
DAPtools for MATLAB Manual

DAPIO32 Interface for MATLAB

Version 5.10

Microstar Laboratories, Inc.

This manual is copyrighted. All rights are reserved. No part of this manual may be reproduced, redistributed,
or translated to another language without prior written consent of Microstar Laboratories, Inc.

Copyright © 2000 – 2013, Microstar Laboratories, Inc.
2265 116th Avenue N.E.
Bellevue, WA 98004
Tel: (425) 453-2345
Fax: (425) 453-3199
www.mstarlabs.com

Microstar Laboratories, Data Acquisition Processor, DAP, DAPcell, DAPL 2000, DAPL 3000, DAPL, DAP
Measurement Studio, DAPstudio, and Channel List Clocking are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any Microstar Laboratories
products are to be used in or with systems, devices, or applications in which failure can be expected to
endanger human life.

Microsoft and Windows are registered trademarks of Microsoft Corporation. MATLAB and Simulink are trademarks of
The Mathworks, Inc. Other brand and product names are trademarks or registered trademarks of their respective
holders.

Part Number DAPMATLABM510

Contents

Table of Contents
Contents..2

1 Introduction..4

2 Getting Started..5

3 DAPIO and MEX Functions..7

4 General Notes and Hints..9

5 Application Examples...13
Establishing Connections..14
Closing Connections...15
Robust Management of Connections..16
Configuring for Data Sampling..18
Logging Data to Disk...20
Commands and Error Messages...22
Two Way Data: Stimulus and Response...23
Waveform Generation and Playback..25
Time Sequence Analysis...26
Frequency Transfer Response Measurements...27

6 Alphabetical Command Reference..28
dapclose ...29
dapclrpa..30
dapcnfig..31
dapcpc..32
dapcpd..34
dapfedpd...35
dapflshi...39
dapflsho..41
dapgavl...42
dapgetm..43
dapgstr..46
dapmdin..48
dapmdld..50
dapmduin..52
dapmduld..54
daplogpd...56
dapopen..60
dappavl...62
dappstr..63

dapputm..65
dapquery...68
daprecnf..70
dapreset..72
daprinit...74
dapsetpa..75

1 Introduction

DAPtools for MATLAB™ allows MATLAB applications to communicate with a Data Acquisition
Processor™ (DAP) from the MATLAB programming environment. This integrates the processing power
of a Data Acquisition Processor with the powerful technical computing environment of MATLAB.
DAPtools for MATLAB allows the MATLAB environment to digitize signals on demand and apply this
data directly. In addition, MATLAB applications can take advantage of real-time processing within the
DAP system for numerical signal preprocessing, data selection, real-time signal playback, and other time-
critical concurrent operations.

2 Getting Started

DAPtools for MATLAB requires a working knowledge of MATLAB scripting, and also a certain amount
of knowledge about how to configure and operate a Data Acquisition Processor (DAP) using commands
to the DAPL operating system. The DAPL operating system runs in the DAP board's embedded
environment. You don't need to control hardware in real time – the DAPL system takes care of all of that
for you. But you must configure the DAPL system to provide the digitized data at the rates you want, on
the number of channels you want, with the data selection or processing you specify. See the DAPL
Manual and online tutorial materials for full information about using features of the DAPL system. Basic
examples are provided with this package, and in many cases new applications can be configured using
slight variants of these examples.

System Requirements

This software is intended for use with versions of MATLAB R2009b or later. It has been tested with
MATLAB 2013a. It will work with 32-bit operating systems Windows XP, Windows Vista, Windows 7,
and Windows 8. It will work with 64-bit operating systems Windows 7 and Windows 8, either in native
64-bit mode (by installing the 64-bit version of MATLAB) or in 32-bit compatibility mode (by installing
the 32-bit version of MATLAB). There have not been many fundamental differences in the support for
pre-compiled commands using basic features of MATLAB, so you might find that this DAPtools for
MATLAB version works fine with older or more recent versions of the MATLAB, and older or more
recent versions of the Windows system. If you find that new MATLAB releases present problems under
the supported versions of Windows, please report to Microstar Laboratories.

If you need your application to run on an older operating systems and older versions of MATLAB,
contact Microstar Laboratories. Perhaps a previous version of the DAPtools for MATLAB package is
available that will work well enough for you.

Installation

Follow the steps below to install the DAPtools for MATLAB.

1. Install the DAPtools Standard or DAPtools Professional software on your system. Run the
SETUP.EXE program and install the DAPcell Server software. After this installation, shut down
the system and install the DAP board. Reboot the system, and run the Data Acquisition Processor
application in the Windows Control Panel. Verify on the Browser sheet that the Data Acquisition
Processor is recognized by the system.

2. Run the SETUP.EXE program from your DAPtools Software again. Click on DAPtools for
MATLAB and follow the instructions onscreen to complete the installation.

3. If you select the usual destination for your installation, the software is located at
C:\Program Files\Microstar Laboratories\DAPtools\MATLAB. There are
some additional example application script that are placed in the \User\Documents\MATLAB
area under your user name.

Configuration

To tell the MATLAB system where you installed the DAPtools for MATLAB commands, you need to
add their location into the MATLAB search path. The easiest way to do this is to get administrator
privilege on your machine and set up a startup.m script file in the root install directory of your
MATLAB software, for example

C:\Program Files\MATLAB\2013a

Use a text editor (or Notepad) to create a text file and enter the following lines.

%startup.m user-configurable startup file
% This script is executed when MATLAB starts, if it exists
% anywhere on the path.
disp('Adding DAPtools for MATLAB to the MATLAB search path');
mslpath='C:\Program Files (x86)\Microstar Laboratories\DAPtools\MATLAB';
addpath(mslpath,path);

Save the file and exit the editor.

New Features

Be sure to check the README.TXT file that comes with the DAPtools for MATLAB package, for the
latest news about installation, feature changes, and so forth.

3 DAPIO and MEX Functions

The functions that access DAP boards are provided by the programming API called DAPIO. The file that
implements this interface is called dapio32.dll. These functions are provided by the DAPcell Server
that runs in you host Windows system. The MATLAB package doesn't automatically know that this API
exists – so this is where DAPtools for MATLAB comes in. This package provides pre-compiled MATLAB
extension functions that also know about the DAPIO interface services, to give the developer access. The
dapio.32.dll file is installed automatically with the DAPcell Server software, and registered with the
Windows system so that it is available to applications.

The pre-compiled MATLAB functions – the “MATLAB Extension files” – are known as “mex files” and
are identified by the file type extension: .mexw32 when the functions are compiled for running in a 32-
bit system (or in a 64-bit system running in 32-bit compatibility mode), or file extension .mexw64 when
the functions are compiled for running native 64-bit mode in a 64-bit system. These files are typically
installed in the Program Files (x32)\Microstar Laboratories area of your file system by
the DAPtools for Matlab installer. The MATLAB command search path makes these commands available
to your MATLAB applications.

The DAPIO API features do not correspond one-for-one with the DAPtools for MATLAB mex functions,
and parameters of the mex functions to not mesh perfectly with DAPIO service calls, because the
Windows internal environment and MATLAB environment are very different. However, all of the most
important API features are available, and the correspondence is pretty close. The names of the mex files
differ from the names provided by the DAPIO32 API mostly for historical reasons – they were shortened
and made more “MATLAB-like,” for better or worse, so we are stuck with the same old names today.

The following table compares the mex functions and dapio32.dll entry point names.

MEX Functions for MATLAB DAPIO32 DLL Functions
dapclose DapHandleClose
dapclrpa DapConfigParamsClear
dapcnfig DapConfig
dapcpc DapComPipeCreate
dapcpd DapComPipeDelete
dapfedpd DapPipeDiskFeed
dapflshi DapInputFlushEx
dapflsho DapOutputEmpty
dapgavl DapInputAvail
dapgetm DapBufferGetEx
dapgstr DapLineGet
dapmdin DapModuleInstall
dapmdld DapModuleLoad
dapmduin DapModuleUninstall
dapmduld DapModuleUnload
daplogpd DapPipeDiskLog
dapopen DapHandleOpen
dappavl DapOutputSpace
dappstr DapLinePut
dapputm DapBufferPutEx
dapquery DapHandleQuery
daprecnf DapConfigRedirect
dapreset DapReset
daprinit DapReinitialize
dapsetpa DapConfigParamSet

4 General Notes and Hints

Quick command help

You can obtain abbreviated help information in the MATLAB command window for any function in the
DAPtools for MATLAB package. Type the command line help function (for example, help
dapclose).

Function return values

Return values report whether the functions have executed successfully. Most of the returned values are
messages (string) or error codes (number). The function descriptions and the DAPIO32 Reference
Manual explain these codes. These can be deceptive sometimes, because the DAPIO interface will
successfully complete its mission – and report success. But this mission might be to tell the DAP system
to do something impossible, causing an error condition in the embedded DAP board environment that is
harder to observe. The examples show how to poll the DAPL system for information, including error
reports.

Boolean result codes

Some of the return values from functions are boolean error codes. A value of 1 (true) indicates that the
processing wsa successful. A value of 0 (false) indicates that the processing failed. The dapgerr
function can sometimes provide more information about the failure.

Function argument names

Names used for function arguments in the command descriptions are illustrative only. Those variables can
have any sort of name acceptable to the MATLAB environment.

String arguments

String arguments are used to specify the UNC addresses for accessing DAP services, full or relative paths
to files, and various option keywords. Follow the general MATLAB syntax, enclosing strings with single-
quote characters.

Command lines

The DAPL system expects terminated command text lines, but the MATLAB system has no specific
concept of text line. Use ordinary MATLAB strings to represent commands, without any special
termination characters. When you send a command string, the DAPtools for MATLAB functions
automatically apply any required termination characters.

UNC addresses

UNC addresses are strings that identify the DAP resource that you wish to access. The UNC addresses
come in four flavors.

• A null address, represented as an empty MATLAB string ''.

• An address something like '//host' points to the entire host machine. When used to access
DAP services, it implicitly refers to the DAPcell server and all of the DAP boards on that host.
The shorthand name '//.' refers to the local host machine running the MATLAB application.

• An address something like '//host/Dap0' points to one specific DAP board located in the
indicated host. Most systems have one DAP board, identified as Dap0.

• An address something like '//host/Dap0/Cp2In' points to one specific virtual data
channel, often called a “communication pipe”, between the MATLAB application and the
specified DAP board.

Predefined communication pipes

The DAPcell Server automatically provides the following communication pipes. To a certain extent, you
can adjust their properties, but they will always be present. Unless you have a specialized application that
transfers data using an advanced mix of access strategies and data rates, these four predefined
communication channels are probably all that you will need.

1. $SysIn - command text going into the DAP board

2. $SysOut - response message coming out of the DAP board

3. $BinIn - downloaded binary data going into the DAP board

4. $BinOut - uploaded measurement data coming out of the DAP board

Handle variables

Handle variables are critical to accessing the DAP board. Handles identify the DAP board or its
communication channel that you have opened for access. During your application processing, you must
preserve the values of the handle variables – most of the DAPtools for MATLAB functions will need
them to identify which DAP board and which data channel to access. After the communication
connections are closed, the handle variables are no longer required and can be discarded.

DAP processing cycle

When using the DAPcell services through DAPIO functions, it is very much like communicating with a
separate host over a network. A four-step process is used.

1. Establish a connection. Use the dapopen function, specifying the Windows system UNC
resource name for the board you want to access. You receive back a handle variable that you will
use to identify the connection.

2. Tell the DAP system what you want it to do. Either issue a sequence of direct commands using
the dappstr function, or pass a collection of commands from a text file using the dapcnfig
function.

3. Transfer the data. Use dapgetm or dapputm functions to do the transfers.

4. Release the DAP system when you are finished with it. Use the dapclose function.

Some of the mex functions take filename as input parameter. In general, you can identify files using a
UNC path to a shared file, a full filesystem path with file name on the local host system, or a path to a file
relative to the MATLAB environment current working folder.

Function return values

Some of the mex functions have optional return values. All names shown in the command reference
pages and examples are illustrative, such as handle, code, numBytes, dataM, and string.
These names can be chosen by the user.

Some of the return value arguments are optional. If no return value location is provide, results are
unobservable except for their side effects. In some cases, when the command has no way to report
problems through a result code, the command will raise a MATLAB error that terminates application
script execution.

Time control

Some functions have optional TimeWait and TimeOut parameters, specifying time intervals.
Substitute the desired interval lengths in units of milliseconds for these. Be careful, because the Matlab
conventions typically represent time in units of seconds – a hint at the difference in time scales at which
the DAPL system and MATLAB system operate.

TimeWait specifies the longest time in milliseconds that the operation will sleep while waiting for data.
If no data show up in that amount of time, the function returns. TimeOut specifies a time limit in
milliseconds during which the operation should complete. If it fails to complete in this amount of time,
the function returns. Whichever condition arises first will force the return. Specifying a value of zero for a
timing parameters typically means to apply a default behavior, which can be to ignore the specification.
Using no timeouts can be dangerous, because it could easily leave the application permanently
deadlocked waiting for data that will never arrive. Using default timeouts is safe, but could take many
seconds to return control. Timing limits are imprecise, so there might be additional time delays before the
Windows system returns control to your application. You will need to check the return values to
determine whether the operation was completed normally or terminated early. More information about
timing control is available in the DAPIO32 Reference Manual.

Options lists

Some specialized function parameters allow selection of certain processing options. These options are
specified as MATLAB strings containing certain reserved keywords separated by blank characters. Two
consecutive single-quote characters represent an empty option string – equivalent to a request “please
apply the usual defaults.” Spelling is critical in the keywords.

DAPL system configuration scripts

Just as MATLAB needs script files to tell its computing engine what to do, the DAPL system needs
command scripts to tell its embedded processor what to do. DAPL scripts are provided for the example
applications described in the next chapter. The DAPL scripts are typically organized into the following
sections.

1. Preparation. Comments identifying the purposes of the script. A reset command terminates any
previous DAP board activity that may have been left by accident.

2. Declarations. Define some additional processing elements when needed, such as configurable
constants (for example, offset and gain adjustments for calibrated sensor devices), shared
variables, and pipes for streaming data between tasks.

3. Input sampling. Most applications will use this, since acquisition is central to data acquisition.
This section specifies the number of channels, their signal range properties, the timing cycle for
automatic capture of samples, and in some cases some special properties for how sampling starts
and stops.

4. Processing. Many applications use just one processing command – to tell the DAPL system
which data streams to copy to the host system. For example,

copy(IPipes(0..7), $BinOut)

This example tells the DAPL system to take the set of 8 channels configured in the input
sampling section, and transfer them to the host through the pre-configured $BinOut data
transfer communication pipe.

More advanced applications might be able to take advantage of other processing features, such as
“skipping” to reduce the size of data transfers, digital filtering for avoiding aliasing and noise,
taking data selectively when special events are detected, or reorganizing samples into contiguous
groups.

5. Output conversions. Some specialized applications use this feature to configure automatic
digital-to-analog hardware, so that sampled signals are precisely reconstructed as analog signals.

6. Operation. While it is always possible to tell a DAP board configuration to run using a separate
start command, sometimes the application wants the board to begin as soon as possible, and it
is convenient to place the start command into the script for immediate execution.

Refer to the DAPL Manual for complete information about the standard features available with the DAPL
system.

5 Application Examples

The DAPtools for MATLAB package includes several example script files showing how to use the
DAPtools For MATLAB MEX functions. This following chapter briefly describes each application or
technique, and why it might be relevant to you.

Copies of the scripts described in these examples are placed into your User\Documents area when the
DAPtools for MATLAB package is installed.

Establishing Connections

Applications will establish connections to the DAP boards and their communication channels, use those
connections for a while, then release them. This section covers the first step.

There is no harm in setting up the connections very early: it reserves access to the DAP board, without
actually changing anything until you start to send commands.

The commands discussed here are provided in the example script file dapinit_simple.m.

• Your application will need to open a channel so that you can send commands to the DAP board.
Commands are sent through the predefined $SysIn communication pipe. The DAP boards on
your system are assigned names of the form Dap0, Dap1, etc. so that the host system can identify
them using UNC networking and resource names.

texthandle = dapopen('\\.\Dap0\$SysIn', 'write')
if texthandle == 0
 error('Error opening DAP input command text handle')
end

• Almost every application does data acquisition in the classic sense – capturing digitized data –
and will need to open a channel for delivering this data to the host system. This uses the
predefined $BinOut communication pipe.

binaryhandle = dapopen('\\.\Dap0\$BinOut', 'read')
if binaryhandle == 0
 error('Error opening DAP binary output handle')
end

• At the beginning of your application run, you probably do not expect to have something already
running on the DAP board, producing and consuming data. In case this happened by accident,
send a command to stop this activity.

dappstr(texthandle, 'reset');

• Any prior activity could immediately deliver meaningless data into your data transfer channel the
moment you connect to it. Now that the source of the data has been stopped, you can remove the
undesired data.

dapflshi(binaryhandle);

Closing Connections

All well-structured applications that initiate activity on DAP boards and that terminate normally should
attempt to “clean up” and clear out data and applications that are no longer needed. Connections to the
board should be released before the application terminates, so that other applications – or another run of
this application – will have access.

The commands discussed here are provided in the example script file dapclose_simple.m.

• First, stop any processing activity that might still be running, by sending a STOP command to the
DAPL system running on the DAP board.

dappstr(texthandle,'stop');

• If you will no longer be using the measurement configuration that you set up, clear it from DAP
memory by sending a RESET command to the DAPL system.

dappstr(texthandle,'reset');

• Now use the dapclose function to release the connections to the communication channels that
were opened at the start of the application.

dapclose(texthandle)
dapclose(binaryhandle)

Robust Management of Connections

Rather than using the “simple” channel management examples shown in the previous two sections, we
suggest using more robust MATLAB scripts that package all of the opening and closing operations into
simple and easy-to-use one line operations.

Code discussed here is available in the dapallopen.m and dapallclose.m scripts.

% Open connections to DAP board 0
dapallopen;

% Use the DAP connections...

% Close connections to DAP board 0
dapallclose;

You already know everything about how this works. The dapallopen and dapallclose scripts just
cover more “housekeeping” considerations.

Conventional communication handles

There are actually four predefined communication pipes that you should know about. These scripts try to
open or close a handle to each channel automatically, making the channels available if you need them,
doing no harm if you don't need them. If you use these scripts, you will soon come to expect that these
handles are always available and you won't think about them much. All of the other examples use these.

Handle variable Associated
communication pipe

Purpose

hTextToDap $SysIn Commands going to DAPL system on DAP

hTextFromDap $SysOut Messages returned to host system from DAP

hBinToDap $BinIn Precomputed signals downloaded to DAP

hBinFromDap $BinOut Sample values delivered to host from DAP

Non-robust handle horrors

If you use simple command sequences to initialize and close your connections, these will typically work
just fine... until something goes wrong.

Suppose for example that your script opens a handle variable to the $SysIn pipe, allowing it to send
commands to the DAP board. You now collect data for 100 samples and process them... oops! You
intended to collect 128 samples, so your index is out of range for the 100 sample matrix. Your application
terminated, but no matter. That is why you have MATLAB, it is simple to patch the script and run it
again.

When your script starts up again the next time, the first thing it tries to do is establish connections to the
DAP communication channel for sending commands – and this fails. Some application out there has
already reserved the DAP board to write to that channel. Well yes, it was really this same application, just
a different run, but the DAPcell Server doesn't know that. To clear the problem, you can manually call the
dapclose function, and this clears the channel so your script can open it again. Only, you can't do that
either. When you tried to open the handle the second time, and this failed, the dapopen function
returned a 0 value to flag the error. The returned 0 value wrote over the top of the handle value you
established in the previous run. You no longer know the handle value to close the connection, and until
you close it you can't connect to it or use it.

To recover from this kind of disaster, you must exit the MATLAB application to disassociate it
from the DAP boards, and then you must run the Data Acquisition Processor applet from the
Windows Control Panel. Click on “Stop DAPcell Service” to clear all of the existing
connections to the DAP board. Click on “Start DAPcell Service” to restore normal operation.

This isn't something you want to do very often.

More robust handle management

If you use the dapallopen and dapallclose scripts, and your application gets one of the dreaded
“communication pipe is already reserved” errors, manually type dapallclose into the command
window and then run your application again. Most of the time, this repairs the problem.

The reason it can do this: the two scripts work together, and know which handles to expect. The
dapallclose script won't try to close a handle that for some reason is not valid, but it will close all
handles that appear to have been opened. The dapallopen script will not change the values of any
handle variables until it is sure that operations were successful, and if handles appear to be already
opened, they are not opened again.

You can study the scripts for more details. For more advanced applications, you might need to generalize
the scripts to work with multiple DAP boards or additional communication pipes.

Configuring for Data Sampling

After you establish connections to the DAP communication channels, it is time to do something useful
with them. Since data acquisition is primarily about acquiring data, some additional script lines will do
this.

Actually, acquiring data consists of two closely related parts: the operations that run on the DAP board to
collect and deliver the data, and the operations in your application that receive the data. We will look at
what happens in the application script first.

The code discussed here is provided in the data.m example file.

The application script

• The DAP board must be told how you want your samples captured. This information is collected
in a text script file (DAPL operating system script, not an m-file script), and sent to the DAP
board through the command pipe. If the DAPL system script embeds a start command, as
quickly as you send this, the data can start to arrive.

cnfg = dapcnfig(hTextToDap, 'data.dap');
 if cnfg < 1
 % Print error message
 error('Error configuring DAP')
 end

• Request the data. You will specify the data type in which the data are transferred, but there is an
automatic conversion to the floating point internal format used by MATLAB. In this example,
data arrive from two channels in the 'natural' order that they are taken by the sampler, alternating
samples for each channel. The results are returned in a two-row matrix with 1000 elements.

channels = dapgetm(hBinFromDap, [2, 500], ‘int16’)

The DAPL configuration script

The DAPL configuration determines what data the application receives, and how that data is organized.
The data.dap script file that the dapcnfig function sends has the following sections.

• The first section specifies that there are two single-ended analog-to-digital conversion channels,
and the capture cycle for these channels in combination is 10 microseconds.

idefine fastcapture
 channels 2
 set ipipe0 s0 ; analog 'stimulus' channel, single ended
 set ipipe1 s1 ; analog 'response' channel, single ended
 time 5.0
end

• The next section tells the DAPL system what processing to perform. In this case, it only needs to
transfer all of the sampled data to the host application, in the natural sequence, without reordering
or grouping. There is no point in waiting, so the entire configuration is started immediately.

 pdef sendall
 copy(IPipe(0,1), $BinOut)
 end
start

Extensions

The data.m script shows how high-resolution data are expected at 1 second intervals. If you examine
the data.dap script file, you can see how the processing definition section includes some data-selection
processing between the sampling and the data transfers.

With time intervals of 10 microsecond to cover each pass through the channels, the example
configuration captures 100 matrix data blocks every second. If you have previous experience with real-
time data management in Windows systems, you will know that trying to do anything regularly at 10
millisecond intervals is a very uncertain business. The work is scheduled erratically over time. Some
kinds of processing, such as “live” graphics must be updated at much lower rates. But the sampling can't
be reduced to operate at that same rate, otherwise the required time resolution is lost and the data are not
meaningful.

The solution shown in the script is that data are taken selectively – returning some data blocks and
discarding others to reduce the volume of data traffic.

Logging Data to Disk

Saving sampled data to a disk data set for later analysis is perhaps the most common application of data
acquisition. Data logging using a Data Acquisition Processor is a particularly good fit for the MATLAB
environment, because the DAP can take care of the fast real-time considerations, while the MATLAB
environment covers the chore of getting all of that data moved to the disk concurrently. The logfile.m
script shows an example.

Though the data are produced at a regular rate, when things begin to go fast, data appear to arrive
irregularly by the time they reach the MATLAB environment. By providing a sufficient buffer area for
the transfer pipes, irregular transfers will be collected and the transfers to the disk can be done in more
orderly large blocks.

The MATLAB fopen function is used to prepare the file and receive a file handle to access it. Those
details, and the details of opening and closing the DAP communications are skipped.

What typically remains in the logging application is a large run-time loop that alternately looks for data
and moves it. For this application, it is known that the samples will be processed in groups of 1024
values, and this is deemed an acceptably large block size for the data transfers.

• Various strategies can be used for determining when this loop is done. For this example, the
termination condition for the loop is that a predetermined number of samples are collected.

total_terms_written=0;
while total_terms_written < 102400

 % Are new samples available?
 ...

 % Move them.
 ...

end

• The dapgavl function is used to determine whether enough data are available in the transfer
buffers.

 Bavail = dapgavl(hBinFromDap);
 Navail = floor(Bavail / 2);
 if Navail < 1024
 continue % Try again later
 end

• Knowing that a full block is available, it can be moved from the DAP transfer buffers to the disk
without any further delays. One transfer operation moves one block.

 channel0 = dapgetm(hBinFromDap,[1024, 1], 'int16');
 fwrite(fid, channel0, 'short');
 total_terms_written = total_terms_written + 1024

Exit the application loop when the number of terms reaches the limit. After the exit, close the files and the
DAP connections.

Extensions

The idea of moving data in convenient moderate-size groups to match the way the data will be analyzed
can be an expensive luxury when data are arriving very fast. For such cases, there is never an issue of not
having data, but amounts of data available can vary a lot because of timing variability. It is probably a
better strategy to omit looking for data with dapgavl in these cases. Simply ask for data immediately
using a dapgetm function with a moderately large requested matrix size and a relatively short timeout
option. You are very unlikely to wait for very long. Any other activity besides the transfer loop is likely to
cause delays that will degrade the net logging rate.

For extremely demanding applications, using the Local Server or Network Server editions of DAPcell
Server, available with the DAPtools Software Standard and Professional editions, will allow you to use
the daplogpd function to log data to disk without using a control loop in the MATLAB environment.
The data can also move data across network connections if necessary.

Commands and Error Messages

Error messages and codes that you can receive from the DAPtools for Matlab functions can be deceptive.
They might report “completed successfully,” which means that the request was transmitted to the DAP
board successfully. But that doesn't mean the the DAP board was able to process the request.

Checking for errors requires message passing between your application and the DAPL system. This is
done using the dappstr and dapgstr functions. You can see a lot more information about using these
function in the dstring.m example script file.

In this example, we want to see if we have somehow produced a crash condition that leaves the DAP
board unable to respond. This is uncommon, but far from impossible. Sending a HELLO command to the
DAP is roughly the equivalent of running a “Hello, world” application in other environments... it
demonstrates that something is able to run.

• First, the HELLO command is sent to the DAPL system as a command text line using a
dappstr command.

dappstr(hTextToDap, 'hello');

• The HELLO command will provoke a one line response from the DAPL system if the system is
running well enough to respond. The response is almost immediate, so allow only a very short
waiting interval

message=dapgstr(hTextFromDap,250)

If you fail to receive anything more than an empty string, the DAPL system is in trouble and the board
needs to be reset.

Extensions

Receiving error messages works much the same way, except that you have options whether to check for
them as they happen, or to poll for them at specific times of your choosing. The example script shows
examples of both strategies.

Two Way Data: Stimulus and Response

Stimulus and response testing is tricky with MATLAB. While MATLAB can compute extremely
advanced data signal sequences, it has little control over the Windows environment to determine when the
stimulus goes out, and relative to that, when the responses come back.

Using a DAPL system, a MATLAB script can download a predetermined stimulus signal and buffer it in
DAP memory. Then, a single START command initiates the stimulus and response processing. The
responsibility for accurate timing, both for regenerating the analog stimulus signal and for observations,
then falls entirely on the DAP board. Stimulus and response signals are both monitored, in parallel, so
there is very little timing uncertainty once the processing starts.

Details about the two directions of data transfer can be examined in the biway.m script.

• The first thing to do is prepare the stimulus data set and download it to the DAP through the
hBinToDap communication connection. The matrix stimulus contains the samples of the
stimulus signal to generate.

dapputm(hBinToDap, stimulus, 'int16');

• The stimulus data is stored, but not used immediately. After everything is downloaded and the
test is ready, one START command will initiate all activity.

dappstr(hTextToDap,'start');

• All that is necessary now is to collect an appropriate number of data samples to match the
duration of the stimulus and expected response signals.

response = dapgetm(hBinFromDap, [2,300], 'int16');

Extensions

The biway.dap configuration is a very questionable sort of simulation, for purposes of demonstration
only. In an actual stimulus-response experiment, you will need a DAPL configuration to support the
following connections between the DAP board output, the test subject, and DAP board signal inputs.

This loopback configuration, monitoring the output signal sent to the subject under test, and
simultaneously monitoring the response, establishes a very tight time-association between the stimulus
and response signals. There can be some delay before the hardware updating cycles begin signal output

generation, but this doesn't matter, because you can see all of the delays as they occur in the paired data
streams.

The DAPL system configuration to support this has the following requirements:

1. Processing must copy the predetermined stimulus sequence from the $BinIn communication
pipe to an output channel pipe.

2. The output channel pipe is configured in an output procedure that specifies the digital-to-analog
conversion port address and the output timing.

3. An input sampling procedure is configured to accept the data from the two input signal channels,
the stimulus-loopback and the response.

4. Processing route the samples captured by the two signal channels in the input procedure back to
the host through the $BinOut communication pipe.

If you apply suitable scaling for your measured stimulus-response data sample sets, they are very well
suited for direct display in MATLAB graphics.

Waveform Generation and Playback

The stimulus-response application ideas suggested one way to generate an output waveform: have
MATLAB calculate the waveform data, convert it into the appropriate range for the output converters,
and download the data for a DAP output procedure to generate.

Here are two other possible strategies that can be useful in special applications.

Direct on-board signal synthesis

The DAPL system provides some simple waveform generator functions that might be easier to use –
because there is no data stream to precompute and download. The data are produced efficiently on-the-
fly.

Examine the waves1.m script and the waves1.dap configuration to see how waveform data can be
generated. This particular example doesn't do anything very useful, it just sends some data to the
MATLAB system for plotting, but this at least demonstrates what is possible to produce on-board. The
MATLAB system could do all of that an more, but only by pre-computing it, not real time. The story can
be very different if the waveforms must be issued continuously and accurately in real time. See the
Frequency Response section to see an advanced development of this idea.

This example has one extra feature: there is a waves.m script showing how a stimulus-response
application might be controlled manually using a click-button GUI widget. These displays are updated
fast enough that they would be easy to mistake for “real time live action.” But don't be fooled... the
displays are “real time” only on a human (and Windows) time scale.

Direct playback of a prerecorded real signal

The normal features of MATLAB file I/O can be used to read a file of binary data previously logged. The
data, they are typically loaded into a matrix within the MATLAB workspace, in a manner similar to the
following:

Nchan = 4;
fid = fopen('databin.log', 'rb');
bindata = fread (fid, [nchan,inf], 'int16')
fclose(fid);

After the data are loaded, one of the options available is to feed the data set back to the DAP board using
the hBinToDap communication pipe handle.

As an alternative to logging signal data in raw binary form, MATLAB supports saving and reloading data
in a .WAV file format (uncompressed PCM). This data file format can also be loaded for processing by
quite a few applications that might otherwise find raw logged data confusing.

The playwav.dap and playwav.m script files show details of how data are sent to a DAP board for
real-time playback. A playwav.wav file is also provided, with a few seconds of signal data compatible
with the scripts.

Time Sequence Analysis

Everybody knows that when you are using MATLAB, you have arguably the world's most powerful
mathematical engine and a world class graphical data display engine – but without a great time-sense.
Your Data Acquisition Processor system can provide data to the MATLAB system with rigorous timing.
This should be a perfect combination.

If you run the fourier.m example script, it will set up a graphical display window. Each time you click
the button, this script invokes the fourier1.m script, which in turn uses the fourier1.dap configuration
on a DAP board to deliver new data for a 3-axis time-frequency plot. This kind of analysis is business-as-
usual for MATLAB, to such a degree that it hardly worth mentioning. Except...

The unique thing about this example is that MATLAB is not doing any of the time-frequency analysis.
The plot is showing the raw spectrum data as delivered directly from the DAP board.

As a practical matter, you are probably not going to use MATLAB this way. But still, this hints at the
real-time processing resources available on the DAP board to run in parallel with MATLAB processing.
Some of the more meaningful things that your on-board DAP processing might do:

• Noise reduction. Sample at a much higher rate than strictly necessary, then smooth the data by
averaging or digital filtering with decimation to achieve the intended data rate.

• Frequency-selective digital filtering, using zero-phase-distortion FIR filter DSP operations, to
help isolate the information relevant to your MATLAB analysis.

• Selective data capture. Observations of events in a data stream can often determine efficiently
whether captured data blocks contain anything relevant for applying a full MATLAB analysis. If
there is nothing to see, the DAP board does not need to send anything.

• Parallel data buffering. For example, suppose that MATLAB performs a complex analysis with
multiple graphical data displays. While doing these things, it is NOT collecting new data –
processing is serialized. Ordinarily, before the next analysis cycle can start, MATLAB must
request that data, and then wait for it to be collected and delivered, and this can take a while.
Using DAPL system processing in parallel, MATLAB might not need to wait at all – when the
analysis is done, the next data set is already collected and waiting. And you might not need to do
anything for this, just provide enough buffer space.

• Critical timing. For events that are easily detectable with a simple analysis of the data stream,
MATLAB might not get a chance to see the data until a response is too late. By embedding time
critical processing in the DAPL system, these response latencies are reduced by orders of
magnitude.

Frequency Transfer Response Measurements

For some reason, university students always seem to get into trouble with this kind of application – trying
to get real-time response out of the Windows system when it isn't there.

What is the obvious way to calculate a system frequency response? (Often, this is the critical step for
building a system model using MATLAB tools.)

1. Use MATLAB to calculate a stimulus signal sequence with known frequency.

2. Download the data set to drive the digital-to-analog converters, generating a timed analog signal
to excite the system.

3. Measure the response of the system.

4. Analyze the magnitude and phase angle of the response signal and compare to the magnitude and
phase of the excitation signal at the known frequency.

5. So far, this yields the system frequency response at one frequency. Repeat N times. If you don't
mishandle the data sets, eventually you can collect the response data as a reasonably clean
transfer response curve.

While this is tedious, trying to automate this process so that MATLAB properly coordinates the excitation
signal and response analysis in slow real time is no great joy either.

The freqresp.m example shows how easy it is to delegate the signal generation and response collection to
the DAPL system, as a special case of stimulus-response testing. A continuously-adjusted, swept-
frequency signal is generated on-board using a sinewave command. This provides roughly equal
excitation energy at each frequency from roughly 0 to ¼ of the Nyquist limit of the sampling. Exactly
equal excitation energy doesn't matter, but providing a relatively uniform energy distribution and
avoiding excessive noise variance can make a huge difference. The DAPL configuration coordinates the
signal generation, and collects measured data as one large block of input/output pairs. The input and
output frequency characteristics are relatively trivial to analyze using FFT methods. With a few
repetitions, and a little data smoothing, you will get excellent data for model fitting.

6 Alphabetical Command Reference

This section provides details about each function in the DAPtools for MATLAB package, listed by name.

dapclose

Close a target handle to a DAP, communication pipe, or server.

<boolean> = dapclose(handle)

Parameters

handle

Handle to a previously opened handle to a DAP, communication pipe, or server.
double.

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function closes the specified handle which was returned by an earlier call to the dapopen function.
The return argument boolean is optional. If no return argument is given, error checking is handled
internally, and an error message will occur if the processing fails.

Examples

dapclose(hTextFrpmDap)

Close the previously opened handle specifies by variable hTextFromDap.

ret = dapclose(hBinToDap)

Close the handle specifies by hBinToDap, and retain the return value in variable ret.

See Also

dapopen

dapclrpa

Clear all program-defined substitution macros and clear all pre-set defaults.

<boolean> = dapclrpa()

Parameters

(None)

Return Values

boolean

Optional return code, always succeeds.
double

Description

This function clears all program-defined substitution macros and any default values for them previously
provided to the application by the DAPIO system and prior calls to the dapsetpa function. The current
implementation has no way to detect failure and always reports 1 (true). Future versions may have more
information and might return 0 (false), so there is no harm to check the result.

Example

dapclrpa

Clear all program-defined and default parameters in memory without any result code value.

See Also

dapsetpa

dapcnfig

Send a DAPL command file through a DAP communication pipe, with parameter substitution.

<boolean> = dapcnfig(handle, filename)

Parameters

handle

Handle to a communication text pipe to a DAP, previously opened with write access.
double

filename

UNC or local host path and filename of the DAPL command file to send.
string

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function sends a DAPL command file to a the DAPL system on the DAP board associated with the
handle variable. For more information, please see DapConfig in the DAPIO32 Reference Manual.

Example

dapcnfig(hTextToDap, ‘c:\test.dap’);

Sends the text content of the DAPL command file test.dap from the current working directory to the
DAP com pipe specified by hDapSysin.

See Also

daprecnf, dapsetpa, dapclrpa

dapcpc

Create a logical communication pipe channel between the PC and a DAP.

<boolean> = dapcpc(...
 ’pInfo <[type=dT maxsize=v1 | maxsize=v2 blocking=bsz]>’)

Parameters

pInfo

UNC path specifying the host, DAP board, and pipe name to create.
UNC field in string.

type = dT

Optional host-side attribute text specifying the data type of elements to transfer through the pipe.
The dT text field must be byte, word, long, float, double or text.
Keyword field in string.

maxsize = v1

Optional host-side attribute specifying the transfer buffer size limit in units of elements.
The specification v1 should represent an integer value of at least 1024.
(If omitted, the DAPcell software supplies a generally good default value.)
Integer field in string.

maxsize = v2

Optional DAP side attribute specifying the maximum pipe buffer size in unit of elements.
The specification v2 should represent an integer value of at least 1024.
(If omitted, the DAPcell software supplies a value matching the one on the PC side.)
Integer field in string.

blocking = bsz

Optional DAP side attribute specifying a transfer group size. Data are collected until this number of
data elements are available, and then they are transferred as a group. The default is 1 element. In
certain cases of slow data, increasing the blocking size can avoid rapid small transfers that
significantly load the host CPU.
Integer field in string.

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function tells the DAPcell server to create a create a communication pipe channel between the PC
and a DAP. This function has one mandatory string parameter. At a minimum, this string must include a
UNC field pInfo that specifies the host, DAP identity, and new pipe name to create. These pipe names
have restricted forms. For most applications, the DAPcell Server will provide default values for all other
parameters, and all of the options text can be omitted.

If specified, the remaining text in the parameter string must be separated from the UNC path by a blank
space character and then enclosed within square bracket characters as shown. The remaining option
parameters consist of two groups, the first specifying properties on the PC side, and the second
specifying properties on the DAP side. The two sides must be separated by a vertical bar character. If
parameters for one side or the other are all omitted, the vertical bar character is also be omitted.
Keywords parameters for these properties must either be omitted or specified in the order shown and with
the exact spelling shown, with keyword and equal sign separator. The placeholders shown on the right of
the equal sign separator must be replaced by numeric text characters specifying the desired number
values. For more information about the communication pipe configuration options, please see the
DapComPipeCreate function in the DAPIO32 Reference Manual.

The effects of this persist over multiple system reboots, potentially affecting all applications that use the
specified DAP board in the specified host, so it should be used with caution.

Examples

dapcpc('\\.\Dap0\Cp2Out’)

Create a com pipe Cp2Out with default characteristics provided by the DAPcell Server.

dapcpc('\\Station2\Dap1\Cp4Out [type=word maxsize=2048]’)

Create a com pipe Cp4Out for Dap1 in remote host Station2 with default DAP side attributes and a
2048 element limit for the host side transfer buffer capacity.

ret = dapcpc('\\.\Dap0\Cp4In [type=long | maxsize=65536]')

Create a com pipe Cp4In for transferring 32-bit integer data, reserving buffer storage for up to 64K
values on the DAP side. Retain the return value for checking success.

See Also

dapcpd

dapcpd

Remove a communication pipe connection from the specified host and DAP board.

<boolean> = dapcpd(pInfo)

Parameters

pInfo

UNC path naming the host and communication pipe to be deleted.
string

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function tells the DAPcell Server in the host specified by the UNC string argument pInfo to delete
the communication pipe channel also specified in the UNC string argument. If the target communication
pipe channel does not exist, this function returns success without doing anything. An application can use
the same pInfo string used to create the pipe with the dapcpc function, including additional attribute
information – any attribute information will be ignored. For more information, please see function
DapComPipeDelete in the DAPIO32 Reference Manual.

This function has effects that persist over multiple system reboots, potentially affecting all applications
that use the specified DAP board in the specified host, so it should be used with caution.

Example

dapcpd('\\.\Dap0\Cp4In [type = word, maxsize=2048]’)

Deletes the com pipe Cp4In from Dap0 on the local host machine, ignoring the pipe attributes field.

ret = dapcpd('\\Remote1\Dap0\Cp4Out’)

Deletes the com pipe connection Cp4Out to DAP board Dap0 located at station Remotel, and save the
result of the operation in return variable ret.

See Also

dapcpc

dapfedpd

Initiate a background disk feed session that transfers data from a data file to a DAP board.

<boolean> = dapfedpd(handle, flags, filename, fileShareMode,
 fileFlagAttr, maxCount, blockSize
 <,[bytesMult, timewait, timeout]>)

Parameters

handle

Handle to a DAP communication pipe previously opened for diskio access.
double

flags

A list of zero or more keyword options specifying the behavior of the disk feed operation.
Allowed options: ServerSide, FlushBefore, ContinuousFeed, or BlockTransfer.
string

filename

Windows system UNC or local file system path to a data file providing the data.
string

fileShareMode

A text specifying the file sharing property of the data file.
Allowed options: 'read', or 'write'.
string

fileFlagAttr

A list of option keywords specifying additional file access properties.
Allowed options: ' normal', 'readonly', 'encrypted', or 'sequentialscan'.
string

maxCount

Maximum number of bytes to feed before automatic feed termination (see bytesMult).
If zero is specified, there is no predetermined maximum.
double

blocksize

Minimum amount of data (in bytes) to read from the data file if available.
If 0 is specified, use the default value.
double

bytesMult

Number of bytes written must be restricted to multiples of this value.
If 0 is specified, use the default value.
double

timewait

Longest time the feed operation can wait for space to become available on DAP.
If 0 is specified, use the default value.
double

timeout

Longest time for the feed operation to complete.
If 0 is specified, use the default value.
double

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function initiates a disk feed session. During a disk feed session, data will be read from the file
specified by filename and transferred in blocks to DAP through the communication pipe associated
with the open handle variable. The communication pipe must be previously opened using the mode
diskio.

There are many configurable parameters.

• The flags argument controls the behavior of the disk-feed operation. The flags options for
are covered under bmFlags in the TDapPipeDiskFeed section of the DAPIO32 Reference
Manual. They are a “bitmask” in the actual DAPIO control structure, but specified by space-
separated keywords in the flags string.

• The argument fileShareMode defines how the data file is read. The file sharing options for
are discussed under dwFileShareMode in the TDapPipeDiskFeed section of the
DAPIO32 Reference Manual.

• The argument fileFlagAttr specifies the file access mode for the data file. The file
processing options are discussed under dwFileFlagsAttributes in the
TDapPipeDiskFeed section of the DAPIO32 Reference Manual.

• The parameter maxCount specifies a limit on the how many bytes should be fed through. If this
value is not zero and the count of data bytes transferred reaches this limit, the transfer stops
automatically.

• The parameter blockSize specifies how many bytes to move in each block of data transfer,
and sometimes adjusting this size can optimize the throughput efficiency of the transfer (which is
machine-dependent).

After it is started, the data feeding operation continues in the background. The dapfedpd function call
returns immediately. The MATLAB application can continue doing other processing.

This function does not use a file handle, since that is specific to MATLAB I/O functions. Instead, the
DAPcell service opens the file separately and defines an association between it and the specified handle
used by the DAP for the feed operation. When the dapclose function is used to close the connection
between the application and the communication pipe, the DAPcell service will then close the file and
disassociate it with the application.

If it is necessary to monitor the process of the disk feed process, it can be done using the dapquery
function to check whether the disk feeding operation has finished.

The optional parameters BytesMult, timewait, timeout are used as a group. These parameters are
sometimes helpful for optimizing the transfers.If you want to use defaults for all of these, they can be
omitted from the list. To use one of these parameter, all three must provided. However, by specifying a
value of zero, you can still apply the default for an individual parameter.

• You can use BytesMult to specify a data transfer grouping. If you happen to know that data are
always used in groups, such as 1K blocks from FFT transforms, aligning the transfers to this
block size can sometimes avoid inefficient tearing and reassembly of data blocks.

• You can use timewait to specify how long the DAPcell Server should wait for the DAP to be
ready to accept new data. Because the DAP board has plenty of buffer memory, it is almost
always ready. If processing stalls for some reason, timewait can detect this.

• You can use timeout to specify a limit on the total time required for the playback. This allows
early termination of processing that is moving at a very slow and erratic pace.

Default values are supplied for parameters when the function call specifies values of 0. For these cases,
the DAPcell Service provides generally suitable defaults, as follows:

• maxcount The default behavior is that there is no maximum limit. The feed connection must
be terminated by closing the communication handle or exhausting the source data file.

• BytesMult The default value is 1. There is no restriction on how many bytes are taken from the file
in any given read operation. The maxcount and blocksize values must be multiples of this.

• blocksize The default is to let the Windows system decide how much data to take from the
file in each disk read operation.

• TimeWait The default is 1000 milliseconds (1 second) before the DAPcell Service decides
that the DAP has stopped accepting any more data.

• Timeout The default behavior is that no maximum time limit is applied to the disk feed. It
will stop when the disk file is exhausted or the handle for the feed channel is closed.

There are too many advanced options available in the various option strings to cover here. For more
information, please refer to the DapPipeDiskFeed, TDapPipeDiskFeed and
TDapBufferPutEx sections in the DAPIO32 Reference Manual.

Examples

dapfedpd (hDap, 'ContinuousFeed', 'c:\inData.dat', '', '', 0, 16384)

Feed the data from the file inData.dat in the local c: drive to the DAP specified by the handle hDap.
The file is repeatedly fed to the DAP board to provide a continuous stream of data, transferred in blocks
of 16384 bytes.

ret=dapfedpd(hDap, 'ServerSide', '\\PC5\Sigdat\inData.dat', ...
 '', '', 60000, 0, 0, 100, 20000)

Feed 60000 bytes of data from the file inData.dat in share area Sigdat on host PC5, and stream
this data to the DAP binary data pipe specified by the handle hDap. The DAP board associated with
this handle is also located at host PC5, which was established when the handle was opened. The
'ServerSide' option indicates that the data file for the feed is at the location of the system that hosts
the DAP board, not the local system that hosts the MATLAB application. Since the local host must
address files on the PC5 machine using a network share, the file address is in the form of a network UNC
address rather than a local disk\file path. The data will be transferred using default options. This operation
will wait at most 100 milliseconds for available space in the DAP communication buffer. If the entire
feed operation does not complete in less than 20 seconds, terminate the operation early. The ret return
value indicates whether the feed process started normally.

See Also

dapquery

dapflshi

Flush a DAP output communication pipe for reading.

<boolean> = dapflshi(handle <, timeout, timewait>)

Parameters

handle

A previously opened handle to a communication pipe for reading data from a DAP.
double

timeout

Optional limit on total time for the operation to complete, in units of milliseconds.
double

timewait

Optional quiet time interval for assuming that all data are removed, in units of milliseconds.
double

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function flushes all data in the target pipe specified by handle. The data can be text or binary. The
handle must refer to an opened communication pipe for transferring data from a DAP to the host
application. Since the DAPcell software does not know why data are in the pipe, it attempts to clear
everything it finds there by repeatedly reading and discarding the data, until no more are received.
Clearly, this is hopeless if the DAPL system is actively generating new data as fast as DAPcell can
discard it, so always be sure to first reset all processing on the DAP board.

The optional timeout parameters limits the amount of time allowed to complete the operation. If you
omit the timeout argument, a value of 20000 (milliseconds) is used by default.

If the third timewait interval has passed without any new data arriving, it is presumed that all data
have been flushed from the pipe, and the dapflshi function returns, reporting success. If the
timewait argument is omitted, a default value of 100 (milliseconds) is assumed. If data continue to
arrive after the timeout interval has passed, the dapflshi function reports failure.

 If you omit the optional return value, you cannot tell whether the flush operation succeeded or failed.

Example

ret = dapflshi(hTextFromDap, 3000, 1000);

Allow up to 3 seconds to flush all of the stale message text from the communication pipe to receive
message from the DAP, with handle hTextFromDap. After removing all of the old message text, the
pipe must remain empty for at least 1 full second before reporting success in the return location ret.

See Also

dapflsho

dapflsho

Empty any undelivered data previously written by the application to a DAP communication pipe.

<boolean> = dapflsho(handle)

Parameters

handle

Handle to a communication pipe previously opened in a 'write' mode.
double

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function completely empties buffers for the communication pipe previously opened for writing data
to the DAP, as identified by the specified handle variable. When it returns, the pipe is completely
empty on both sides, on the host and on the DAP.

Unlike the dapflshi function, the host application has control of data generation, and this clean-up
operation always finishes quickly, so no timing control parameters are needed.

Examples

ret = dapflsho(hBinToDap);

Completely empties the communication pipe for sending binary data to the DAP, specified by the handle
hBinToDap, and stores the function termination status in the return variable ret.

See Also

dapflshi

dapgavl

Get the number of bytes available for reading from a communication pipe.

numBytes = dapgavl(handle)

Parameters

handle

Handle previously opened for reading text or binary data sent by a DAP.
double

Return Values

numBytes

Number of bytes available for reading if successful, or -1 if function failed.
double

Description

This function gets the number of bytes available for reading from a communication pipe previously
opened for reading data from the DAP, as specified by handle. When the call is successful, the returned
number numBytes is a number of data bytes already buffered by the server and available immediately
for the application on the host to read and process. The returned value is in units of bytes, so for the case
of numeric data, the application must divide the returned value by the length of a data element (in bytes)
to determine the number of data element available. An application that reads the reported number of
bytes, or less, will not have the application process blocked and awaiting data that the DAP has not yet
produced. However, the value is only a lower bound, and might not represent all of the data actually
available in the host buffer storage.

Unless the application has other critical processing that cannot be delayed even for a short time while
waiting for new data, it is generally better to use dapgetm with a timeout specification.

Example

ret = dapgavl(hBinFromDap)

Get the number of bytes available for reading in the pipe specified by handle hBinFromDap. The
returned number of data bytes available is stored in the return value argument ret.

See Also

dappavl

dapgetm

Get a matrix of data sent from a DAP through a communication pipe.

[dataM <, numData>] = dapgetm(handle, [mrows, ncols], dtype, ...
 <, timeWait, timeOut>)

Parameters

handle

Handle to a communication pipe opened for reading data.
double

[mrows, ncols]

Dimensions of the matrix to take from the com pipe.
1x2 row matrix

dtype

The type of data in the returned matrix dataM.
keyword string, must be ‘int16’, ‘int32’, ‘double’ or ‘float’

timewait

Optional maximum limit on the time for the first data to arrive, in millisconds.
double

timeout

Optional maximum limit on the total time for the operation to finish, in millisconds.
double

Return Values

dataM

Data matrix taken from the com pipe, zero-matrix if function failed.
matrix of double

numData

Optional result variable, the number of matrix items if successful, or -1 if function failed.
double

Description

This function receives a matrix of data from a communication pipe previously opened for reading data
from a DAP, as specified by handle. The dimension of the data matrix is specified by a two-element
row matrix with arguments mrows and ncols.

The returned data matrix is filled column by column, so that each row corresponds to one data channel
source, and each column corresponds to one sampling pass through all of the channels. The type of data
being read is specified by the parameter dtype, which must be one of the following string values:

'int16' specifies 16-bit integer
'int32' specifies 32-bit integer
'double' specifies double precision floating point
'float' specifies single precision floating point

The timewait and timeout parameters are used as a pair – if one optional argument is used, the other
must be specified also. The timewait interval specifies the amount of time to allow before the data
transfer begins. If no data are available during this interval, it is assumed that the DAP is not producing
any data, and the function returns early. The timeout interval specifies the total amount of time allowed
to accumulate all of the data for the full matrix. If these arguments are omitted, the following defaults are
supplied:

timewait 100 (milliseconds)

timeout 20000 (milliseconds)

If the data fetch operation is successful, the full matrix of data is stored in the return argument dataM.
If a second result variable is specified, the number of items read is stored in the argument numData.
Unlike some other commands, this function knows the data type, and it can return its count in items rather
than bytes. For a successful transfer, the count of terms received will will equal the matrix size. If the
count of received terms is from 0 to something less than the matrix size, there is a timeout and the matrix
is not valid – the terms not received will have artificial zero values. If there is some other kind of problem
the return value is -1.

Example

[dataM, nterms] = dapgetm(hBinFromDap, [3, 1024], ‘int16’);

Get data from the com pipe specified by hBinFromDap. It reads 1024 data sample values from each of
three data channels, converting the 16-bit fixed point data to yield a 3-by-1024 term matrix dataM in the
normal MATLAB double data type. Default timing values are used. The number of data terms is stored
in ret. A successful operation returns an nterms value of 3072.

dataM = dapgetm(hBinFromDap, [40, 1], ‘double’, 400, 500);

Get data from the com pipe specified by hBinFromDap. It gets forty data items from one data source
and places them into a 40-element column vector. Because the data type as sent from the DAP is already
double format, there are no numeric conversions. If no data are available in 400 milliseconds, or if the
operation does not finish in 500 milliseconds, the function terminates early and some of all terms could be
zero values instead of actual data.

See Also

dapputm

dapgstr

Get a string of characters from a Data Acquisition Processor communication pipe.

[outputStr <, numBytes>] = dapgstr(handle <, timewait>)

Parameters

handle

Handle to a communication pipe previously opened for reading data from DAP.
double

timewait

Optional time limit to wait for a complete text line.
double

Return Values

outputStr

Characters read from the DAP com pipe.
string

numBytes

Optional, the number of bytes read from the target pipe if successful; 0 if function failed.
double

Description

This function reads a line of text from the com pipe specified by handle and returns it as a MATLAB
string in variable outputStr. This command is useful primarily for retrieving error messages and
various text information requested from the DAP.

The parameter timewait specifies the longest allowed time to complete this operation. If omitted the
default value of 1000 milliseconds is applied.

The number of characters received in the returned text is indicated by optional return variable
numBytes. If there is no text to return, the value of numBytes is set to 0, and outputStr is set to an
empty string. There is no way to distinguish a failure to receive any text from other kinds of failures.

DAPIO32 interprets text from the DAP as text lines terminated by CR (carriage return) control characters.
If data comes from files that follow MS-DOS conventions, with lines terminated by CR and LF (linefeed)
pairs, the linefeed control character is ignored. If data comes from directly from a file that follows
UNIX/Linux conventions with lines terminated by LF characters only, these lines will not be correctly
recognized.

In contrast, MATLAB treats strings as objects containing text, with no concept of text line or termination
characters. Before returning the text to MATLAB as a string, the dapgstr function detects and removes
the line termination control characters. The terminating CR character is considered a valid part of the
input text line, and included in the numBytes count, even though it is not stored in the returned string.
Any LF characters are considered extraneous and are neither placed into the returned string nor counted.

Normally, any positive return value indicates that text was returned successfully. However, if there is an
exceptionally long text line, or if a timeout interval occurs, the function must return before processing a
termination character. For such timeout or excessive text cases, the MATLAB size property of the
string will equal the returned numBytes count. For the cases where the end of the line was reached
normally and the CR character discarded, the MATLAB size property will be less by 1 character.

Example

daptext = dapgstr(hTextFromDap)

Get a string of zero or more characters from the DAP communication pipe specified by the handle
hTextFromDap, and stores the string in the return argument daptext.

[textFromDap, ret] = dapgstr(hTextFromDap, 100)

Get a string of characters from the DAP com pipe specified by the handle hDapSysout and store the
string in the return argument textFromDap. The maximum time to wait for a complete string is 100
milliseconds, or 0.1 seconds. The number of characters in the string, plus one, is saved in the return
argument variable ret.

See Also

dappstr

dapmdin

Install a downloadable command module and load to DAP board(s).

<boolean> = dapmdin(handle, filename <, flags>)

Parameters

handle

Handle to a DAP or a DAPcell server host, previously opened with 'write' access.
double

filename

Local or UNC path name for the module file to be installed.
string

flags

Optional string with space-separated keywords specifying the installation mode.
string keywords: must be nocopy, noreplace, noload, forceregister, or forceload.

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function installs a module specified by filename to the DAP(s) specified by handle. If
handle is associated with a single DAP, the module is installed to the associated DAP board. If
handle is associated with a DAPcell server, the module is installed on all DAP boards in the server's
host system.

Installation options can be specified using keywords placed in the optional flags string. For full
information, please see the description of bmFlags under the DapModuleInstall function in the
DAPIO32 Reference Manual. If the flags argument is omitted, default values are supplied; these will be
satisfactory for most applications.

Installation of a module is a persistent operation that places the location and identity of a module in the
host system registry. Once a module is installed, it will be reloaded automatically each time the system
boots, and each time the DAPcell services are started, until the module is uninstalled. For full information
about the option flags, please see bmFlags under the function DapModuleInstall in DAPIO32
Reference Manual.

Examples

ret = dapmdin(hdap, 'c:\custom.dlm');

Install the custom module from the root directory of the host's local C: drive to the DAP associated with
handle hdap, using default installation options. This will cache a copy the file to the DAP software
directory created by the DAPtools SETUP program, replacing any existing module by the same name. A
copy of the module is then loaded into the target DAP board or boards, as long as this does not produce a
conflict with the current DAPL system configuration.

ret = dapmdin(hdap, 'c:\custom .dlm', ‘’);

This means exactly the same thing as the previous example, since default options are requested.

ret = dapmdin(hdap, 'ztruncm.dlm', ‘noCopy noLoad’);

Install the ztruncm module from the current MATLAB working folder to the DAP associated with
handle variable hdap. Specify that the module should be loaded from its original path, not cached at a
location reserved by the DAPtools software. Also specify that loading of the module should be deferred
until the next time that the DAPcell server is started or the system is rebooted.

See Also

dapmduin, dapmdld, dapmduld

dapmdld

Load a downloadable command module to DAP board(s).

<boolean> = dapmdld(handle, ‘filename’ <,’flags’>)

Parameters

handle

Handle to a DAP or a server, previously opened with 'write' access.
double

filename

UNC or local host path \ name of the module to be loaded.
string

flags

Optional blank-separated keywords for downloading mode.
String keywords: must be ‘noreplace’ or ‘forceload’.

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function loads a module from the location specified in the filename string to the DAP(s) specified
by handle. The module is not installed in the host system, consequently, restarting the DAPcell
software or rebooting the system will undo the load operation. If handle refers to a single DAP, the
module is loaded to the target DAP board. If handle refers to a DAPcell server, the module is loaded to all
DAP boards on the machine hosting that server.

The loading mode can be set using option keywords in the optional flags argument. For full
information about the option flags, please see bmFlags under the function DapModuleLoad in
DAPIO32 Reference Manual.

Examples

ret = dapmdld(hDap, 'c:\fbcontrol.dlm', ‘noreplace’);

Load the fbcontrol module to a DAP specified by handle hDap, taking the original copy of the file
from the root directory of the local C:\ disk drive, with an instruction to to not replace any previous
copy of that module if it is already loaded to the DAP board.

ret = dapmdld(hdap5, '\\hdap5\shared\fbcontrol.dlm');

Load the fbcontrol module to a DAP specified by previously-opened handle hdap5. This
previously-opened handle points to a DAP board located on the remote station '//host5/Dap0'. The
module file to load is located on that same host, in a share folder specified by the UNC path. Default
loading options are used; consequently, the module is loaded to the specified DAP board only if there is
no conflict with the configuration currently present in the DAPL system on that board.

See Also

dapmdin, dapmduin, dapmduld

dapmduin

Uninstall a downloadable command module and remove from DAP board(s).

<boolean> = dapmduin(handle, modname <,flags>)

Parameters

handle

Handle previously opened for 'write' access to a DAP or a server.
double

modname

Base name of module to be uninstalled, without path or file type extension.
string

flags

Optional list of blank-separated keyword options specifying the uninstallation mode.
string keywords: must be ‘noload’, ‘forceregister’, ‘forceload’ or ‘removedependents’.

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function uninstalls a module specified by argument modname from the DAP(s) specified by variable
handle. The handle variable must be previously opened for the 'write' access mode. If handle refers to
a single DAP, it uninstalls the module from the target DAP board. If handle refers to a DAPcell server, it
uninstalls the module from all DAP boards on that server host.

The uninstallation mode can be adjusted by providing an optional flags string. For full information
about the uninstall options, see the discussion of bmFlags under the function DapModuleUninstall
in the DAPIO32 Reference Manual.

An uninstallation operation is persistent. Once the module uninstallation is complete, that module is
unavailable for all applications that might use the affected DAP boards, until the module is reinstalled.

Example

ret = dapmduin(hDap, 'dapliir');

Uninstall the dapliir module from the DAP board associated with the handle hDap using the default
uninstallation options. The module will be uninstalled only if there are no conflicts with the current
configuration present in the DAPL system on that DAP board.

See Also

dapmdin, dapmdld, dapmduld

dapmduld

Unload a module from DAP board(s) without uninstalling it.

<boolean> = dapmduld(handle, modname <, flags>)

Parameters

handle

Handle to a DAP or a server, previously opened with 'write' access.
double

modname

Base name of module to be unloaded, without path or file type extension.
string

flags

Optional space-separated list of keyword options specifying the unloading mode.
string keywords: must be ‘forceload’or ‘removedependents’.

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function unloads a module modname from the DAP(s) associated with handle. If handle is
associated with a single DAP, the module is unloaded from the specified DAP board. If handle is
associated with a DAPcell server, the module is unloaded from all DAP boards on that server host.

Unloading options can be specified in the flags argument. For more information, please see bmFlags
under function DapModuleUnload in the DAPIO32 Reference Manual.

Unlike the dapmduin function, the effects of this function are not persistent. If the module was
previously installed, it remains installed, and it will be automatically reloaded into the DAPL system the
next time the DAPLcell Server is restarted or the system is rebooted.

Examples

ret = dapmduld(hDap, 'testm');

Unload testm module from the DAP specified by handle hDap with default unloading mode: do not
force unloading the module from the target DAP boards if there is some kind of configuration conflict,
and do not remove dependents of the module during unload.

ret = dapmduld(hDap, 'dapliir', ‘removedependents’);

Unload the dapliir module from the DAP specified by handle hDap, specifying an option to resolve
dependency conflicts by removing from the current DAPL configuration any element referring to the
unloaded module. This will leave the DAPL system in an unbroken state with the specified module erased
from DAP board memory, but because of the erased dependencies, the parts of the configuration that
remain might not be fully operable.

See Also

dapmdin, dapmduin, dapmdld

daplogpd

Initiates a disk logging session between a DAP communication pipe and a disk file.

<boolean> = daplogpd(handle, flags, filepath, fileShareMode,
 openFlags, fileFlagAttr, maxCount, blockSize
 <, [xflength, timewait, timeout]>)

Parameters

handle

Handle to a communication pipe previously opened with 'diskio' access..
double

flags

A list of space-separated keywords, specifying logging mode options.
keyword string: must be ServerSide, FlushBefore, FlushAfter, MirrorLog, AppendData, or

BlockTransfer.

filepath

Path\name of a primary disk log file and optionally a secondary mirror log file.
string

fileShareMode

A keyword option specifying file share properties of the disk log file.
keyword string: must be 'read' or 'write'.

openFlags

A list of space-separated keywords, specifying file opening options.
keyword string: must be CreateNew, CreateAlways, OpenAlways. or OpenExisting.

fileFlagAttr

A list of keyword options specifying file share properties of the disk log file.
keyword string: must be normal, encrypted, writethrough, or sequentialscan.

maxCount

Maximum number of bytes to write to the log file, or 0 to specify no limit.
double

blocksize

Number of bytes to write in each disk-write operation, or 0 to use the default.
double

xflength

Optional, number of bytes to get from the com pipe at a time, or 0 to use the default.
double

timewait

Time limit in milliseconds for new data to arrive from communication pipe, or 0 to use the default.
double

timeout

Time limit in milliseconds for logging process to complete, or 0 for no time limit.
double

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function initiates a disk logging session between a DAP communication pipe identified by argument
handle and a disk file identified by the address filename. The operation continues as an independent
process until a time limit condition is satisfied, or until the initiating process closes the handle to
terminate the connection to the DAP data channel.

This function does not use the facilities of MATLAB to process the log file, so the application does not
open a file and obtain a file handle variable in the usual way. Instead, the file access is provided by the
DAPcell Server. The path to the file can be a UNC address to a share file, or a file system path\file name
for files on the local host machine.

The application must previously open a connection to the DAP communication pipe for sending binary
data out from the DAP, using a dapopen function call, retaining the returned handle variable value.
Instead of opening the connection in the usual 'read' mode, the communication pipe connection is opened
with 'dapio' mode.

The daplogpd function establishes an association between the communication pipe and the disk file,
and initiates the logging activity in a separate process, returning control to the caller. While logging runs
in the background, the MATLAB application can continue doing other processing. The application has no
further direct interaction with the communication pipe or file until after the logging operation is done.
Logging continues independently until a time limit condition is satisfied, or until the initiating process

closes the handle using a dapclose function call to terminate the connection to the DAP
communication channel.

There are lots of configurable options. Most applications can use defaults values for all of the options. For
keyword options, defaults are requested by specifying an empty string. For number options, defaults are
requested by specifying a value of 0. For complete information about the options and what they do, please
refer to DapPipeDiskLog, TdapPipeDiskLog, and TDapBufferGetEx sections of the
DAPIO32 Reference Manual.

• flags keywords control the behavior of the disk-logging operation. If the MirrorLog option is
included in the list, a secondary file name must also be specified within the string, separated from
the primary file name with a semicolon character. For more information, see bmFlags under
TDapPipeDiskLog in DAPIO32 Reference Manual.

• fileShareMode keywords specify exclusion properties for file access. The default can be used
unless other processes must concurrently access the logged data in real time as the data are
written.

• openFlags keywords specify options for how to treat pre-existing or non-existing disk files.
For more information, see dwOpenFlags under TDapPipeDiskLog in DAPIO32 Reference
Manual.

• fileFlagAttr keywords specify options for processing the data stream. For more
information, see dwFileFlagsAttributes under TDapPipeDiskLog in DAPIO32
Reference Manual.

• maxsize specifies a maximum data grouping to write to the log file in any given write
operation. Disk controller buffering rarely has difficulties of this sort, and most applications
should specify 0 to let the Windows system decide how to write the data.

• blocksize specifies a minimum data grouping to write to ‘filename’ at a time. When data are
known to always arrive in certain multiples, for example 1024 values from a data transform
block, specifying a restricted transfer block size can sometimes improve efficiency. Specify 0 to
use the default value of 8192 bytes.

• maxCount specifies an upper limit on the total amount of data in bytes to log. Specify 0 if there
is no predetermined limit on the amount of data to log.

The optiona larguments xflength, timewaitt, and timeout control the timing of data transfers
in the communication pipe. If one of the optional parameter is used, all three must present. For more
information, see TdapBufferGetEx in DAPIO32 Reference Manual

• xflength specifies the size of data blocks, in bytes, to move through the communication pipe
in each transfer cycle. For more information, see iBytesGetMin and iBytesGetMax
under TdapBufferGetEx in DAPIO32 Reference Manual – both fields are set to the
xflength value. Some applications that process data in known, fixed, moderately large block
sizes can improve efficiency by adjusting this setting. If the size is too small, it could force the
system the to “thrash,” causing rapid transfer cycles that move very little data. Specify 0 to get
the default behavior of arbitrary transfer sizes.

• timewait specifies the maximum time interval in milliseconds to wait for new data to transfer
through the communication pipe. If no new data appear in the specified time, it is presumed that
the DAP has stopped sending data. Logging is then terminated and the file is closed. Specify 0 to
use the default interval of 1000 milliseconds.

• timeout specifies the maximum time interval for the entire logging process to finish, regardless
of how much or data arrives. After this time interval expires, the logging process is terminated,
and the file is closed. Specify 0 if there is no predetermined logging time limit.

Since the daplogpd function returns to the caller immediately after the logging is started, it has no
means to inform the calling application when the logging process terminates due to a data or time limit.
You can use features of the dapquery command to determine whether the logging process is stopped.

Example

daplogpd (hDap, ‘flushBefore’, ‘c:\logfile.log’, ...
 ‘’, ‘’, ‘’, 0, 0)

Log the data from the DAP specified by handle hDap to a file called logfile.log in the root
directory of the local c: disk drive. The target pipe specified by hDap is first flushed, which might take
a while. After that, the DAP can be started and the data recorded. Default values for other parameters are
used, so recording will continue until the data stream stops.

ret = daplogpd(hDap, ‘serverSide’, ‘\\PC2\logs\testdat.log’, ...
 'read',‘CreateAlways’, ‘normal’, 0, 0, 4096, 100, 0)

Log the data from the DAP communication pipe specified by handle hDap, previously opened for
'diskio' access on a remote station called PC2. The log file testdat.log is also on the PC2 station
and is identified by its UNC address. The serverSide option is specified to tell the daplogpd
function not to open a disk file locally. Other applications can have 'read' access to the logged data file
concurrent with the writing of the file. The CreateAlways option allows the log file to overwrite a
previously existing file with the same name. Restrict data block transfers through the communication pipe
to a fixed length of 4096 bytes. If no new data are available after waiting 100 milliseconds, assume that
the data stream has stopped and terminate the logging operation. The function reports whether the logging
process starts successfully in return variable ret.

daplogpd (hDap, ‘serverSide MirrorLog’, ...
 ‘c:\datlog\file.log;\\Archive\shared\mirror.log’, ‘’, ‘’, ‘’, 0, 0)

Log the data from the DAP specified by handle hDap to a file with name file.log located on the local
host in folder c:\datlog. Also write a second mirror copy of the logged data in a file called
mirror.log, located at a remote system called Archive, in its shared network folder. Default
values for other parameters are used.

See Also

dapquery

dapopen

Opens a handle to a specified DAPcell server, DAP board, or communication pipe.

handle = dapopen(uncpath, mode)

Parameters

uncpath

UNC path identifying the Server, DAP or communication pipe to access.
string

mode

Operating mode of the target to be opened.
keyword string, must be one of : ‘write’, ‘read’, ‘query’ or ‘diskio’

Return Values

handle

Handle value for the opened DAP, communication pipe or server.
Nonzero if successful, 0 if function failed.
double

Description

This function establishes a connection to a server, DAP or communication pipe, depending on the form of
the uncpath specification. The function returns a number handle that is used by other functions,
somewhat similar to the way that MATLAB manages data file access.

The mode argument specifies the access mode.

write opens a connection for writing data with exclusive access
read opens a connection for reading with exclusive access
query opens a connection to query information without exclusive access
diskio opens a connection for direct-to-disk I/O access

The handle of a communication pipe opened with diskio mode can be used later to initiate and terminate a
direct pipe disk I/O session using dapfedpd and daplogpd functions. It can also be used to query disk
I/O status using the dapquery function. The direct-to-disk services are only available with the DAPCell
Local Server or DAPcell Networking Server software versions.

More information about connections and handles is available under the DapHandleOpen function in
the DAPIO32 Reference Manual.

Examples

hBinFromDap = dapopen(‘\\Server2\Dap0\$binout’, ‘read’)

Open the communication pipe $binout, which is on Dap0 located in the remote machine
Server2, for 'read' access to data provided by the DAP board. The value of the returned
hBinFromDap handle variable is retained for later use.

hDapQ = dapopen(‘\\.\Dap0', ‘query’)

Open a handle to the DAP board identified as Dap0 on the local machine, for querying information
about that board. The handle value is returned in variable hDapQ.

See Also

dapclose, dapfedpd, daplogpd, dapquery

dappavl

Get the number of bytes space available for writing via a specified communication pipe.

numBytes = dappavl(handle)

Parameters

handle

Handle to a communication pipe previously opened for writing data.
double

Return Values

numBytes

Number of bytes space available if successful; -1 if function failed.
double

Description

This function gets the number of bytes spaces available for writing through the communication pipe
previously opened in 'write' mode, and identified by handle. The return value in variable numBytes is
a lower bound on the number of bytes of available storage, independent of the data type of transferred
elements. An application is always safe to write that number of data bytes to the pipe without waiting for
the operation to complete.

Since the return value numBytes is not a rigorous lower bound, it is possible that there is much more
buffering capacity than what is currently visible to the pipe. In most applications, where timing is not
absolutely critical, it is better to use the dapputm function with a timeout to perform data transfers more
efficiently.

Example

ret = dappavl(hBinToDap)

Get the number of byte spaces available in the pipe specified by handle hBinToDap for writing new data
immediately. The returned size is returned in variable ret.

See Also

dapgavl

dappstr

Write a string of characters (command line) via a DAP communication pipe.

<numBytes> = dappstr(handle, cmdStr)

Parameters

handle

Handle to a communication pipe previously opened for writing data to a DAP.
double

cmdStr

Characters (command line) to send through the communication pipe.
string

Return Values

numBytes

Optional. The number of bytes sent to the target pipe if successful; 0 if function failed.
double

Description

This function writes the characters from string cmdStr to the target com pipe specifies by handle. At
the end of the string, this function attaches a CR (carriage return) character to indicate the termination of a
line before delivering the text to the transfer pipe. Each character written corresponds to one byte. The
number of bytes written is stored in the optional return argument numBytes, counting one additional
byte for the line termination character. If no return argument is given, any failure is an error condition that
will terminate the MATLAB application with an error message.

The most common use of this function is to send commands directly to the DAPL command line
interpreter. However, other communication pipes can be set up to send various text messages directly to
custom command tasks.

See the dapgstr function for a discussion of text lines and termination characters.

Examples

dappstr(hTextToDap, ‘start’)

Send a START command to the DAPL system, to begin processing in a configuration downloaded
previously. To send commands to the DAPL system, the reserved $SysIn communication pipe must be
specified when using the dapopen function to prepare the handle variable hTextToDap for 'write'
access.

ret = dappstr (hCustomTextIn, ‘Press5: 10050’)

Send a text command line directly to a custom command task. The communication pipe for performing
this text transfer must be previously created and configured, and opened for 'write' mode operation.
The command line 'Press5: 10050' is meaningful only to custom command processing. The
custom command task must be specified in the DAPL configuration script and started before performing
the data transfers. The number of byte written, including the termination character added at the end of the
line, is reported in the return argument ret. For this particular message, there are 10 text characters plus
1 more for the termination, so the value of ret is 11 if the message transfer is successful.

See Also

dapgstr

dapputm

Put a matrix of data to a communication pipe.

<numData> = dapputm(handle, dataM, dataType <, timeWait, timeOut>)

Parameters

handle

Handle to a commuication pipe, previously opened in 'write' mode.
double

dataM

A MATLAB data matrix to transfer.
matrix of double

dataType

A keyword specifying the data type the DAP is to receive.
string keyword, must be one of: ‘int16’, ‘int32’, ‘double’ or ‘float’

timewait

Optional time limit to wait for storage to become available, or 0 to use the default.
double

timeout

Optional time limit for the entire transfer operation to complete, or 0 to use default.
double

Return Values

numData

Optional. If specified, this variable reports the number of values sent to the target pipe when the
transfer is successful or timed out; or reports -1 for failures.
double

Description

This function transfers the data from matrix dataM, converts it into the data type specified by the
dataType argument, and places the data into the communication pipe associated with handle. The
size of the matrix is determined automatically from the object properties. The matrix is transferred
column by column.

The dataType keyword string specifying the data type must be one of the following.

'int16' specifies 16-bit integer, represented by two bytes
'int33' specifies 32-bit integer, represented by four bytes
'double' specifies double, represented by eight bytes
'float' specifies floating point data, represented by four bytes

This dapputm function provides some options for timing control. The two timing options timewait
and timeout must either be both omitted, or both specified. If the transfer pipe cannot accept any new
data for a period of timewait milliseconds, or if the entire transfer operation fails to complete within
timeout milliseconds, the function returns immediately and reports the number of terms that were sent
successfully. The default values, if you omit these arguments or specify a 0 value, are as follows.

timewait default 100 milliseconds

timeout default 20000 milliseonds (20 seconds)

Conversions of data types can sometimes cause truncation or range errors, so be careful to round and
scale appropriately, particularly when using fixed point ‘int16’ or ‘int32’ data types. Many calculations
are done in Matlab with well-normalized numbers, with values ranging from -1.0 to +1.0. These values
will be truncated or rounded to the three discrete values -1, 0, or +1 when converted to integer form,
losing almost all numeric information – probably not what was intended. Use MATLAB functions and
operations to scale values so that they fit a more useful integer range before the transfer.

For example, output signal generation has relatively rigid scaling requirements. The data type for the
transfer must be 'int16'. The valid numerical range for this data type is -32768 to +32767,
which corresponds to the full output range of the digital-to-analog converter devices. (Sometimes, you
might prefer to use a slightly more balanced range -32767 to +32767 range, though this rarely makes
any difference.) Depending on the DAP hardware configuration options, the physical output voltage
ranges are -5V to +5V, or -10V to +10V. Use the MATLAB floor or round functions prior to the
transfer if you need to directly control the conversions to integer values.

The number of data written to the DAP com pipe is stored in the optional return argument numData. If
the function terminates successfully, the return count value will equal the number of terms in the
delivered matrix. If there is a timeout event, the transfer could be partial, as small as 0 but less than full
size. If the function fails, the returned value a is –1. Be sure to check the return value to make sure that
all of the sent data could be delivered.

Examples

Params = [129.9, 0.0263, 36.66, 0.038, 140.0, 8.88; ...
 12992, 26333, -32666, 38000, 14000, 888; ...
 12930, 26308, 32650, 38000, 14000, 888];

numSent = dapputm(hBinToDap, Params, ‘double’);

Send a data matrix Params as data type double to the com pipe specified by hBinToDap. The
number of matrix elements sent to the com pipe is stored in the return variable numSent. A double
data type is used for the transfers, to avoid loss of precision that would result from conversions.

numSent = dapputm(hBinToDap, inputParams, ‘int32’, 5000, 0);

Similar to the previous example, sending the same data set but converting the values to 32-bit integers
before making the transfer. Fractions will be dropped as the values are converted. If the transfer does not
start within 5 seconds or finish within the default 20 seconds, the function will terminate the transfer
before completion, and the number of terms delivered will then be less than the matrix size.

See Also

dapgetm

dapquery

Query for information about a server, DAP, or communication channel associated with a handle.

[queryResult <, boolean>] = dapquery(handle, ‘queryKey’)

Parameters

handle

Handle to a previously-opened DAP, com pipe or server connection.
double

queryKey

“Query key” message text required to access the desired information.
string

Return Values

queryResult

Result of the query. Data type of the return value depends on the query key.
string or double

boolean

Optional return code reporting success or failure.
double

Description

This function queries for information associated with the source specified by handle.

There are four types of handles, depending on the connections associated with the handle.

1. NULL handle
The handle variable is artificially assigned a value of 0. Only a few queries use this kind of
handle. The received information not specific to any host, DAP board, or communication pipe.

2. Handle to a server PC
The handle value comes from a dapopen function that specifies a UNC path to a DAPcell
Server host, but not an individual DAP board.

3. Handle to a Data Acquisition Processor
The handle value comes from a dapopen function that specifies a UNC path to a DAP board on
a specific DAPcell Server host.

4. Handle to a communication pipe on a Data Acquisition Processor.
The handle value comes from a dapopen function that specifies a UNC path to a
communication pipe on a specific DAP board and DAPcell Server host.

The kinds of query operations that are possible depend on the handle that you provide. If you have
already opened a connection to the appropriate server, DAP, or communication channel for some other
purpose, using 'read' or 'write' mode, you can also use that handle for dapquery function calls. Otherwise,
it is recommended to open a handle with the 'query' mode, since this avoids unnecessary exclusion
constraints.

The information that the dapquery operation returns depends on the queryKey. This key is a text
containing keywords and various other notations in a string. Be careful to match the case and special
delimiter characters exactly. Depending on the query, the result is reported back as a text string, or as a
double numeric value.

For complete information about query keys and what they can do, please see TDapHandleQuery and
DapHandleQuery sections in the DAPIO32 Reference Manual. For some return values that have a text
form, conversions to numeric form are possible using the MATLAB function Str2Num. You can
examine the return value using the MATLAB class function to determine which data type you are
receiving.

Examples

hQuery = dapopen(‘\\.\Dap0’, ‘query’);
...
[qResult, ret] = dapquery(hQuery, ‘DapName’);

Using a handle hQuery referring to a the DAP board named Dap0 on the local host machine, with
'query' mode access, query for identity information from that DAP board. If successful, the return value
ret is set equal to 1, and the detailed product name and model number for the referenced DAP board will
be returned as a text string in the qResult variable.

hBinFromDap = dapopen(‘\\.\Dap0’, ‘dapio’);
...
qResult = dapquery(hBinFromDap, ‘DapDiskIoStatus’);

Using handle hBinFromDap that was previously opened for direct-to-disk data logging with the
daplogpd function, at a later time query the status of the logging activity. If the logging is currently
busy, this query will return a status string 'The disk I/O is active.' If the logging has
terminated because of reaching a size limit or timeout, this query will return a status string 'The disk
I/O is completed.'.

See Also

dapcpc, daplogpd, dapfedpd

daprecnf

Redirects the output of dapcnfig to a specified text file.

<boolean> = daprecnf(filepath)

Parameters

filepath

Path and file name for text. Specify an empty string to cancel redirection.
string

Return Value

boolean

Optional return code reporting success or failure.
double

Description

This function allows an application developer to temporarily redirect the output of the dapcnfig
command so that it goes to an external text file instead of the normal communication text pipe, for
purposes of testing. The output file will show the command file after macro substitution processing was
performed. While the redirection is in effect, the dapcnfig function sends no command text to the DAP
board. When the testing is done, clear the redirection by calling the daprecnf function again,
specifying an empty string for the filepath .

The filepath string specifies the file to receive the text. It can be a UNC address to a share file, or a
local file system path\filename expression. The daprecnf function does not use a MATLAB file I/O
handle, and instead, the DAPcell Server will open the file directly. The file is closed and disassociated
when the redirection is cleared.

Example

ret = daprecnf(‘c:\Temp\redir.txt');
dapcnfig(hTextToDap, ‘Testing.dap’);
daprecnf(‘’);

The daprecnf function temporarily redirects the command text produced by the dapcnfig function,
with the text before processing coming from the file Testing.dap in the current working folder. The
results are written to the text file redir.txt in the local c:\Temp folder. Immediately after this test,
the temporary redirection is canceled by calling daprecnf again with an empty string argument.

See Also

dapcnfig

dapreset

Resets the target DAP board(s), stopping all activity and clearing the configuration.

<boolean> = dapreset(handle)

Parameters

handle

Previously opened handle to a single DAP or a server with 'read' or 'write' access.
double

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function performs the equivalent of a RESET command sent through a predefined $SysIn
communication pipe, but with some subtle differences.

• Exclusive access to the DAP board is used, not just access to one of the handles, so there is no
possibility that other processes can interfere with the operation.

• The DAPL system command interpreter does not receive and process any command text, so this
can circumvent certain lock-up situations in which higher-priority processing blocks processing
of command messages.

• The RESET operation is known to be finished when the function returns. When sending a RESET
command with the dappstr function, you only know when the command was delivered.

The reset operation requires exclusive 'read' or 'write' access to the DAP board or boards. If the handle
refers to a server, any DAP boards that are already reserved by other 'read' or 'write' processing cannot
be reset. For an individual DAP board, a handle referring to that DAP must first be established using the
dapopen function and specifying 'read' or 'write' access.

If this function is unable to reset the DAP board or boards as requested, it will report failure upon return.
For more detailed information, see the function DapReset in the DAPIO32 Reference Manual.

Example

ret = dapreset(hDap);

Reset the DAP associated with handle hDap, which was previously opened with the 'write' access
mode.

See Also

daprinit

daprinit

Reloads the DAPL system and all installed modules.

<boolean> = daprinit(handle)

Parameters

handle

Handle to DAP board or server, previously opened with 'read' or 'write' access
double

Return Value

boolean

Optional return code reporting success or failure.
double

Description

This function performs a hardware reset of the specified DAP board(s) and reloads the DAPL operating
system, along with all installed modules registered for the board(s). This is the same as the initialization
performed at system boot. It is suggested for purposes of disaster recovery only.

If argument handle refers to a single DAP, only this one DAP board is reloaded and restarted. If the
handle refers to a server, all of the DAP boards on the host with that server will be reloaded and restarted.

This is a disruptive operation. All configured activity is abruptly terminated. All undelivered data on the
target DAP board or boards is lost. Any opened handles referring to a reloaded DAP board and its
communication pipes become immediately invalid. All configurations and declarations previously
downloaded will be erased. All downloadable command modules not registered by installation will
become unavailable. The downloading and activation of the DAPL system takes significant time.

Example

ret = daprinit(hDap);

Cleans and reinitializes a DAP board referenced by handle hDap, by downloading and starting a clean
copy of the DAPL system. The result is reported in the return variable ret.

See Also

dapreset, dapmdin, dapmduin, dapmdld, dapmduld

dapsetpa

Set the value of a substitution macro to be applied to configuration file downloads.

<boolean> = dapsetpa(paraNumber, paraValue)

Parameters

paraNumber

A number specifying the index of the substitution macro to be set.
double, with integer value in the range 1 to 100

paraValue

The replacement text to assign to the macro.
string

Return Values

boolean

Optional return code reporting success or failure.
double

Description

This function assigns a text to a specified substitution macro identified by the integer index number
paraValue. This assignment overwrites any previous default value or assigned value for identified
macro. If the new substitution text is an empty string, the macro text is cleared.

Macro text substitution is applied by embedding special text notations of the form %n into the text of a
DAPL configuration script, where n is the text representation of an integer number in the range 1 to 100.
Later, when the script file is sent to a DAP board using the dapcnfig function, the characters of these
special notations are replaced by characters retrieved from the macro substitution list.

This was once an interesting idea. But by today's standards, a practice of embedding unviewable process
configuration fragments of uncertain persistence into a communication server should be considered
archaic and potentially dangerous. There are much better text preprocessing tools available today that
your applications can invoke to apply macros substitutions, using whatever notations you want, retaining
full control of the command text to be downloaded. The macro substitution feature is still supported for
legacy applications, but is not recommended for any new applications.

Examples

dapsetpa(2, ‘’);

Clear any previous text value for substitution macro number 2 to an empty string in memory.

ret = dapsetpa(35, ‘500’);
...
dapcnfig(hTextToDap, ‘c:\Measurements\test.dap’);

Set the value of substitution macro number 35 to the character sequence ‘500’ in DAPserver memory.
The return value ret reports the success or failure of this operation. Later, as the dapcnfig function
downloads the DAPL configuration commands from the file test.dap in the C:\Measurements
folder to the DAP board associated with the command text handle hTextToDap, each occurrence of the
character sequence %35 is replaced by the substitution text 500.

See Also

dapclrpa

--- End of document ---

	Contents
	1 Introduction
	2 Getting Started
	System Requirements
	Installation
	Configuration
	New Features

	3 DAPIO and MEX Functions
	4 General Notes and Hints
	Quick command help
	Function return values
	Boolean result codes
	Function argument names
	String arguments
	Command lines
	UNC addresses
	Predefined communication pipes
	Handle variables
	DAP processing cycle
	Function return values
	Time control
	Options lists
	DAPL system configuration scripts

	5 Application Examples
	Establishing Connections
	Closing Connections
	Robust Management of Connections
	Conventional communication handles
	Non-robust handle horrors
	More robust handle management

	Configuring for Data Sampling
	The application script
	The DAPL configuration script
	Extensions

	Logging Data to Disk
	Extensions

	Commands and Error Messages
	Extensions

	Two Way Data: Stimulus and Response
	Extensions

	Waveform Generation and Playback
	Direct on-board signal synthesis
	Direct playback of a prerecorded real signal

	Time Sequence Analysis
	Frequency Transfer Response Measurements

	6 Alphabetical Command Reference
	dapclose
	Parameters
	handle
	Return Values
	boolean
	Description
	Examples
	dapclose(hTextFrpmDap)
	See Also

	dapclrpa
	Parameters
	(None)
	Return Values
	boolean
	Description
	Example
	See Also

	dapcnfig
	Parameters
	handle
	filename
	Return Values
	boolean
	Description
	Example
	See Also

	dapcpc
	Parameters
	pInfo
	type = dT
	maxsize = v1
	maxsize = v2
	blocking = bsz
	Return Values
	boolean
	Description
	Examples
	See Also

	dapcpd
	Parameters
	pInfo
	Return Values
	boolean
	Description
	Example
	See Also

	dapfedpd
	Parameters
	handle
	flags
	filename
	fileShareMode
	fileFlagAttr
	maxCount
	blocksize
	timewait
	timeout
	Return Values
	boolean
	Description
	Examples
	See Also

	dapflshi
	Parameters
	handle
	timeout
	timewait
	Return Values
	boolean
	Description
	Example
	See Also

	dapflsho
	Parameters
	Return Values
	boolean
	Description
	Examples
	See Also

	dapgavl
	Parameters
	Return Values
	Description
	Example
	See Also

	dapgetm
	Parameters
	Return Values
	Description
	Example
	See Also

	dapgstr
	Parameters
	Return Values
	Description
	Example
	See Also

	dapmdin
	Parameters
	Return Values
	boolean
	Description
	Examples
	See Also

	dapmdld
	Parameters
	Return Values
	boolean
	Description
	Examples
	See Also

	dapmduin
	Parameters
	Return Values
	boolean
	Description
	Example
	See Also

	dapmduld
	Parameters
	Return Values
	boolean
	Description
	Examples
	See Also

	daplogpd
	Parameters
	Return Values
	boolean
	Description
	Example
	See Also

	dapopen
	Parameters
	Return Values
	Description
	Examples
	See Also

	dappavl
	Parameters
	Return Values
	Description
	Example
	See Also

	dappstr
	Parameters
	Return Values
	Description
	Examples
	See Also

	dapputm
	Parameters
	Return Values
	Description
	Examples
	See Also

	dapquery
	Parameters
	Return Values
	boolean
	Description
	Examples
	See Also

	daprecnf
	Parameters
	Return Value
	boolean
	Description
	Example
	See Also

	dapreset
	Parameters
	Return Values
	boolean
	Description
	Example
	See Also

	daprinit
	Parameters
	Return Value
	boolean
	Description
	Example
	See Also

	dapsetpa
	Parameters
	Return Values
	boolean
	Description
	Examples
	See Also

