
Old Forms of Commands

Supplement to
DAPL 2000 Manual, Version 6

Version 1.00

Microstar Laboratories, Inc.

This manual contains proprietary information which is protected by copyright. All
rights are reserved. No part of this manual may be photocopied, reproduced, or
translated to another language without prior written consent of Microstar
Laboratories, Inc.

Copyright © 1985-2003

Microstar Laboratories, Inc.
2265 116 Avenue N.E.
Bellevue, WA 98004
Tel: (425) 453-2345
Fax: (425) 453-3199
http://www.mstarlabs.com

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAP, iDSC, DAPL,
and DAPview are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any
Microstar Laboratories products are to be used in or with systems, devices, or
applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark
of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Contents

Introduction... 2
Warnings and Limitations ... 3

Old Forms of Commands ... 4
AVERAGE ... 5
BAVERAGE... 6
BMERGE.. 8
COMPRESS ... 10
COPY.. 12
DEXPAND ... 13
MERGE .. 15
SEPARATE .. 17
SKIP ..19

2

Introduction

The DAPL 2000 version 2.5 release introduces some new versions of common
processing commands with extended abilities to process data in 16-bit, 32-bit, 32-bit
standard floating point, or 64-bit standard double-precision floating point. These
commands are distributed in the form of a 32-bit downloadable command module,
DAPLCMDS.DLM.

With the new abilities of the commands to process more data types, there are also new
internal complexities that can change command behaviors in subtle ways. Most
applications will find it impossible to observe any differences. However, some finely-
tuned applications pushing the extreme limits might be affected by small differences
in execution speed. For these applications, it is possible to revert to the previous
versions of the processing commands, restoring the original behaviors but losing any
new abilities to process the additional data types.

The following updated commands are provided in the DAPLCMDS.DLM module:

AVERAGE
BAVERAGE
COPY
MERGE
BMERGE
SEPARATE
SKIP

If an application requires the old behaviors of these commands, disable the new
versions of these commands, by performing the following procedure.

1. Run the ACCEL32 control panel application.

2. Select the MODULES tab.

3. Highlight the DAPLCMDS.DLM module in the Installed Modules window.

4. Click the DELETE button.

5. Click OK in the options window.

6. Back in the ACCEL32 control panel application window, select the CONTROL
tab.

7. Click the STOP button and wait for the DAPcell Local Server to stop.

8. Click the START button and wait for the DAPL system to reload, this time
without loading the DAPLCMDS module.

Disabling loading of the DAPLCMDS module will have other side effects. Several
commands previously distributed in 16-bit binary form are now available only
through the DAPLCMDS module. Disabling the module makes these commands
unavailable. Also, some related triggering commands become unavailable.

COMPRESS
DEXPAND
TAND
TOR
TCOLLATE
TOGGLE
TOGGWT

In case you find it necessary to try disabling the DAPLCMDS module, the command
pages that follow describe the old forms of the commands, as they will operate after
the new forms are disabled.

Warnings and Limitations
• DAPL 2000 is a 32-bit operating system and is compatible only with certain Data

Acquisition Processors that have a 32-bit processor.
• The DAPLCMDS.DLM module can be used with the DAPL 2000 operating system

version 2.5 or newer. There is no assurance of compatibility with any prior
operating system versions.

• The DAPLCMDS.DLM module makes extensive use of floating point features when
using floating point data types. These features will be very slow when executed on
Data Acquisition Processor models with processors having no floating point
hardware features.

 •Future versions of the DAPL 2000 system will not be able to support the historical
old forms of the processing commands. At that time, disabling the DAPLCMNDS
module will be inadvisable, as this would make many processing commands
unavailable.

4

Old Forms of Commands

AVERAGE

Define a task that computes the arithmetic mean of a group of samples.

AVERAGE (<in_pipe>, <count>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<count>
The number of samples from which the arithmetic mean is computed.
WORD CONSTANT

<out_pipe>
Output pipe for the averaged data.
WORD PIPE

Description
AVERAGEAVERAGE computes the arithmetic mean of <count> samples. Data values are
received from <in_pipe> and results are sent to <out_pipe>. AVERAGEAVERAGE is useful
for data compression and noise reduction.

Examples

AVERAGE (IPIPE0, 10, P1)

Average groups of 10 values from input channel pipe 0 and send the averages to
pipe P1.

AVERAGE (P2, 4, P3)
Average groups of 4 values from pipe P2 and send the averages to pipe P3.

See Also
BAVERAGEBAVERAGE, FIRFILTERFIRFILTER, RAVERAGERAVERAGE

6

BAVERAGE

Define a task that computes multiple arithmetic means for multiplexed data.

BAVERAGE (<in_pipe>, <n>, <m>, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<n>
The number of values in a block.
WORD CONSTANT

<m>
The number of blocks of data to be averaged.
WORD CONSTANT

<out_pipe>
Output pipe for averaged data blocks.
WORD PIPE | LONG PIPE

Description
<n> and <m> are positive nonzero integers. <n> indicates the number of values in
the block. BAVERAGEBAVERAGE reads <m> blocks, averages corresponding points in the
blocks, and puts one block of averages into <out_pipe>. For every <n>*<m>
values read, <n> values are put into <out_pipe>. The maximum size of <n> is
8192.

Some common applications of BAVERAGEBAVERAGE:

• reducing noise in repetitive waveforms
• averaging data from multiple channels in parallel
• reducing noise in FFT power spectra

Example

BAVERAGE (P1, 100, 5, P2)

Read 5 blocks of 100 values, average corresponding values in the blocks, and send
the 100 averages to pipe P2.

See Also
RAVERAGERAVERAGE, WAITWAIT

8

BMERGE

Define a task that merges blocks of data.

BMERGE (<in_pipe_0>, ... , <in_pipe_n-1>, <blocksize>,
 <out_pipe>)

Parameters
<in_pipe_0>

First input data pipe.
WORD PIPE | LONG PIPE

<in_pipe_n-1>
Last input data pipe.
WORD PIPE | LONG PIPE

<blocksize>
A number that represents the length of the data blocks.
WORD CONSTANT

<out_pipe>
Output pipe for merged data blocks.
WORD PIPE | LONG PIPE

Description
BMERGEBMERGE reads blocks of length <blocksize> sequentially from pipes
<in_pipe_0>, <in_pipe_1>, … , <in_pipe_n-1>, and writes the blocks to
<out_pipe>. For blocked data, such as the outputs of WAITWAIT or FFTFFT tasks, BMERGEBMERGE
is more efficient than MERGEMERGE.

The data types of pipes <in_pipe_0>, <in_pipe_1> etc., and pipe <out_pipe>
must all be the same. The maximum size of <blocksize> is 8192 for word pipes
and 4096 for long pipes.

BMERGEBMERGE should be used only when <in_pipe_0>, <in_pipe_1>, … ,
<in_pipe_n-1>, are filled at the same rate. Otherwise, BMERGEFBMERGEF should be used.

Example

BMERGE (P1, P2, P3, P4, 1024, $BINOUT)

Read blocks of 1024 data values sequentially from pipes P1, P2, P3, and P4, and
send the blocks to the PC through $BINOUT.

See Also
BMERGEFBMERGEF, MERGEMERGE, MERGEFMERGEF, NNMERGEMERGE, SEPARATESEPARATE, SEPARATEFSEPARATEF

10

COMPRESS

Define a task that encodes data in which changes occur infrequently.

COMPRESS (<in_pipe>, <n> [, <threshold>]*, <out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE

<n>
A positive constant, less than or equal to 16, specifying the number of data
streams read from <in_pipe>.
WORD CONSTANT

<threshold>
A number or sequence of numbers that represents the threshold value for which
to report changes.
WORD CONSTANT | WORD VARIABLE

<out_pipe>
Output pipe for encoded data blocks.
WORD PIPE

Description
COMPRESSCOMPRESS encodes data in which changes occur infrequently. COMPRESSCOMPRESS can
monitor a single data stream or a multiplexed data stream such as an input channel
pipe list. COMPRESSCOMPRESS takes data from <in_pipe> one value at a time, and compares
that value to the corresponding value previously reported for the same channel. If
the absolute difference is greater than or equal to the <threshold> parameter for
that channel, a data block containing the new value is placed into <out_pipe>.
Otherwise the data value is discarded. Output data blocks are always generated to
report the first value from each input stream.

Note: COMPRESSCOMPRESS is not predefined in DAPL. The code for COMPRESSCOMPRESS must be
downloaded to the Data Acquisition Processor from the 16-bit binary file
COMPRESS.BIN. It is installed in the “Microstar Laboratories\Accel32\Dapl2000”
directory. Command downloading can be performed from DAPview for Windows
or from CDLOAD32. The CDLOAD32 utility is available with the source code in

the DAPDEV\EXAMPLES install directory on the DAPtools CD. When
downloading COMPRESSCOMPRESS, use a stack size of 1000.

The first parameter <in_pipe> specifies one or more data streams. The first
parameter typically is an input channel pipe list, but it can be any data pipe with
multiplexed data.

The second parameter <n> is a positive constant, less than or equal to 16, specifying
the number of data streams read from <in_pipe>. If <in_pipe> is an input
channel pipe list, <n> must be equal to the number of input channel pipes. For a
single pipe, <n> must be 1. The data streams from the input pipe are numbered 0
through <n>-1.

Either one or multiple <threshold> parameters must appear next in the parameter
list. Each <threshold> value is a nonnegative value. If a single <threshold>
parameter is specified, it will apply to each stream in the input pipe list. If more than
one <threshold> parameter is specified, there must be one <threshold>
parameter for each of the <n> multiplexed data streams, in sequence.

Each change report written to <out_pipe> contains three values. The first value is
a 16-bit integer from 0 to <n>-1, specifying the stream from which the threshold
value was exceeded. A zero indicates the first stream, a 1 indicates the second
stream, and so on. The second value is the new 16-bit input data value. The last
field is a 32-bit unsigned integer specifying the sample number of the new value,
where the data are counted in one channel starting from sample number 0.

Examples

COMPRESS (IP0, 1, 100, P1)

Send data block to pipe P1 when input values change by more than 100.

COMPRESS (IPIPES(0,1,2), 3, 64, 64, 1000, P1)

Send data block if input channel pipe 0 or 1 changes by more than 64 or if input
channel pipe 2 changes by more than 1000.

See Also
AVERAGEAVERAGE, LIMITLIMIT

12

COPY

Define a task that transfers data from an input pipe to one or more output pipes.

COPY (<in_pipe>, <out_pipe_1>, ... , <out_pipe_n>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<out_pipe_1>
First output pipe for copied data.
WORD PIPE | LONG PIPE

<out_pipe_n>
Last output pipe for copied data.
WORD PIPE | LONG PIPE

Description
COPYCOPY transfers each value from <in_pipe> to one or more output pipes. As many
as 64 output pipes are allowed. The data types of the <in_pipe> and <out_pipe>
parameters must all match.

In addition to moving data between tasks, COPYCOPY also lets tasks in different
configurations share the same data. This gets around the restriction that all tasks
reading from a pipe must reside in the same processing procedure.

Example

COPY (P1, P2, P3, P4)

Copy each value from pipe P1 to pipes P2, P3, and P4.

See Also
COPYVECCOPYVEC, MERGEMERGE

DEXPAND

Define a task that provides output expansion on a digital port.

DEXPAND (<in_pipe>, <output_vector>, <out_pipe> [, <type>])

Parameters
<in_pipe>

Input word pipe.
WORD PIPE

<output_vector>
A vector containing a list of the output pins to which data should be sent.
VECTOR

<out_pipe>
Output pipe for output data.
WORD PIPE

<type>
An optional parameter that specifies the type of output expansion boards.
WORD CONSTANT

Description
DEXPANDDEXPAND provides output expansion on the digital port. <output_vector> is a
vector containing a list of the expanded output pins to which data should be sent.
<in_pipe> is a word pipe that contains data to be sent to the output pins; data must
appear in the order of the list in <output_vector>. For each data value read from
<in_pipe>, four words specifying the output pin number and the data are written
to <out_pipe>.

Optional parameter <type> specifies the type of output expansion boards. A value
of 0 specifies digital output expansion boards. A value of 1 specifies analog output
expansion boards. See the hardware documentation for details on output expansion
boards.

DEXPANDDEXPAND is used only for synchronous output expansion. The OUTPORTOUTPORT command
configures asynchronous output expansion. Asynchronous output to the digital
output port is not available when DEXPANDDEXPAND is used.

14

DEXPANDDEXPAND is not predefined in DAPL — the code for DEXPANDDEXPAND must be downloaded
to the Data Acquisition Processor from a disk file in the PC. Command
downloading can be performed from DAPview for Windows or from CDLOAD32.
The CDLOAD32 utility is available with the source code in the
DAPDEV\EXAMPLES install directory on the DAPtools CD. When downloading
DEXPANDDEXPAND, use a stack size of 1000.

Note: It is possible to stop an output configuration in the middle of a four word
output expansion sequence. If another output configuration then is started, the first
value written to the expanded output port may be incorrect.

Example

DEXPAND(P1, (4, 5, 6, 7), OPIPE0)

Prepare data from pipe P1 for output to digital expansion ports 4, 5, 6, and 7, and
send the data to synchronous output channel pipe 0.

See Also
DIGITALOUTDIGITALOUT, DACOUTDACOUT, ODEFINEODEFINE, OPTIONSOPTIONS, OUTPORTOUTPORT

MERGE

Define a task that merges data sequentially from multiple input pipes.

MERGE (<in_pipe_0>, ... , <in_pipe_n-1>, <out_pipe>)

Parameters
<in_pipe_0>

First input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE

<in_pipe_n-1>
Last input data pipe.
WORD PIPE | LONG PIPE | FLOAT PIPE

<out_pipe>
Output pipe for merged data.
WORD PIPE | LONG PIPE | FLOAT PIPE

Description
MERGEMERGE reads data from one or more input pipes and places the data consecutively
into an output pipe. When transferring a word value to a long output pipe, the value
is sign extended. When transferring a long value to a word output pipe, two words
are placed in the output pipe, with the least significant word first, followed by the
most significant word.

It is necessary for the data arrival rates in all pipes <in_pipe_0> through
<in_pipe_n-1> to be equal. If data volumes are different in different pipes, data
will backlog in the pipes having higher volumes, causing processing to terminate
when capacity is exhausted.

MERGEMERGE is useful for merging binary data from several pipes to a single
communication pipe for transmission to the host computer. MERGEMERGE is the inverse of
SEPARATESEPARATE.

16

Examples

MERGE (P1,P2,P3,P4)

Read data from pipes P1, P2, and P3, and place the data consecutively into pipe P4.

MERGE (P5,P6,P7,$BINOUT)
Transfer data from pipes P5, P6, and P7 to the binary output communication pipe;
send the data values to the host.

See Also
BMERGEBMERGE, BMERGEFBMERGEF, MERGEFMERGEF, SEPARATESEPARATE, SEPARATEFSEPARATEF

SEPARATE

Define a task that distributes data consecutively into one or more output pipes.

SEPARATE (<in_pipe>, <out_pipe_0>, ... , <out_pipe_n-1>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<out_pipe_0>
First output pipe for separated data.
WORD PIPE | LONG PIPE

<out_pipe_n-1>
Last output pipe for separated data.
WORD PIPE | LONG PIPE

Description
SEPARATESEPARATE reads data from <in_pipe> and places the data consecutively into one
or more output pipes. The first data value is sent to <out_pipe_0>, the second data
value is sent to <out_pipe_1>, etc.

When <in_pipe> is a word pipe and the output pipe is a long pipe, two
consecutive words, low word then high word, are read from the input pipe and
concatenated to form a long output value.

When <in_pipe> is a long pipe and an output is a word pipe, the low word of the
long value is transferred, and the high word is ignored.

SEPARATESEPARATE is useful for reading binary data from a host computer and splitting the
binary data stream into several pipes for processing. SEPARATESEPARATE is the inverse of
MERGEMERGE.

18

Examples

SEPARATE (P1,P2,P3,P4)

Read data from pipe P1 and place data consecutively into pipes P2, P3, and P4.

SEPARATE ($BININ,P5,P6,P7)
Transfer data from the binary input com pipe to pipes P5, P6, and P7.

See Also
MERGEMERGE, MERGEFMERGEF, SEPARATEFSEPARATEF

SKIP

Define a task that alternately copies and skips data.

SKIP (<in_pipe>, <initial_skip>, <take_cnt>, <skip_cnt>
<out_pipe>)

Parameters
<in_pipe>

Input data pipe.
WORD PIPE | LONG PIPE

<initial_skip>
A value that specifies the initial number of values to skip.
WORD CONSTANT | LONG CONSTANT

<take_cnt>
A value that specifies the number of values to move.
WORD CONSTANT | LONG CONSTANT

<skip_cnt>
A value that specifies the number of values to skip.
WORD CONSTANT | LONG CONSTANT

<out_pipe>
Output data pipe.
WORD PIPE | LONG PIPE

Description
SKIPSKIP moves selected data from <in_pipe> to <out_pipe> and provides flexible
options for skipping blocks of data. After initially doing a one time skip of
<initial_skip> values, SKIPSKIP repeatedly moves <take_cnt> values to
<out_pipe> then ignores <skip_cnt> values.

20

Examples

SKIP (IP0, 0, 1000, 2000, P1)

Transfer 1000 values to P1, ignore a block of 2000 values, and repeat.

SKIP (IP0, 100, 500, 100, P1)
Ignore 100 values from IP0, transfer 500 values to P1, then repeat.

SKIP (P1, 50, 1, 0, P2)
Ignore first 50 values from P1, then continuously transfer remaining data.

