial mirror image of the frequencies shown below the Nyquist frequency. So, during 
post-processing for these configurations, the effects of the two halves are recombined before discarding the second 
half-block. 

Note:  Postprocessing checks whether imaginary input data are provided, but does not check values. A stream of  
zero-valued imaginary terms can produce different results than omitting the imaginary terms, even though the 
transform operation is the same.

Block-Size Reduction
You can use the <blocks> option to specify that extraneous terms in the upper half of the spectrum should not be 
sent to the output data pipes. This parameter must be one of the following. 

FULL Do not discard any terms.
HALF Discard the second half of the transform block.

This is useful primarily for the case of real-valued input data, when the second half-block is symmetric and 
contains no new information. If the <blocks> parameter is not specified, the default will depend on the kind of 
input data. 

• If you provide imaginary-valued input terms, the default will be FULL. 
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• If you do not provide any imaginary-valued input terms, the default will be HALF. 

Data Streams
Any numeric data type can be used for input data. The input data blocks are provided via pipes <pipeinR> and 
<pipeinI>, and must be of the same data type. If you omit the <pipeinI> (data are real-valued), zero values are 
assumed for the imaginary input parts during the transform. When <pipeinI> is omitted, typically:

• The data are from time-domain sampling, and the transform direction is FORWARD. 

• Due to the symmetry properties, the second half of the spectrum has no useful new information. 

Using an output data type with more precision is sometimes helpful for preserving range. For example, using 
WORD-type input data, the terms in a very long forward FFT tend to become very small and lose accuracy to integer 
truncation. You can avoid this problem by using a FLOAT output type. Similarly, using WORD-type input data in a 
very long reverse transform tends to produce results that are poorly scaled, with many terms saturated to the range 
limits. You can avoid this problem by using a LONG output data type. 

Unlike many other DAPL system commands, the data types of input and output data streams are not required to 
match. The output data streams depend on the postprocessing option, and the postprocessing can produce any data 
type. Output data types are not restricted to being the same as the input data type. That means, for example, you do 
not need to convert input samples to FLOAT type to get an output spectrum in FLOAT type. 

Transform Mathematics
The algorithm of the mixed-radix FFT is based on the Singleton FFT, developed by R. C. Singleton at Stanford 
Research Institute in 1968, and published by IEEE. The brilliance of the mathematics was inversely proportional 
to the clarity of the coding. Major restructuring was applied to make the code reentrant and friendly to modern 
processors, so it could run effectively in the DAPL environment. Transforms are computed in place, using one 
small supplementary buffer as an internal scratchpad. No pre-computed table of “twiddle factors” is used. A pre-
computed permutation table, adjusted for each specified block size, is used for the final shuffling operations.

Examples

MIXRFFT ( 1000, P1r, PARTS, P2r, P2i )
Read blocks of 1000 sampled-data values of WORD data type from pipe P1r. The signal is real-valued, so the 
imaginary parts are zero and are omitted. By default, perform a forward transform of each input block with no 
windowing, and place the complex results in pipes P2r and P2i. Perform no other post-processing calculations. 
Because the second half of the spectrum will have no new information, by default only the first 500 terms of the 
transform result are delivered to the output data pipes. 

MIXRFFT ( 256000, FORWARD, HAMMING, DPr, DPi, \
        FULL, MAGNITUDE, Pmag )

Read blocks of 256000 samples from input data pipes DPr and DPi, which provide real and imaginary parts 
obtained from quadrature demodulation. The data types are double on all pipes to preserve as much precision as 
possible. Apply a Hamming window to the data sets to reduce block truncation effects. After computing the 
forward transform, convert the real and imaginary transformed parts to magnitude values. The high and low 
frequency terms are not combined because the input stream is complex valued. A full block of 256000 spectrum 
magnitude values for each 256000 complex input terms is sent to the Pmag pipe. 
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See Also
 FFT

Also refer to the chapter “Fast Fourier Transform” in the DAPL 3000 Manual for more information about 
frequency spectra, sampling, aliasing effects, data representation, and window operators. 
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MRBLOCK

Define a task that delivers the newest complete data block on demand.

MRBLOCK ( <pin>, <request>, <bsize>, <pout> )

Parameters

<pin>
Input stream consisting of equal-size blocks of data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<request>
The location where requests for data transfer are posted.
WORD PIPE | WORD VARIABLE

<bsize>
The number of data values in each block.
WORD CONSTANT | LONG CONSTANT

<pout>
Output stream receiving the requested data blocks.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description

A MRBLOCK task temporarily buffers complete data blocks in memory. Data arrive in the <pin> pipe. Requests to 
deliver the most recent block of this data arrive via the source specified by the <request> parameter. Data are 
processed in blocks of a size specified by the <bsize> parameter. The request specifies the number of data blocks 
to provide, starting with the most recent one preserved in memory. Most of the time, the request is for one block, 
and the response occurs immediately. The most current data block is delivered immediately to the <pout> output 
stream. While there are no requests, the output stream receives no data. Any data blocks not requested are 
discarded. 

Processes send requests for data via the <request> variable or pipe, specifying the number of blocks to deliver. 
Any requests for less than 1 block are removed and ignored. When the <request> parameter is a variable, the 
request value is set back to zero after processing. When the <request> parameter is a pipe, requests are processed 
one at a time, so the total number of data blocks delivered equals the sum of the valid request values. Though the 
first block comes out of memory with minimum delay, the subsequent blocks come directly from the source 
stream. At slow sampling rates, this could mean some delay to collect and deliver all of the required data 

Here are some common applications for this command. 

1. Reducing data skew.   An application samples at  high rate  so that  a complete set  of sensor readings  is  
available at  any time. This produces many more sample blocks than the external  process requires.  An  
MRBLOCK task delivers one block of readings covering all channels when the requesting process is ready 
and sends a request. 

2. GUI displays.   While graphical “live” displays on a PC monitor seem fast on a human scale, they are very 
slow compared to high-speed data acquisition rates. Using an MRBLOCK task, the processing on a PC host 
can accept new data at its own pace, whenever the need arises.
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3. Status summary reports.   Some processes on a PC host are driven by requests from external data collection 
activity, typically through a network. An MRBLOCK task allows the host application to pass these requests 
through to the processing on the DAP, which returns the most recent status summary data. 

Examples

MRBLOCK(pFFT,Cp2In,10240,Cp2Out)
Read data blocks from data pipe pFFT, saving the most recent block in memory. Each block of 10240 values 
contains 1024 values for each of 10 channels, resulting from an FFT analysis. Ordinarily, waiting for this analysis 
to complete on request would cause unacceptable delays. When the application requests one of these blocks for 
display, the application passes the value 1 to the MRBLOCK task via the communication channel Cp2In. Each time 
a request arrives, the results of the most recent completed analysis are returned via the Cp2Out communication 
pipe. 

See Also
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MTSFILT 

Define a task that aligns input samples to the same instants of time.

MTSFILT ( <pinmux>, <nchan>,  [<ngroup>,]  <ndecim>, <poutsync> )

Parameters

<pinmux>
Input stream of multiplexed data, as captured by sampling multiple channels.
WORD PIPE

<nchan>
The number of channels included in the input data stream.
WORD CONSTANT

<ngroup>
The number of channels sampled simultaneously by input hardware.
WORD CONSTANT

<ndecim>
Decimation to apply to the data stream after processing.
WORD CONSTANT

<poutsync>
Output stream of multiplexed data, time-aligned and decimated.
WORD PIPE

Description

A MTSFILT task uses DSP interpolation methods to perform a time shift correction on multiple channels. It is 
useful when the channels are sampled using multiplexing hardware, which produces samples at a sequence of 
positions in time, but samples for all channels are desired at the same position in time. Time-alignment of samples 
greatly simplifies certain kinds of phase analysis. A definitive solution is to use specialized hardware devices with 
signal capture features to latch every channel independently and simultaneously. The  command is intended as a 
lower-cost alternative without the special hardware. 

A MTSFILT task receives multiplexed input data from the <pinmux> pipe. The total number of multiplexed 
channels, common to the input and output streams, is specified by the <nchan> parameter. The number of channels 
sampled simultaneously by the hardware is specified by the <ngroup> parameter. The value of  <nchan> must be an 
exact integer multiple of  <ngroup>. If omitted, the default value of the <ngroup> parameter is 1, meaning that 
only one hardware converter was used to produce the data stream, valued captured sequentially. 

A nontrivial DSP resampling analysis reconstructs every signal, and then evaluates the signals in such manner that 
time displacements due to the multiplexer sampling time intervals are corrected, without distorting the signals. The 
samples are aligned to the time of the last channel in the input channel list. The output stream values are placed 
into the <poutsynch> pipe. After the time-shift correction, the resulting sample values are indistinguishable from 
samples as they would be obtained from true simultaneous sampling by hardware on all channels 

There is one important restriction. Frequencies present on all of the input channels must be suitably band-limited.  
To preserve accuracy, signals must all be at least 2X oversampled; that is, the highest frequency present in the 
input signal must not exceed 1/4 of the sampling frequency. Resampling is closely related to interpolation by 
fitting a curve through the data sequence and using locations on the curve to establish values at intermediate 
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positions. It makes sense that the best results will occur when there are more points available for fitting the curve, 
so that the curve is smoother. The bandlimit restriction forces a degree of smoothness on the input data set.

If there is a sharp discontinuity in the input data, such as a step disturbance, this local violation of the bandlimit 
restriction above will result in an artificial transient disturbance in the data set. This is not necessarily harmful, as 
long as you recognize this as a side effect of the processing and not something actually present in the physical 
signal.

One way to obtain an acceptable signal meeting the bandwidth restrictions is to attenuate high frequencies with a 
simple filter in hardware, then sample at a higher rate than necessary. For example, if sampling one value every 
100 microseconds is sufficient, sampling at 25 microsecond intervals would provide an additional factor 4 
oversampling. Because this produces 4 times more data than you actually need, the <ndecim> parameter can be set 
to 4. After the time-shift corrections are applied, extra samples from the oversampling are discarded automatically. 
Thus, with <ndecim> equal to 4, you will get 1 output sample for every 4 samples captured by the hardware. 

The time shift correction filters requires a few samples in the local neighborhood of each location where it 
performs its calculations. A few samples must be obtained from each channel before output results start to appear. 
If you use an MTSFILT command in your input sampling procedure, you must allow extra samples to supply these 
initializer samples for the reconstruction filters. 

Examples

MTSFILT(IP(0..3),4,5,PSYNC)
Take sampled data from an input channel pipe with 4 channels, captured by hardware having a single converter, 
with samples captured at equal intervals of time. It is desired to record one sample in each channel every 
millisecond. To guarantee that there are plenty of data for the time-interpolation, the signals are filtered in 
hardware before sampling, and the initial sampling interval is 200 microseconds between samples in each channel. 
At the boosted sampling rate, 5 samples are collected for each 1 sample needed in the output stream, so 5 is 
specified as the decimation parameter. The MTSFILT command places the time-aligned and decimated data into the 
output pipe PSYNC. The results are as if all four channels were simultaneously sampled at 1000 microsecond 
intervals. 

MTSFILT(IP(0..31),32,8,5,PSYNC)
Process 32 signal channels, sampled with a Data Acquisition Processor model that has 8 hardware converter 
channels that operate simultaneously. Because there are 32 channels but only 8 converters, the hardware alone 
cannot sample all of the channels simultaneously. The configuration is like 8 of the configurations shown in the 
previous example, running in parallel. A sample value is desired for each of the 32 input channels each 
millisecond. The sampling groups of 8 channels each are captured at 200 microsecond intervals. The MTSFILT 
command takes the groupings of simultaneously sampled channels into account when applying the time shift 
corrections. The results are as if all 32 channels were simultaneously sampled at 1000 microsecond intervals. 

See Also
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SAWTOOTH 

Define a task that generates sawtooth wave data.

SAWTOOTH ( <pk_min>, <pk_max>, <wave_freq>, [<init_phs>,] <samp_time>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

SAWTOOTH ( <amplitude>, <period>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

Parameters

The parameters for a SAWTOOTH command are shared by several waveform commands. The common parameter 
description is provided in the WAVEFORMS command description page. 

Description

A SAWTOOTH command defines a task that generates sawtooth wave data, and places the data in <out_pipe>. The 
waveform is obtained by taking a continuous-time version of the waveform and selecting values along that path, 
according to the timing parameter <period>, or the combination <wave_freq> and <samp_time>. 

A SAWTOOTH waveform has an unusual special property that it is discontinuous. If the sample position happens to 
align exactly with the discontinuity, the value of the waveform is undefined. In such cases, the value that is 
halfway between the two extrema is substituted. 

In cases where the waveform is balanced in the positive and negative directions, (as will always be the case when 
using the traditional parameter form) the first output value is 0, which occurs halfway through the upward 
trajectory of the waveform. The output values continue on an upward trajectory at a constant rate until reaching or 
passing the point of discontinuity, halfway through the cycle. At this point, the waveform jumps down to or very 
near the lower extreme value. Subsequent values continue the upward trajectory at the original constant rate to 
reach the end of the cycle. This behavior is different than it was in the DAPL 2000 System, where the initial 
evaluation point was at the discontinuity point. 

For generating a ramp sequence that is easier to configure to reach certain output levels specifically, consider the 
BIRAMP command as an alternative.

Examples

SAWTOOTH(1000,100,P2)

Generate a balanced sawtooth wave signal with nominal range -1000 to 1000, and a period of 100 sample intervals, 
in 16-bit format suitable for delivery to D-to-A output hardware. Place the waveform data into pipe P2.

SAWTOOTH(0.0, 10000.0, 60.0, 50.0, PWAVE,"AMPLITUDE", PAMOD)

Generate samples of a sawtooth wave having a fundamental frequency 60 Hz when the output values are updated at 
a 50 microsecond per sample rate. The amplitude peaks range from 0.0 to 10000.0 before modulation (with all 
modulation factors equal to 1.0). The data are amplitude modulated by values from the PAMOD pipe. The resulting 
modulated waveform data in floating point format are placed into pipe PWAVE. 
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See Also

COSINEWAVE, SINEWAVE, TRIANGLE, SQUAREWAVE,BIRAMP
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SCAN (for input definitions)

Define the scan interval for capturing one value per sampled-input channel.

SCAN    <interval>

Parameters
<interval>

The time interval during which every sampled input channel receives a sample.
explicit number, in an integer or floating point notation

Description
The SCAN command specifies the time interval to capture one sampled input value for each channel defined in an 
input sampling configuration. This is the recommended way to specify the timing for input sampling. The 
DAPL 3000 system will determine how to schedule the low-level sampling sequences.

The specified time interval <interval> for completing the scan must be within minimum and maximum limits 
specific to the xDAP model. The time interval is expressed in units of microseconds, as an integer value or as a 
decimal fractional value with resolution to 0.001 microseconds. If the specified value is not an exact integer 
multiple of the sampling timer resolution, the DAPL 3000 system will issue a warning message and round the 
<interval> value down to the nearest allowable multiple. The DAPL 3000 system will diagnose an error if the 
xDAP hardware is unable to perform all of the necessary sampling operations fast enough to meet the 
requirements of the SCAN command.

The SCAN command must appear after all of the SET commands that define signal channels for the input sampling 
configuration. If the SCAN command is omitted, a TIME command must be specified; for this case, the DAPL 3000 
system will internally construct an equivalent SCAN command interval equal to the number of channels times the 
time interval specified on the TIME command.

For the following example configuration, suppose that the xDAP model connects pins d0 and d1 to channel 
selector 0 and pins d14 and d15 to channel selector 7.

IDEFINE  uses2
  CHANNELS  5
  SET  ipipe0  d0
  SET  ipipe1  d1
  SET  ipipe2  d14
  SET  ipipe3  d1
  SET  ipipe4  d15
  SCAN  10.0
END

The number of sampling events required to obtain a sample for every channel in the channel list depends on the 
selected channels and the channel selector architecture of the xDAP model. For the example above, channel 
selector 0 is used three times within the scan interval, for capturing samples from pins d0, d1, and d1 in that 
sequence. Channel selector 7 is used only two times, capturing pins d14 and d15. 

By default, the DAPL system will attempt to distribute the sampling events through the channel scan interval. This 
does not in general imply exactly equal time intervals, particularly for operations on an individual channel 
selector. In the example above, there is no activity for channel selector 7 while the third sampling event captures 
pin d1 using channel selector 0. The distribution of sampling events can be adjusted using an additional TIME 
command following the SCAN command.
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The sizes of individual sampling intervals are automatically adjusted so that each one is consistent with the timing 
resolution of the sampling clock. For the example given previously, perfectly-spaced sampling events would need 
to occur at precise intervals of 3.333333333 microseconds, which the sampling clock can’t match exactly. The 
intervals between sampling events are adjusted in a way that preserves the total <interval> length specified by the 
SCAN command. The DAPL system might need to make similar small adjustments to coordinate different kinds of 
input devices.

Examples

IDEFINE   capture12
  CHANNELS  12
  SET  ipipe0  D0
  . . .
  SET  ipipe11  D11
  SCAN  35
END

Configure input sampling to capture data for 12 differential input channels during each time interval of 35 
microseconds. The DAPL system will adjust for the fact that 12 samples per 35 microseconds is not a perfect 
match for the time resolution of the sampling clock. 

See Also
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SINEWAVE

Define a task that generates sine wave data.

SINEWAVE ( <pk_min>, <pk_max>, <wave_freq>, [<init_phs>,] <samp_time>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

SINEWAVE ( <amplitude>, <period>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

Parameters

The parameters for a SINEWAVE command are shared by several waveform commands. The common parameter 
description is provided in the WAVEFORMS command description page. 

Description

A SINEWAVE command defines a task that generates sine function data, and places the data in <out_pipe>. The 
sequence is obtained starting from a continuous-time version of the waveform, scaled and phase shifted according 
to the waveform parameters. Locations of samples are selected along that path, according to the timing parameter 
<period>, or the combination <wave_freq> and <samp_time>. For a balanced waveform, the output values start at 
an initial value of zero, which is the sine function value corresponding to phase angle zero. 

Note: A SINEWAVE command configured with an initial phase angle 0.5 (implicitly, 0.5 π ) is equivalent to a 
COSINEWAVE command. 

Note: A SINEWAVE command configured with <pk_min> and <pk_max> parameters that are not balanced produces 
the equivalent of a balanced sine wave combined with a DC offset level equaling (<pk_min> + <pk_max>)/2. 

Examples

SINEWAVE(1000,100,P2)

Generate a balanced sine wave with values ranging from -1000 to 1000, and a period of 100 sample intervals, in 16-
bit format. Place the waveform data into pipe P2.

SINEWAVE(0.0, 1.0, 60.0, 25.0, PWAVE)

Generate samples of a sine wave plus DC offset so that the value is never negative. The frequency is 60.0 Hz when 
the specified updating interval of 25 microseconds is used. Because of the DC offset level, halfway between the 
range limits of 0.0 to 1.0, the first output will have the value of 0.5. The resulting waveform data in a floating point 
format are placed into pipe PWAVE. 

See Also

COSINEWAVE, TRIANGLE, SAWTOOTH, SQUAREWAVE
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SQUAREWAVE 

Define a task that generates square wave data.

SQUAREWAVE ( <pk_min>, <pk_max>, <wave_freq>, [<init_phs>,] <samp_time>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

SQUAREWAVE ( <amplitude>, <period>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

Parameters

The parameters for a SQUAREWAVE command are shared by several waveform commands. The common parameter 
description is provided in the WAVEFORMS command description page. 

Description

A SQUAREWAVE command defines a task that generates square wave data, and places the data in <out_pipe>. The 
sequence is obtained by taking a continuous-time version of the waveform and selecting values along that path, 
according to the timing parameter <period>, or the combination <wave_freq> and <samp_time>. The output values 
start at the high level, equal to <pk_max>, and, halfway through the cycle, switch over to low output values, equal 
to <pk_min>. 

A SQUAREWAVE waveform has an unusual property that (without amplitude modulation) the only values it can 
produce are the two extreme values. If a discontinuity location is reached exactly, the mathematical value of the 
waveform is undefined there. If this happens, the transition is considered to happen first, and the selected output 
value will match the values for the points immediately following.

Note: When the period of the waveform spans an odd number of samples, the number of values at the high output 
level and the number of values at the low output level cannot be equal. This results in a waveform with a small DC 
imbalance. 

Examples

SQUAREWAVE(1000,100,P2)

Generate a balanced squarewave signal with range -1000 to 1000, and a period of 100 sample intervals, in 16-bit 
format. Since the period is an even number, the waveform is exactly balanced, alternating 50 high values with 50 
low values. Place the waveform data into pipe P2.

SQUAREWAVE(0.5, 2.4, 1000.0, 4.0, PWAVE)

Generate samples of a square wave that cycles between 0.5 volts, a voltage sufficiently low to serve as TTL logic 
low, and 2.5, a voltage sufficiently high to serve as TTL logic high. The fundamental frequency of the waveform is 
1000 cycles per second when the output values are updated at the specified 4.0 microsecond per sample rate. The 
resulting waveform data in floating point format are placed into pipe PWAVE. 
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See Also

COSINEWAVE, SINEWAVE, TRIANGLE, SAWTOOTH
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TIME (for input definitions)

Specify a time interval between sampling events during a channel list scan.

TIME   (<interval>)

Parameters
<interval>

The time interval desired between sampling events.
explicit number, in an integer or floating point notation

Description

The TIME command in an input sampling configuration provides a means for specifying the desired time interval 
between sampling events. The TIME command also has a secondary interpretation for back-compatibility with legacy 
application configurations.

The specified time interval <interval> between sampling events is expressed in units of microseconds, as an integer  
value or as a decimal fractional value with resolution to 0.001 microseconds. The actual times of sampling events  
will be adjusted internally to integer multiples of the sampling timer resolution. An error will be diagnosed if the 
specified <interval> value is too fast for the xDAP hardware, or too slow to collect samples from all channels within 
the time interval allowed by the SCAN command.

A sampling configuration that does not specify a  TIME command has its sampling events distributed as evenly as 
possible through the scanning interval defined by the SCAN command. For some applications, this default behavior 
might not be desirable. For example, it might be preferable to approximate simultaneous sampling over a very large 
number of channels by collecting data for all channels in very rapid steps, and then wait for the next scan cycle to 
repeat the pattern. To request this behavior, use a TIME command with a small <interval> value, in combination with 
a relatively large SCAN value.

If  a  TIME command  is  specified,  but  a  SCAN command  is  not,  the  configuration  is  presumed  to  be  a  legacy 
DAPL 2000 configuration. For such configurations, the DAPL 3000 system will construct an internal equivalent 
SCAN command with scan interval equal to the number of input channels times the sampling time interval specified 
on the  TIME command.  This yields  a  channel  list  scan time that  matches the channel  list  scan time under the  
DAPL 2000 system. But, because the xDAP architecture performs sampling actions simultaneously, using multiple  
channel selectors, the moments at which individual samples are captured will not necessarily align exactly with the  
other DAP architectures. 

Example

IDEFINE   dual3phase
  CHANNELS  12
  SET  ipipe0   D0
  . . .
  SET  ipipe11  D11
  SCAN  34.72
  TIME   1.0
END
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Configure input sampling for an application measuring AC voltages and AC currents on two three-phase high 
voltage power transmission lines, with 480 samples per 60 Hz waveform, on every signal channel, for a total of 12 
channels. To capture all 12 channels at a rate that aligns to the power grid frequency, the SCAN time is set to 34.72 
microseconds. For each transmission line, the three phase voltages and phase currents are routed through six 
separate channel selectors, allowing simultaneous three-phase measurements on that line. To capture samples for 
the two transmission lines with only a very short delay between the measurements, the TIME interval is set to 2.0 
microseconds.

See Also
SCAN
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TRIANGLE 

Define a task that generates triangular wave data.

TRIANGLE ( <pk_min>, <pk_max>, <wave_freq>, [<init_phs>,] <samp_time>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

TRIANGLE ( <amplitude>, <period>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

Parameters

The parameters for a TRIANGLE command are shared by several waveform commands. The common parameter 
description is provided in the WAVEVORMS command description page. 

Description

A TRIANGLE command defines a task that generates triangular wave data and places the data in <out_pipe>. The 
data sequence is obtained by taking a continuous-time version of the waveform and selecting values along that 
path, according to the timing parameter <period>, or the combination <wave_freq> and <samp_time>. For a 
balanced waveform, the output values start at a value of zero, and initially are increasing. One quarter of the way 
through the cycle, the output values begin decreasing. Three quarters of the way through the cycle, the output 
values return to increasing, and continue this until the end of the cycle. 

For generating a ramp sequence that is easier to configure to reach certain output levels specifically, and that 
allows different rates for the ascending and and descending portions of the cycle, consider the BIRAMP command 
as an alternative.

Examples

TRIANGLE(1000,100,P2)

Generate a balanced triangular wave with values ranging from -1000 to 1000, and a period of 100 sample intervals, 
in 16-bit format. Place the waveform data into pipe P2.

TRIANGLE(0.0, 30000.0, 24.0, 50.0, PWAVE)

Generate samples of a triangular wave that completes 24 cycles per second when output updates are generated at the 
specified 50 microsecond intervals. The output values are all non-negative, ranging from 0 to 30000. The resulting 
waveform data in a floating point format are placed into pipe PWAVE. 

See Also

COSINEWAVE, SINEWAVE, SAWTOOTH, SQUAREWAVE, BIRAMP
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WAIT 

Define a task that selects data according to trigger events.

WAIT ( <in_pipe>, <trigger>, <pre>, [<post>], <out_pipe> )

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<trigger>
The trigger that provides notification of event locations.
TRIGGER

<pre>
The number of values to transfer before the trigger event.
WORD CONSTANT | LONG CONSTANT

<post>
The number of values to transfer at or after the trigger event.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description
A WAIT task skips data from <in_pipe> until <trigger> is asserted. When the <trigger> reports an event location, 
the task transfers values from <in_pipe> to <out_pipe> at that location, retaining the number of values determined 
by the <pre> and <post> parameters. The data types of <in_pipe> and <out_pipe> must match. 

Triggering events are produced by another command, typically by analyzing either <in_pipe> or a related data 
stream that has data flowing at the same rate. An event, sometimes called a trigger assertion, indicates a position 
of interest in the data stream. If the data rates in <in_pipe> and the analyzed data stream are not the same, the 
number of samples in the two streams will diverge, and positions in the two streams will not correspond. In many 
cases, a TRIGSCALE command can correct the alignment. 

The numbers <pre> and <post> determine how many samples are retained from the <in_pipe> stream. 

• The number <post> is often called the post-trigger count. A sample that occurs exactly at the event is 
included in <post>. Usually <post> is positive, because an event most commonly signals when data of 
interest start in the data stream. This parameter can be considered the one that determines where to stop 
retaining data. If <post> is omitted, the WAIT task transfers data continuously once started.

• The number <pre> is often called the pre-trigger count. It specifies the number of samples to be retained 
prior to the location of the event. It is typically zero, but is usually set to a positive number to retain data 
prior to a triggering event. This parameter can be considered the one that determines where to start 
retaining data. A value of zero means that no samples prior to the triggering event are retained.

• The number of samples retained for each event is <pre> + <post>, which must be a positive total. This 
rule is invariant, even for extension cases where <pre> or <post> is negative.

These <pre> and <post> numbers are typically non-negative integers, but they have extended meanings when 
given negative values. 
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• A negative value of <pre> extends its interpretation about where to start retaining samples. An ordinary 
positive number means to begin retaining data before the trigger event position. By extension, a negative 
value means to start retaining data at a delayed position, after the trigger event position. For example, 
a '-2' value would mean to omit the sample at the triggering event position and the one to follow, and 
begin retaining data at the sample position after that.

• A negative value of <post> extends its interpretation about where to stop retaining samples. An ordinary 
positive number means to stop after the samples at the event location plus some number of successor 
locations are taken. By extension, a negative value means to stop taking data before the position of the 
triggering event. For example, a  1 value would mean to stop retaining the data at the last sample 
preceding the triggering event. 

The <pre> and <post> values cannot both be negative; otherwise, the total number of retained samples <pre> + 
<post> would be negative, and the data transfer would stop before taking any data.

If triggering events are sufficiently isolated, every event results in a separate data transfer. If any new events arrive 
too soon, so that some of the <pre> + <post> samples already involved with the current data transfer would be 
required, the data retention conditions are are impossible to satisfy. In such cases, the events will be ignored. Some 
processing is involved to evaluate and ignore these extraneous triggering events, so your processing will be most 
efficient if you configure trigger analysis tasks to avoid producing extraneous events. 

When the <in_pipe> source of data is an input channel pipe, the WAIT command gives it special treatment. The 
WAIT command assumes that the task asserting the trigger tested only a single channel (it would be hard to define 
a meaningful test on mixed multiple channels). An input channel pipe with N signal channels will carry N times 
more data than any one channel. Ordinarily, this would be a problem, because the positions found by the triggering 
analysis for one channel and the positions of data in a combination of N signal channels would not align. However, 
for this special case of input channel pipes, the WAIT command accounts for the N multiplier automatically. As a 
general rule: if you generate a trigger event by analyzing one channel from the input channel pipe, you retain 
capture data from any number of channels from the input channel pipe using a WAIT command, without taking any 
special action. However, you must take care to include the N multiplier explicitly when you specify the <pre> and 
<post> counts. For example, if you have 100 channels and want two pre-trigger samples and two post-trigger 
samples in each channel, you must set the <pre> and <post> counts each to 200.

Examples

WAIT (IP(0..3), T1, 0, 100, P1)
Wait for a trigger assertion on trigger T1 and after the trigger event, transfer a block of 100 values, 25 values for 
each channel, from the input channel pipe, placing the data in pipe P1. 

WAIT (P2, T2, 50, 25, P3)
Wait for a trigger assertion on T2 and transfer from pipe P2 to pipe P3 50 values before and 25 values starting at 
the trigger event.

WAIT (PX, T1, 0, PY)
Wait for a trigger assertion on trigger T1, and transfer data continuously from pipe PX to pipe PY starting with the 
sample of the trigger event.

See Also
LIMIT, TRIGSCALE 
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WAVEFORMS 

A generalized description of task configuration parameters for waveform generator tasks.

General parameter form

waveform ( <pk_min>, <pk_max>, <wave_freq>, [<init_phs>,] <samp_time>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

Traditional parameter form

waveform ( <amplitude>, <period>, <out_pipe>,  
    [<mod_type1>, <mod_pipe1>]  [<mod_type2>, <mod_pipe2>]  )

Parameters

For the general parameter form:

<pk_min>
The lowest extreme value of the waveform.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<pk_max>
The highest extreme value of the waveform.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<wave_freq>
The fundamental frequency (inverse of cycle time) for the generated wave, in Hertz.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT 

<init_phs>
Optional normalized initial phase shift specifier, dimensionless.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT 

<samp_time>
The time interval to be spanned by each output sample, in microseconds.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT 

For the traditional parameter form:

<amplitude>
The absolute magnitude of the waveform peak.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT

<period>
The number of values in each wave cycle.
WORD CONSTANT | LONG CONSTANT | FLOAT CONSTANT | DOUBLE CONSTANT 
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Parameters common to both forms:

<out_pipe>
Output pipe for waveform data.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<mod_type1>
A first optional modulation keyword, represented as a double-quoted string.
STRING

<mod_pipe1>
A pipe providing modulation signal data, when first modulation keyword is specified.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

<mod_type2>
A second optional modulation keyword, represented as a double-quoted string.
STRING

<mod_pipe2>
A pipe providing the modulation signal data, when second modulation keyword is specified.
WORD PIPE | LONG PIPE | FLOAT PIPE | DOUBLE PIPE

Description

This description is not for one particular waveform generation commands; rather, it is a generalized description of 
several of the waveform commands to define tasks that operate in very much the same way, except generating 
different kinds of waveform shapes. These waveform generating tasks include:

• COSINEWAVE -  cosine wave data

• SAWTOOTH -  sawtooth wave data

• SINEWAVE -  sine wave data

• SQUAREWAVE -  square wave data

• TRIANGLE -  triangular wave data

Read the description for the particular command to get details specific to that command.

Waveform generating tasks have two available schemes for describing the characteristics of the wave.

General parameter form 
This form gives more control over the waveform configuration, and describes a wave in terms of external 
properties. 

The range of the wave is specified, from minimum <pk_min>, to maximum <pk_max>. Note that if <pk_min> is 
not the negative of <pk_max>, this produces a wave with a non-zero DC offset level. The amplitude specifiers 
must have the same type, but do not need to match the output data type, as long as they both represent values the 
output data type can represent exactly. 

The fundamental wave frequency to be generated is specified by the <wave_freq> parameter, in units of Hertz. The 
time interval <samp_time>, in units of microseconds, specifies the update time interval intended to be used to 
present the output waveform data. The combination of <wave_freq> and <samp_time> parameters implies the 
number of samples required to span each cycle of the waveform. The most efficient operation is achieved when 
this combination yields an integer number of terms per cycle, less than 4096. 
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The optional <init_phs> parameter can be used to determine which waveform value is generated first. When 
specified, the value must be in the range -1.0 to 1.0. It has an implied multiplier of π radians. If omitted, the default 
value is 0.0, yielding an initial output value halfway between the minimum and maximum extreme value, provided 
that this is an allowable value for the particular waveform. For example:

• a phase value of either -1.0 or 1.0 (equivalent to a phase shift of π) has the effect of inverting the 
waveform.

• a phase value of 0.5 is the equivalent of a phase angle shift of π/2 ; applying this to a SINEWAVE 
command makes it equivalent to a COSINEWAVE command.

Traditional parmeter form. 
This form cannot produce all of the waveforms that the general parameter form can, but it is often the easiest for 
producing balanced waveform cycles that span an exact number of sample intervals. 

The <amplitude> parameter sets the absolute magnitude (positive, one half the peak-to-peak range) of the output 
wave. The <amplitude> specification does not need to match the output data type, but it must represent a value that 
is possible for the output data type to represent exactly. For example, if the output data type is long, 500.0 would 
be an acceptable amplitude value, but 500.5 would not.

The <period> parameter specifies the number of sample values to generate within each waveform cycle. For 
example, specifying exactly 1024 samples per waveform cycle will align the waveform to a conventional 1024 
point FFT data block. Integer values of moderate size are the most efficient, but cycles lengths that are not an 
exact integer can be specified using a floating point parameter value. Arbitrarily long periods or periods that are 
mixed fractional numbers are allowed, but the most efficient operation is achieved using integer-length waveform 
cycles of length less than 4096 terms.

An initial waveform phase or DC offset cannot be specified using the traditional parameter form. 

Common to both forms
Depending on the specifications for the range, period, and data type of the waveform, the numerical range of the 
peak values observed in the <out_pipe> stream might not attain the peak values specified by the <amplitude>, 
<pk_min>, or <pk_max> parameters. See the "Understanding output range" subsection below for more 
information about this. 

There are two modulations options. One, both, or neither can be applied. Each modulation specification consists of 
a selection string (“AMPLITUDE”, or “FREQUENCY”, including the double quotes) followed by a pipe name 
identifying the modulation data source. One value is processed from each modulation signal pipe for each output 
sample value generated. For fixed point modulation data, the maximum representable value (32767 for WORD data 
type, or 2147483647 for LONG data type) corresponds to a factor of 1.0, and lower values correspond to 
proportional fractions less than 1.0. For floating point modulation data, the range is typically 0.0 to 1.0, with 
natural scaling. The two modulation options are:

1. Amplitude modulation. Modulation specifier string  “AMPLITUDE”
Values of the modulation signal multiply the corresponding values of the original waveform one-for-one. 
This modulation applies only to the varying part of the wave, and does not shift the DC offset level. So, for 
example, the range of the waveform is 0 to 10000 when a modulation factor 1.0 (i.e. “no modulation”) is 
applied. But waveform output values are all equal to 5000 (the DC offset implied by the range limits) when 
a modulation factor 0.0 is applied. 

2. Frequency modulation. Modulation specifier string  “FREQUENCY”
Values of the modulation signal act as a multiplier on the waveform frequency. A frequency modulation 
factor of 1.0 produces data at the nominal frequency, as established by the <period> or the combination of 
the <wave_freq> and <samp_time> parameters. As the modulation factor reduces, the frequency reduces 
proportionally and the cycle length grows inversely. For example, if the <period> is 1000, and the values 
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from the frequency modulation pipe are 0.5, the frequency is cut in half and the effect is the same as locally 
elevating <period> to 2000.

Understanding output range

Waveform values are calculated at specific discrete points lying along a theoretical continuous and ideal waveform 
curve, in much the same way that a continuous waveform would be sampled at points equally spaced in time to 
produce a sampled waveform. This causes a difficulty for waveforms that are not continuous (SQUAREWAVE and 
SAWTOOTH commands) and have no defined value at certain sample locations. Commands can use different 
strategies to resolve this. See the individual command descriptions for these details.

If you use parameters in the traditional form, discontinuities can sometimes be avoided by displacing the 
<init_phs> parameter (for example, by ½ of the effective phase advance per sample). While this might result in a 
well-balanced wave cycle that has all of the correct harmonic and amplitude properties, the nominal peak values 
might not be attained exactly. 

Examples

SAWTOOTH(1000,100,P2)

Generate a balanced sawtooth wave signal using the traditional parameter form, ranging from -1000 to 1000, with a 
period of 100 samples, in 16-bit format suitable for delivery to D-to-A output hardware. Place the waveform data 
into pipe P2.

SINEWAVE(0.0, 10000.0, 2500.0, 4.0, -0.25, PWAVE, "AMPLITUDE", PAMOD)

Generate samples of a sine wave using the general parameter form. Values will range from 0.0 to 10000.0 (like a 
sine wave of amplitude 5000 riding on a DC offset of 5000) while the modulation factor is at its maximum value 
1.0. The generated waveform is for a 2500.0 Hz wave if an updating interval 4.0 microseconds is used as specified. 
Specify an initial phase adjustment of -0.25, which is the equivalent of -0.25 π radians at the first evaluation of the 
sine function. 

See Also

COSINEWAVE, SAWTOOTH, SINEWAVE, SQUAREWAVE, TRIANGLE, BIRAMP
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