
DAPIO32 Reference Manual

DAPIO32 function and
structure reference

Version 5.00

Microstar Laboratories, Inc.

This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of
this manual may be photocopied, reproduced, or translated to another language without prior written consent of
Microstar Laboratories, Inc.

Copyright © 1996-2011

Microstar Laboratories, Inc.
2265 116th Avenue N.E.
Bellevue, WA 98004
Tel: (425) 453-2345
Fax: (425) 453-3199
http: // www.mstarlabs.com

Microstar Laboratories, DAPIO, DAPIO32, DAPcell, Accel32, Data Acquisition Processor, DAP, DAP 5200a,
iDSC, iDSC 1816, DAPL, DAPL 2000, DAPL 3000, DAPstudio, DAPtools, and DAPview are trademarks of
Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any Microstar Laboratories products
are to be used in or with systems, devices, or applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark of Microsoft Corporation. IBM is a
registered trademark of International Business Machines Corporation. Intel is a registered trademark of Intel Corporation. Novell and NetWare
are registered trademarks of Novell, Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.

Part Number MSDAPIO32M500

Contents iii

Contents

1. Introduction ...7
About this Document ..8

2. DAPIO32 Overview..9
Communication Pipes ...9
Buffered Data Transfers ..10
UNC (Universal Naming Convention) Pipe Names ..11
Basic Communication ...12
Advanced Data I/O ...14
Linux Support...15

Functions Supported ...15
Functions Not Supported...15
Functions Modified...15
Unix style Accel32 device names ..16

3. C++ Application Programming..17
Software Components ...17
Installation..18

Install your Microsoft compiler software..18
Install your DAPtools Development software...18

Configure your compiler environment ...19
Determine your onboard processing configuration..19
Configure for your application build..19

The DAP Connection Life Cycle ...19
Initialization ...20
Clearing prior operations...21
Downloading a DAP configuration..21

Efficient Run-Time Processing..23
One Value At A Time ...23
One Block At A Time ...24
Take Everything Available – the TDapBufferGetEx structure...........................24
Don’t Wait, Take What You Need...26
Take Block If Available ..27
Take All Blocks Available ..28
Take Most Recent Block ...28

Data Access Considerations ..29
Application Termination and Cleanup..31
Summary of Basic DAPIO Functions...32

4. DAPIO32 Interface Reference ...33
DAPIO32 Structure Reference...34

Structure Reference...34
Structure Usage ..34
Structure Initialization...34
Binary Compatibility...34
Alphabetical Structure Reference...35

TDapBufferGetEx...36
TDapBufferPeek...37
TDapBufferPutEx...40
TDapCommandDownload...41
TDapHandleQuery..43
TDapIoInt64...46
TDapPipeDiskFeed...47

 Contents iv

TDapPipeDiskLog ..50
DAPIO32 Function Reference...53

Function Reference ...53
Function Overview ...53
Data I/O Time-out...54
Alphabetical Function Reference ...54

DapBufferGet ...55
DapBufferGetEx...56
DapBufferPeek ...58
DapBufferPut..60
DapBufferPutEx ...61
DapCharGet..62
DapCharPut ..63
DapCommandDownload ...64
DapComPipeCreate...65
DapComPipeDelete...68
DapConfig..69
DapConfigParamsClear...71
DapConfigParamSet..72
DapConfigRedirect ...73
DapHandleClose...74
DapHandleOpen ...75
DapHandleQuery..77
DapHandleQueryInt32 ..92
DapHandleQueryInt64 ..93
DapInputAvail ..94
DapInputFlush ..95
DapInputFlushEx..96
DapInt16Get...97
DapInt16Put ...98
DapInt32Get...99
DapInt32Put ...100
DapLastErrorTextGet..101
DapLineGet ..102
DapLinePut ..103
DapModuleInstall ...104
DapModuleLoad...106
DapModuleUninstall...108
DapModuleUnload..110
DapOutputEmpty..112
DapOutputSpace...113
DapPipeDiskFeed ...114
DapPipeDiskLog...117
DapReinitialize ...120
DapReset..121
DapServerControl ...122
DapStringFormat ..124
DapStringGet..125
DapStringPut ..126
DapStructPrepare..127

5. Version Information...129
DAPIO32 Version 2.13...129

Changes to the DAPIO32 interface since the 2.12 release129
Changes..129
New DapHandleQuery keys ..129

Contents v

Updated DapHandleQuery keys...129
DAPIO32 Version 2.12...130

Changes to the DAPIO32 interface since the 2.11 release130
New functions...130
New DapHandleQuery keys ..130
Updated DapHandleQuery keys...130

DAPIO32 Version 2.11...130
Changes to the DAPIO32 interface since the 2.10 release130

DAPIO32 Version 2.10...130
Changes to the DAPIO32 interface since the 2.00 release130
New functions...131
New DapHandleQuery keys ..131
Changes..131

DAPIO32 Version 2.00...131
Changes to the DAPIO32 interface since the 1.12 release131
Changes..131
Additions..132

DAPIO32 Version 1.12...132
Changes to the DAPIO32 interface since the 1.11 release132
Additions..132

DAPIO32 Version 1.10...132
Changes to the DAPIO32 interface since the 1.00 release132
Changes..132
Additions..132

Index ..135

Introduction 7

1. Introduction

The Data Acquisition Processor from Microstar Laboratories is a complete data acquisition system that occupies one
PCI or USB slot in a PC. Data Acquisition Processor systems are suitable for a wide range of applications in
laboratory and industrial data acquisition and control.

A Data Acquisition Processor is a computer, separate from the PC, with its own operating system. The operating
system on each Data Acquisition Processor is either DAPL 2000 or DAPL 3000. DAPL 2000 is an operating system
that runs on most PCI Data Acquisition Processors, while DAPL 3000 is an operating system that runs on all USB
Data Acquisition Processors. The DAPIO32 software interface allows a PC application to control the Data
Acquisition Processor through its operating system.

 Introduction 8

About this Document

This document contains a complete reference for the DAPIO32 software interface to Data Acquisition Processors.
32-bit and 64-bit applications use the DAPIO32 interface to communicate with Data Acquisition Processors. The
DAPIO32.DLL implements the DAPIO32 interface. The C++ programming language is used in this document to
describe the DAPIO32 interface.

There are several implementations of DAPIO32.DLL for different environments. All of the implementations
conform to this reference except where there is an explicit statement to the contrary, either in this document or in the
README.TXT for the product that includes DAPIO32.DLL.

Several manuals, provided with each Data Acquisition Processor, contain information of interest when creating data
acquisition applications:

• The hardware manual for each Data Acquisition Processor model contains information about installing and
configuring DAP hardware.

• The DAPL 2000 or DAPL 3000 Manual contains a complete software reference for the DAPL operating system.
• The Applications Manual contains Data Acquisition Processor DAPL application examples.

DAPIO32 Overview 9

2. DAPIO32 Overview

DAPIO32 provides the interface between applications and the Data Acquisition Processor. Applications
communicate with the Data Acquisition Processor through a communication channel structure called the
“communication pipe”. An application opens a handle to a pipe and then uses the handle to send and receive data
through the pipe. A pipe can be opened for reading or writing only once; once opened for that purpose, the pipe is
reserved for access by the application exclusively until the application closes the open handle.

Communication Pipes

DAPIO32 buffers data from and to the Data Acquisition Processor. This buffering structure is called the
“communication pipe”. There are communication pipes in the DAPL operating system running on the Data
Acquisition Processor; there also are communication pipes in the PC. The communication pipes on both sides are
logically connected on a one-to-one basis. The pipes in the PC can be viewed as extensions to the communication
pipes on the Data Acquisition Processor. Each connected pair of pipes form a communication channel between the
PC application and the Data Acquisition Processor.

There are four default communication pipes provided for each Data Acquisition Processor.

• $SysIn is used for text commands from the host to the DAPL system on the DAP board.

• $SysOut is used for text messages returned from the DAPL system to the application on the host system.

• $BinOut is used for binary data transfers from the DAPL system and its processing configuration to the
application on the host system (typically for returning digitized signal data).

• $BinIn is used for binary data transfers from the application on the host system to the processing
configuration in the DAPL system (typically, for generating output signals).

The four default communication channels provide most applications with sufficient communication with the Data
Acquisition Processor. Additional communication pipes can be pre-configured using the DAPcell Services (the
“Data Acquisition” control panel application) under Windows. Alternatively, your applications can request
additional communications pipes from DAPcell (or Accel32 under Linux) using the DAPIO32 function
DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate.

 DAPIO32 Overview 10

Buffered Data Transfers

Data transfers through buffered communication pipes are a little different from data transfers from a static object
such as a file.

• The process that places data into the pipe is separate from the process that takes data out of the pipe. These
processes run concurrently. Your application is subject to timing constraints of your operating system, with
no hard timing guarantees.

• You cannot tell, when you send data, exactly when the receiver will take the data. You cannot tell, when
you receive data, exactly when the data were sent.

• There is storage capacity within the transfer pipe, but it is finite. If the data are not taken, they will backlog
somewhere.

• If you take all of the data that arrive through the pipe, the amount that you can receive will vary depending
on how much was sent, and how much has arrived.

• If you take a part of the data that arrive through the pipe, some amount of other as-yet-unseen data can
remain within the transfer pipe.

• The groupings of data you take from the stream can be completely different from the groupings as they
went in – a hazard or an advantage.

You will need to pay particular attention to receive all data transferred, to take the data in meaningful groups
interpreted as the correct data types, and to avoid waiting for data that were not yet sent.

DAPIO32 Overview 11

UNC (Universal Naming Convention) Pipe Names

DAPIO32 addresses a pipe on the Data Acquisition Processor using the Universal Naming Convention (UNC). A
UNC pipe name consists of three portions, a machine name, a Data Acquisition Processor name, and a pipe name. A
UNC name is led by two backslashes with each component delimited by one backslash.

\\<Machine>\<DAP>\<Pipe>

A remote machine is represented by its unique network machine name. The local machine is denoted by a period.
Only the DAPcell / DAPcell Local / Accel32 implementation of DAPIO32 supports remote machine names. All
other implementations support only the local machine name (\\.\).

The Data Acquisition Processor names are pre-defined as Dap0, Dap1, ..., and Dap(N-1) where N is the number of
Data Acquisition Processors installed on the system. See the documentation for each DAPIO32.DLL
implementation for a description of how DAP names are assigned.

The pipe names also are pre-defined. On the Data Acquisition Processor, two communication pipes are associated
with one integer number but differ in transfer directions: input or output. $SysIn and $SysOut are the default input
and output pipes with the number zero while $BinIn and $BinOut are the default input and output pipes with the
number one. DAPIO32 supports a maximum of 32 sets of input and output communication pipes on each Data
Acquisition Processor; thus the largest number that can be associated with a pipe is 31. Except for the two default
sets, all pre-defined pipe names carry both the pipe number information and the pipe direction information.
Following is a list of the 32 supported sets of communication pipes:

 $SysIn $SysOut
 $BinIn $BinOut
 Cp2In Cp2Out
 Cp3In Cp3Out
 Cp4In Cp4Out
 ...
 Cp31In Cp31Out

Thus, the communication pipe $SysIn of the Data Acquisition Processor Dap0 on the local machine is represented
by the UNC name \\.\Dap0\$SysIn, and the pipe $BinOut of the Data Acquisition Processor Dap1 on the
remote machine PC101 is referred to as \\PC101\Dap1\$BinOut. For example,

\\.\Dap0\$SysIn
\\.\Dap0\$SysOut
\\.\Dap0\$BinIn
\\.\Dap0\$BinOut

are the four default communication pipes on the Data Acquisition Processor Dap0 on the local machine, and

\\PC101\Dap1\$SysIn
\\PC101\Dap1\$SysOut
\\PC101\Dap1\$BinIn
\\PC101\Dap1\$BinOut

are the four default communication pipes on the Data Acquisition Processor Dap1 on the remote machine PC101.

 DAPIO32 Overview 12

Basic Communication

Every Data Acquisition Processor application performs the following operations:
• opens handles to Data Acquisition Processor com-pipes
• configures Data Acquisition Processor for application specific processing
• performs application specific data input/output through com-pipes
• closes handles to Data Acquisition Processor com-pipes

The following listing of example program S100.CPP shows all four of these phases in the “lifecycle” of a
communication pipe connection. Following the application code listing is the DAPL configuration file S100.DAP
that the program uses to configure the Data Acquisition Processor.

 To open com-pipe handles, the S100.CPP application uses the DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen service. To configure the Data
Acquisition Processor, it uses the DapConfigDapConfigDapConfigDapConfig service. To read data from the Data Acquisition Processor, it uses the
DapBufferGetDapBufferGetDapBufferGetDapBufferGet service. To close handles it uses the DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose service.

S100.CPP takes 100 readings from a single input channel on the Data Acquisition Processor and prints those data to
the console at one line per value, scaled for a ±5 Volt analog input range. To avoid clutter, this example performs
minimal error checking.

DAPIO32 Overview 13

S100.CPP:

#include <stdio.h>
#include <dapio32.h>

void main()
{
 const DataCount = 100;
 HDAP hdapSysGet, hdapSysPut, hdapBinGet;
 short int asiData[DataCount];
 float fConverted;
 int item;
 BOOL isConfigured;

 // Open communication handles
 hdapSysGet =
 DapHandleOpen("\\\\.\\Dap0\\$SysOut", DAPOPEN_READ);
 hdapSysPut =
 DapHandleOpen("\\\\.\\Dap0\\$SysIn", DAPOPEN_WRITE);
 hdapBinGet =
 DapHandleOpen("\\\\.\\Dap0\\$BinOut", DAPOPEN_READ);
 // Configure the DAP
 DapInputFlush(hdapSysGet);
 DapInputFlush(hdapBinGet);
 isConfigured = DapConfig(hdapSysPut, "S100.DAP");
 // Perform the data transfers
 if (isConfigured)
 {
 if (sizeof(asiData) ==
 DapBufferGet(hdapBinGet, sizeof(asiData), asiData))
 {
 for (item = 0; item < DataCount; item++)
 {
 fConverted = asiData[item]*5.0f/32768.0f;
 printf("%7.4f\n", fConverted);
 }
 }
 }
 // Close the communication handles
 DapHandleClose(hdapSysGet);
 DapHandleClose(hdapSysPut);
 DapHandleClose(hdapBinGet);
}

Following is the DAPL listing used by S100.CPP to configure the Data Acquisition Processor. S100.DAP
configures the Data Acquisition Processor to read 100 values from single-ended analog input pin S0 at 10,000 us per
sample, or 100 samples per second, and to send those data back to the PC through communication pipe $BinOut.
S100.CPP reads these data using a DapBufferGetDapBufferGetDapBufferGetDapBufferGet service. To change the number of readings, change both the
COUNT statement in S100.DAP and the DataCount constant in S100.CPP.

 DAPIO32 Overview 14

S100.DAP:
// DAPL configuration file for the S100 application
reset

idefine my_sampling
 channels 1
 set ipipe0 s0
 time 10000
 count 100
 end

pdefine my_transfers
 copy(ipipe0, $BinOut)
 end

start

Advanced Data I/O

The preceding example uses the simple data input service DapBufferGetDapBufferGetDapBufferGetDapBufferGet to read data from the Data Acquisition
Processor. The example assumes that whatever data are requested are available at the time of the get operation.
While this can be guaranteed in this simple example, it usually is not possible to guarantee data availability in the
same way for more advanced applications.

DapBufferGetDapBufferGetDapBufferGetDapBufferGet, and every other DAPIO32 simple input/output service, has a built-in 20-second time-out. If the
service is unable to process data for more than 20 seconds the service aborts the operation. For get services this
means that the Data Acquisition Processor did not send data for more than 20 seconds, for put services this means
that the Data Acquisition Processor did not accept data for more than 20 seconds.

Using the advanced input/output services DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx and DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx, an application developer can
configure what data to get or put and can configure the time-out behavior of the services.

If an application can guarantee data availability from the Data Acquisition Processor, use the simple input services.
If an application cannot guarantee data availability from the Data Acquisition Processor, use the advanced input
service DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx.

If an application can guarantee output space to the Data Acquisition Processor, use the simple output services. If an
application cannot guarantee output space to the Data Acquisition Processor, use the advanced output service
DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx....

DAPIO32 Overview 15

Linux Support

All DAP communications are handled by DAPIO32 functions provided by the DAPIO32 libraries. Users must never
directly call the standard system file I/O functions, such as open(), close(), read(), write(), and ioctl().

Following is a brief summary of the functions that are supported in Linux and their behavior, if different in Linux
from Win32.

Functions Supported

DapBufferGetDapBufferGetDapBufferGetDapBufferGet DapInputFlushDapInputFlushDapInputFlushDapInputFlush
DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx
DapBufferPutDapBufferPutDapBufferPutDapBufferPut DapInt16GetDapInt16GetDapInt16GetDapInt16Get
DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx DapInt16PutDapInt16PutDapInt16PutDapInt16Put
DapCharGetDapCharGetDapCharGetDapCharGet DapInt32GetDapInt32GetDapInt32GetDapInt32Get
DapCharPutDapCharPutDapCharPutDapCharPut DapInt32PutDapInt32PutDapInt32PutDapInt32Put
DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet
DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate DapLineGetDapLineGetDapLineGetDapLineGet
DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete DapLinePutDapLinePutDapLinePutDapLinePut
DapConfigDapConfigDapConfigDapConfig DapModulDapModulDapModulDapModuleLoadeLoadeLoadeLoad
DapConfigParamsClearDapConfigParamsClearDapConfigParamsClearDapConfigParamsClear DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload
DapConfigParamSetDapConfigParamSetDapConfigParamSetDapConfigParamSet DapOutputEmptyDapOutputEmptyDapOutputEmptyDapOutputEmpty
DapConfigRedirectDapConfigRedirectDapConfigRedirectDapConfigRedirect DapOutputSpaceDapOutputSpaceDapOutputSpaceDapOutputSpace
DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose DapResetDapResetDapResetDapReset
DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen DapStringFormatDapStringFormatDapStringFormatDapStringFormat
DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery DapStringGetDapStringGetDapStringGetDapStringGet
DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32 DapStringPDapStringPDapStringPDapStringPutututut
DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64 DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare
DapInputAvailDapInputAvailDapInputAvailDapInputAvail

Functions Not Supported

DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek
DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall
DapModuleUninstallDapModuleUninstallDapModuleUninstallDapModuleUninstall
DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed
DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog
DapReinitializeDapReinitializeDapReinitializeDapReinitialize
DapServerControlDapServerControlDapServerControlDapServerControl

Functions Modified

The following functions have new, restricted, or different behavior in Linux.

DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate:
• Accepts a Unix-style pipe name in addition to a UNC (Universal Naming Convention) name. See the discussion

about Accel32 device names.
• The Linux Server currently restricts the maximum pipe size to smaller than 128K bytes.

 DAPIO32 Overview 16

• Pipes created in Linux are not persistent. They need recreating after a system reboot or after Accel32 for Linux is
restarted.

DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen:
• Accepts a Unix-style Accel32 device name in addition to a UNC name. See the discussion about

Accel32 device names.
• Does not support the DAPOPEN_DISKIO open attribute.

DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery:
• The following queries keys are not supported in Linux:
 “ServerEnumerate”
 “DiskFeedEnable”
 “DiskLogEnable”
 “ModuleInstallEnabled”
 “Transports”
 “BindTransport”
 “DapDiskIoCount”
 “DapDiskIoStatus”

Unix style Accel32 device names

The DAPIO32 interface in Linux accepts a Unix-style device name to refer to a target device the Accel32 Server
manages. The interface also accepts UNC-style names, as used in Windows.

Three types of device targets are valid in Accel32: the server device (the Server itself), a DAP device, or a pipe
device. For example, a handle can be obtained by using DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen to obtain access to the Server, to a DAP
that the Server manages, or to a specific pipe on a DAP.

To refer to the server, use the name "/".

To refer to a DAP, use the name "/<dapname>", such as "/Dap0".

To refer to a pipe on a DAP, use the name "/<dapname>/<pipename>", such as "/Dap0/$SysIn".

For example, the following statement opens $SysOut on Dap1 for reading.

hSysOut = DapHandleOpen("/Dap1/$SysOut", DAPOPEN_READ);

And the next statement creates the a binary output communication pipe on Dap0, called Cp2Out, with default
attributes.

if (!DapComPipeCreate("/Dap0/Cp2Out"))
{
... handle error ...
}

C++ Application Programming 17

3. C++ Application Programming

This chapter discusses design strategies for applications that access data from Data Acquisition Processor boards,
including both the DAP and xDAP families. Though the coding examples are in C++, the same strategies will apply
to any host application platform or programming language.

The “DAP Development Software” that comes on any edition of the DAPtools Software CD, or an equivalent
downloaded image from the Web, enables C or C++ applications to communicate with and operate a Data
Acquisition Processor using the DAPIO API. In practice, just about everything in a Windows system uses dynamic
link library (DLL) files in one way or another, and can access DAPIO32.DLL. Various higher-level programming
languages require special configurations or wrapper functions to cross through from their higher-level notations to
the lower-level DLL conventions. C++, being a relatively lower-level language, is better than most for accessing
DLL functions directly.

When you use a DAP board, it is like one computer communicating with another one. You don't have direct access
to hardware of that other computer — so you must communicate through the API functions. In many ways, this is a
big advantage, because there are things that low-level device drivers cannot do, such as exist as shared network
resources, coordinate multiple boards, stream data directly to disk drives, etc.

Software Components

The application running on your PC host will interact with other software components also residing in your host
system.

• The DAPcell Services
This software implements the DAPIO programming interface that your application uses. This is a running
process that performs services to move data, command lines, and messages between your application and the
DAPL operating system.

• DAPIO32.DLL
This module defines the DAPIO programming interface functions that your application uses to access DAP
boards. There is a 32-bit and a 64-bit version. You can operate one DAP board or multiple boards through the
same interface.

• DAPIO32.H
This header file is included by each source code module that uses DAPIO functions.

• DAPIO32.LIB
This module is linked into compiled applications to give them run-time access to the DAPIO32.DLL functions.
Actually, there are two versions of this file, one supporting 32-bit and the other supporting 64-bit.

There are other software elements that run on the DAP boards. DAPIO functions expect these to be present and
running.

• The DAPL System
Depending on your equipment type, the DAPL 2000 system or the DAPL 3000 system runs the data acquisition
hardware independently. You will send a configuration script to the DAPL system to configure the manner that it
captures data and generates output signals. You also specify the processing that you need. The processing might
be as simple as transferring captured data through a communication channel to the host, but it can also include
sophisticated data selection and DSP filtering operations, sensor calibration corrections, and so forth. The script
can be sent one command line at a time, or copied directly from a file.

18 C++ Application Programming

• Processing Tasks
Executable processing task modules, downloaded to your DAPL system each time your host system boots up,
provide the processing functions that run on a DAP to modify and transfer data. You will specify at least one
processing task, to do something with the data you capture or generate.

 Some exceptions:

iDSC boards have their own programming interface. It is similar but supports a different set of features. This is
covered in the iDSC Reference Manual.

The Linux system uses a separate Accel32 kernel driver that supports most of the DAPIO features, but not those
implemented by a server process.

Transfers of data go through logical data channels, called communication pipes. There is more information about
communication pipes in the Overview Chapter, and in particular you need to know about the four communication
pipes set up by default.

• Use $SysIn to send commands to the DAPL system.
• Use $SysOut to receive messages and formatted text from the DAPL system.
• Use $BinOut to transfer binary data to the host from a processing task.
• Use $BinIn to send binary data from the host to a processing task.

Installation

Install your Microsoft compiler software.

It seems like this should be straightforward, but for some reason getting the compiler set up and working right
sometimes seems like the hardest part. Make sure that your compiler is completely operational before continuing.

Install your DAPtools Development software.

If you have downloaded the CD image, first run the extractor program, which will place all required data and the
setup program on your computer disk drive.

If you have not installed the DAP board, do so according to the DAP Install Guide.

As part of a normal DAP board installation, you will run the setup.exe program to install the DAPcell software. This
will provide all of the basic software you need to run applications, and it will register a copy of the DAPIO.DLL in
your Windows system.

To prepare for application development, run the installer program again, but this time select the DAP Development
software. This will place the programming interface files you need to compile your applications, including the
library and header files, on your disk drive.

After the installation is completed, you should be able to find the DAP development files in the installation folder
that you specified. Assuming that it is the default installation location on your local c: drive, you should find the
following.

• Example source files in subdirectory DapDev\Examples\C
It is a useful exercise to build everything as provided, to make sure that this is working properly, before you try
building your own application code.

C++ Application Programming 19

• DapDev\Import\C\DAPIO32.H header file
You will need to include this in each source code file that uses DAPIO functions. You can examine the header
file DAPIO32.H to see the declarations of data structures and functions.

• DapDev\Import\LIB\MC\x86\DAPIO32.LIB and DapDev\Import\LIB\MC\x64\DAPIO32.LIB library
files
Depending on whether you are compiling a 32-bit or 64-bit application, the appropriate file must be linked into
your application so that it knows what functions are available in the DAPIO32.DLL file.

Configure your compiler environment

Configure your compiler environment so that it knows
• how to locate the DAPIO32.H file when it is compiling your application code. This file is typically referenced by

a compiler command line “I option” so that the compiler can find it.
• how to locate the DAPIO32.LIB file when it is linking your binary application code together to build the

executable file. This file is typically listed on the compiler command line with other parameters that are passed
to the linker utility.

If you use the examples provided with the DAP Development software, and install the software in the normal
locations, the makefile for the examples show the required references to these files.

Determine your onboard processing configuration

Your DAP board will only provide the data that you configure it to send. The configuration of the DAP board is not
an extensive process, but it is a precise one. If any detail is wrong, nothing seems to happen – giving few clues. You
can validate your DAPL configuration script, verify that your DAP equipment operates correctly, and verify that
your signals are valid, using a utility such as DAPstudio. If your configuration commands work correctly when
operated independently, they will work exactly the same way under the control of your application.

Configure for your application build

Once you have your compiler generally working, with your DAP software installed and working, set up your project
to begin development for your new software.

The DAP Connection Life Cycle

After you have established a basic framework for your application – so that the application compiles, executes, and
then terminates successfully – you will next want to include the four stages of the “DAP connection life cycle,” as
outlined briefly in the Overview Chapter.

If you think of a DAP device as a resource “object,” the management life cycle for this object should be something
like the following.

• Use the DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen function to connect to each DAP board and each communication channel you need to
use, establishing the direction as input (to the DAP) or output (from the DAP), and receive the handles
that allow further access.

• Use the handle variables to perform various configuration activities to prepare for running.
• Use the handle variables to start DAP processing and to perform data transfer operations.
• Use the DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose function to release all of the DAP handles obtained during the initialization.

20 C++ Application Programming

These phases mesh well with the typical stages of a Windows application.

Initialization

Early in the program initialization sequence, allocate “handle” variables for selecting DAP boards and accessing the
communication pipe connections. If you are using several communication pipes, you might want to define a pipe
management object to organize them. Most applications, however, use the $BinOut file channel almost exclusively
after the initialization phase, so extra packaging might be unwarranted.

// Reserving handles for board and communication access
 HDAP hDAP0
 HDAP hCmdSend;
 HDAP hDataRecv;
 HDAP hDataSend;
 HDAP hMsgRecv;
 …

Near the end of the initialization phase, before you are ready to start the main application event polling loop, use the
handle variables to establish connections to the data transfer channels. Use the UNC naming conventions as
discussed in the Overview Chapter to identify which DAP board and which communication channel you are
processing.

The processing to open the DAP communication channels will look something like the following.

// Reserve a DAP board for the application
 hDAP0 = DapHandleOpen("\\\\.\\dap0",DAPOPEN_WRITE)
 if (hDAP0==0)
 error("Cannot reserve DAP0 for this application");
 DapReset(hDAP0);

// Open DAP communication channels
 hCmdSend = DapHandleOpen("\\\\.\\dap0\\$SysIn",DAPOPEN_WRITE)
 if (hCmdSend==0)
 error("Error opening DAP text input handle");
 hDataRecv = DapHandleOpen("\\\\.\\dap0\\$BinOut",DAPOPEN_READ)
 if (hDataRecv==0)
 error("Error opening DAP binary data output handle");

In communication pipe names, “input” and “output” are from the point of view of the DAP board. Thus, you will
open a $BinIn pipe to write to the DAP board and a $BinOut pipe to read from the DAP board. You can select
handle names that are more intuitive for coding your application. The input and output option codes are defined in
the DAPIO32.h file.

You can use UNC identifier strings like the following to open channels to a second DAP board, residing on a
different host machine, to operate the boards in parallel.

”\\\\PC101\\Dap1\\$SysIn”
”\\\\PC101\\Dap1\\$SysOut”
”\\\\PC101\\Dap1\\$BinIn”
”\\\\PC101\\Dap1\\$BinOut”

C++ Application Programming 21

Notice that when using the UNC path names, each backslash character is represented in the text strings as a
backslash pair. This is a syntactic feature of C++, which use a single backslash as an “escape character” notation to
prefix special character codes.

Most applications will find the predefined communication pipes sufficient, but there are some cases where
additional communication pipes simplify things a lot.

• A special channel can route “messages” directly to one specific processing task.
• Separate channels can serve to keep data with dissimilar data groupings and rates separated, avoiding data

backlogs and making data management easier.
• Information blocks can be passed in one pipe, to indicate how to interpret the bulk data from another pipe.

To use the additional pipes, you must first configure them, either using the Browser tab in the DAPcell “Data
Acquisition” control panel application or by calling a DAPIO DapComDapComDapComDapComPipeCreatePipeCreatePipeCreatePipeCreate function from your application.
Use one of the reserved names for the new communication pipe.

Cp2In … Cp31In Cp2Out … Cp31Out

Certain advanced applications will send special status queries to a DAP board, not specific to any one of the data
channels. For these queries, use a special kind of DapOpen call in which the UNC path does not list a particular
communications pipe.

 hQuerySend = DapHandleOpen("\\\\.\\dap0",DAPOPEN_QUERY)

Clearing prior operations

Unknown previous operations could have left various old data, or possibly a running configuration. Whatever this
prior activity might have been, you don’t want it to clutter your current application. So one of the first things done in
the initialization sequence is an operation to clear the DAP. This stops any ongoing DAP processing, removes past
configurations, and clears away any unwanted old data. This combination of things occurs so often that a special
shorthand function is provided. Use it for each DAP board.

DapReset(hDAP0);

Now that the DAP is clear and can no longer spawn new undesired data, flush any data that accumulated in buffer
memory on the host side.

DapInputFlush(hDataRecv);

Repeat for each communication channel that the application needs to use.

Downloading a DAP configuration

You must configure your DAP board, or it will not know what data to generate or transfer. It is typically a good idea
to configure the DAP immediately after opening the communication channels, to avoid “DAP startup” time lags
later, when other activity begins.

22 C++ Application Programming

You can think of configuration commands this way: they tell the DAP what it will do. It doesn’t actually do any of
this until the START command. (This is a little oversimplified, but most commands show no observable effects in
terms of data input or output until you run the configuration.) Applications that need to get the DAP working as soon
as possible can include a START command at the end of the configuration.

Full details of configuration commands are provided in the DAPL 2000 Manual or the DAPL 3000 Manual. Most
applications will specify an input procedure section, defining how to capture data samples, and a processing
procedure section, defining what to do with them. Some applications will specify an output procedure section,
defining signal generation.

There are two strategies for downloading the configuration. The first is to send the information one command line at
a time. For example, the following sends an input processing configuration this way.

DapLinePut(hCmdSend, "IDEFINE MySampling");
DapLinePut(hCmdSend, "CHANNELS 2");
DapLinePut(hCmdSend, "SET IPIPE0 D0");
DapLinePut(hCmdSend, "SET IPIPE1 D1");
DapLinePut(hCmdSend, "TIME 25.0");
DapLinePut(hCmdSend, "END");

This strategy is effective when significant changes to the configuration are required in response to run-time
information entered by the application user. But most of the time, the configuration never needs to change, and it is
much easier to collect configuration lines in a file and download them all in one operation.

DapConfig(hCmdSend, "C:\DAPapps\MyApp\config.dap");

As an example of using this method, suppose the MySampling configuration was set up previously. The file
config.dap specifies the following DAPL configuration commands. These define processing that will transfer two
channels of input sample data (as defined by the MySampling input configuration) to the host application.

// Configuration lines to make the DAP upload data
PDEFINE MyTransfers
COPY(IPIPES(0,1), $BinOut)
END

START

It is not a one-way-or-the-other choice. You can send some things one line at a time, and other things from a pre-
configured file. What matters is the sequence of lines as they are received by the DAPL system, from the RESET
operation to the START operation.

For applications that need to start the DAP activity with minimum delay, it is useful to put the START command at
the end of the configuration file, as shown in the previous example. But other applications might want to defer
starting the data collection until a user clicks a graphical “Start button” in an application screen. For this case:
remove the START command from the file, and instead use the following command in response to the user’s click.

// User has clicked… start the data acquisition.
DapLinePut(hCmdSend, "START");

C++ Application Programming 23

The possibilities for what you can configure using the DAPL commands are almost unlimited. There are many
examples of DAPL command scripts on the Microstar Laboratories Web site, as well as the manuals for your
products and the DAPL reference manuals.

Efficient Run-Time Processing

When you start your DAPL configuration, it will generate data predictably, in the manner that you defined. The data
will start streaming through the communication channels. In contrast, application timing will be anything but
certain. Your application runs at those moments the operating system scheduler deems appropriate. The delays are
unpredictable, depending on various other system activity (graphic displays, desktop applications, disk activity,
mouse pointer management, etc.).

A “stream of data in a channel” is almost like a “stream of water in a pipe.” If you pour a liter of water into a pipe,
and then pour another liter of water into the pipe, what will you get out of the other end? Depending on the timing,
you might get the first liter, you might get both liters… or you might get the first one and part of the second. The
data in a communication pipe are somewhat better behaved than water, because the data will always emerge in
exactly the same order as they went in. However, you are not guaranteed to receive the data in any particular amount
at any predictable time. Your task is to keep pace, and not lose anything.

There are various strategies that you can use for your data transfers, depending on the goals of your application.

One Value At A Time

The idea is that at each opportunity the scheduling loop will call a primitive function that extracts one unit of data
from the communications pipe buffers. Do this often enough and you can capture any amount of data.

// Call this at every opportunity to obtain the next data.
// This idea is probably doomed!
void GetValueFromDap(HDAP * hDataRecv)
{
 short int *value;
 while (! DapInt16Get(hDataRecv, &value)) /* WAIT... */ ;
 return;
}

There are also corresponding functions DapInt32GetDapInt32GetDapInt32GetDapInt32Get and DapStringGetDapStringGetDapStringGetDapStringGet for receiving higher precision integers
or text messages in a similar manner.

While this idea seems very easy, it has some severe problems. The part about “do this often enough” is not under
your control. Each delivery of one value must pass through operating system software layers for device control,
system data transport, I/O buffering, and the application interface. You will be doing very well if you complete 100
input transactions per second this way. Even worse… what happens if arrival is delayed for some reason? Your
application will hang in this function.

There are times when this strategy is helpful. For example, if you have a communication pipe that never contains
anything except emergency warning flags, you expect the pipe to be empty. This case is handled efficiently, and you
continue immediately with other normal processing. If something does appear, handle the emergency condition
directly. For general-purpose data transfers, however, this idea is usually a disaster.

24 C++ Application Programming

One Block At A Time

You can’t make your operating system more efficient, but if you can move many values (for example, 1000) with
each operation, then the overhead per transported value reduces dramatically, and you can move a lot of data.

#define BUFFER_LENGTH 1000

// Call this to receive a new block of input data.
int GetBlockFromDap(HDAP * hDataRecv, short int * buffer)
{
 int Nreceived =
 DapBufferGet(hDataRecv, BUFFER_LENGTH, (void *)buffer);
 return Nreceived;
}

This looks like a great solution. You gain great efficiency from a larger block transfer. If the buffer cannot be
completely filled, or if some kind of error condition arises, you can determine this from the function return value, so
that it is clear what to do with the data that arrive in your storage area.

The problem is timing. Blocks of data take some time to collect and organize. The DapBufferGetDapBufferGetDapBufferGetDapBufferGet function should
attempt to return a block of the size you request, if it can, but it has no way to know how much time to allow for this.
It can wait up to 20 seconds to fill the request, and even this might not be enough. During this time, your application
is effectively blocked from executing, and will be unresponsive.

This strategy can be successful if you know that your data will arrive in one big block, with no excessive delay, and
with no other processing needed until the data block arrives. Otherwise, you are probably better off using a different
strategy.

Take Everything Available – the TDapBufferGetEx structure

Sometimes you don’t really need to worry about how the data arrive, you just need to move everything with great
efficiency. The “take everything” strategy is very effective for this. A classic example is the problem of streaming
very large amounts of data to disk storage efficiently for data logging.

At each opportunity, attempt to receive a full data block. If you do: deliver the data block for other processing and
immediately attempt to receive another block. If you do not: this is probably the last of the available data. Deliver
whatever data you do receive to other processing, and then return to the caller. Repeat these as many times as
possible, but if things get really busy, take a break now and then to let the rest of the application have a chance to
run.

To control your data transfers, several configuration parameters are needed. These parameters can be configured
once and then used repeatedly by defining a structure of type TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx, as declared in the DAPIO32.H
header file. Here is an example. There are 16 data channels to sample, so data transfers are deferred until a set is
available covering each channel. Transfers are done only in complete 16-channel groups.

// Prepare buffer control structure
int const NCHAN = 16;
int const NBUFFER = NCHAN*128;

 short int iStorage[NBUFFER];
TDapBufferGetEx BufControl;
DapStructPrepare(BufControl, sizeof(TDapBufferGetEx));

C++ Application Programming 25

// At least 16 samples
BufControl.iBytesGetMin = NCHAN*sizeof(short int);

 // As many as 128 of these groups
BufControl.iBytesGetMinax = NBUFFER*sizeof(short int);
// Always groups of 16 samples
BufControl.iBytesMultiple = NCHAN*sizeof(short int);

Since this strategy is for processing lots of data, the rest of the application must attempt to cover all other activity
very quickly and concentrate on being ready for data arrival. So assume that if there is any waiting to do, it will be
done in the functions that receive the data stream. Allow reasonable time intervals for data arrival, but if data do not
arrive quickly, take the opportunity to let the application do other things.

BufControl.dwTimeWait = 5; // Milliseconds to wait for first new data
BufControl.dwTimeOut = 20; // Milliseconds maximum before returning

If data blocks happen to be buffered and ready, this will grab them and return the data quickly. Up to 20
milliseconds are allowed to obtain a complete buffer load. If some data arrive, but not enough to completely fill the
buffer within 20 milliseconds, the data transfers are probably “caught up” so it is OK to leave and let other
application activity run for a while. But in the worst case, 5 buffer loads could require nearly 100 milliseconds. After
this much time, the main scheduling loop should be given a chance to take care of other things such as file
management, display, use controls, and so forth.

After each call to the following function, the main polling loop learns about how much new data has arrived and can
take appropriate action.

// Call this to fetch and deliver any new data that arrive.
// Report the number of new values.
int ReceiveAvailableData(HDAP * hDataRecv, short int * buffer)
{
 int total = 0;
 int received;
 int bytes;

 // Exit this loop if 5 buffer loads have been collected (up to 100mS)
 for (int iRepeat=0; iRepeat<5; ++iRepeat)
 {
 bytes = DapBufferGetEx(hDataRecv, &BufControl, (void *)buffer);
 // Deliver any data received
 if (bytes > 0)
 {
 received = (bytes / sizeof(short int));
 DeliverData(buffer,received);
 total += received;
 }
 // Exit this loop if the last buffer was not completely filled
 if (bytes < BufControl->iBytesGetMax)
 break;
 }
 return total;
}

26 C++ Application Programming

Your application will determine what the application-specific DeliverData function does with the data.

This example used a loop to guarantee that regardless of how busy the data collection, the main application loop will
occasionally get control for other activity. Another strategy that advanced programmers can consider is using a
separate thread to control the time allocated to data transfers and the main application loop.

Don’t Wait, Take What You Need

This strategy can be useful when receiving small “tagged” data blocks, of the sort that occur when there are multiple
activities on the DAP board producing small amounts of data. The “tag” is just a small data block preceding each
group of actual data, describing the type and the amount of actual data to follow. After you have the tag and know
the block size, you want to fetch the data for one block exactly, to avoid additional tags or fragments carrying over
from one activity to the next. If a full block is not available, try again later.

You can do this by polling the available contents of the transfer channel, and modifying the control configuration so
that only data for a complete block are delivered, without waiting for any new data to arrive. Set up a buffer control
structure, but leave two critical fields empty.

// Buffer control structure prototype for adjustable-size data blocks

 short int iBlock[MAXBLOCK];
TDapBufferGetEx BufControl;
DapStructPrepare(BufControl, sizeof(TDapBufferGetEx));
BufControl.iBytesMultiple = NCHAN*sizeof(short int);

Unlike the Take Everything strategy, data arrival could be slow and very irregular. Waiting for data is seldom going
to be productive, so wait for data as little as possible, and leave most of the timing control to the main application
loop. The input processing is less efficient, but the data management is as simple as possible.

BufControl.dwTimeWait = 2; // Milliseconds to wait for first new data
BufControl.dwTimeOut = 20; // Milliseconds total before returning

Now your application code will first call a function to check whether the next tag is available. If not, return without
waiting for anything.

// Call this to fetch available new tag data – otherwise, try again later
BOOL FetchTag(HDAP * hDataRecv, short int * type, short int * length)
{
 BOOL result;
 // Verify that tag data are ready before continuing
 result = (DapInputAvail(hDataRecv) >= 2*sizeof(short int));
 if (result)
 {
 // This is very easy, but a blocked transfer is actually more efficient
 DapInt16Get(hDataRecv,&type);
 DapInt16Get(hDataRecv,&length);
 }
 return result;
}

C++ Application Programming 27

When the tag arrives, the main polling loop learns the amount of data in the following data block. By setting the
minimum and the maximum size equal to this block size, it is guaranteed to receive exactly this data. Check whether
the data for this block have arrived. If so, load the data block. If not, wait until later.

// Call this to load the predetermined block size into the buffer area.
// If a complete block is not available -- try again later.
BOOL FetchAdjustableBlock(
 HDAP * hDataRecv, short int length, short int * buffer)
{
 BOOL result;
 // DANGER – are you sure the block fits completely in buffer memory?
 result = (DapInputAvail(hDataRecv) >= length*sizeof(short int));
 if (result)
 {
 // Block data ready and buffered. Now fetch it.
 // Make local copy of control ‘template’ and supply missing fields
 TDapBufferGetEx LocalBufControl = BufTemplate;
 LocalBufControl.iBytesGetMin = length*sizeof(short int);
 LocalBufControl.iBytesGetMax = length*sizeof(short int);
 DapBufferGetEx(hDataRecv, &LocalBufControl, (void *)buffer);
 }
 return result;
}

Beware that long data blocks might not fit in the buffer memory available for the application. If this happens, the
DDDDapInputAvailapInputAvailapInputAvailapInputAvail function will never succeed, and your application will never see any of the data. For transfers of a
few hundred samples, this should be safe. For a few thousand samples, probably not. For efficiently streaming large
amounts of data, you need long blocks and a different strategy.

Take Block If Available

This strategy can be very effective when you know that your data source generates fixed size blocks with periods of
delay between. If any new data are available, you know it means a complete new block is coming, and you want to
process it; otherwise you do not want to wait. Data are taken in units of complete blocks. The rate must be low
enough that your application has no difficulty keeping pace.

Configure a control parameter block of type TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx with minimum and maximum transfer sizes set
equal to each other and equal to the length of one block. (The iBytesMultiple field will not matter as long as it is
something reasonable.) For this example, suppose that each data block is a 2048-value block produced by a an FFT,
with the results in a 32-bit floating point data type.

int const NBUFFER = 2048;

 float fStorage[NBUFFER];
TDapBufferGetEx BufControl;
DapStructPrepare(BufControl, sizeof(TDapBufferGetEx));
BufControl.iBytesGetMin = NBUFFER*sizeof(float);
BufControl.iBytesGetMinax = NBUFFER*sizeof(float);
BufControl.iBytesMultiple = sizeof(float);

If any data have arrived, we want to allow plenty of time to load everything. But if there are no data, we don’t want
to wait. The pace is not fast, and if we see no immediate data it is safe to try again later.

28 C++ Application Programming

BufControl.dwTimeWait = 2; // Milliseconds to wait for first new data
BufControl.dwTimeOut = 100; // Milliseconds maximum before returning

Data are processed one block at a time, so there is no need to call a DeliverData function; the data can be safely
processed directly from the buffer storage.

// Call this to fetch one new data block.
BOOL ReceiveFFTBlock(HDAP * hDataRecv, float * buffer)
{
 bytes = DapBufferGetEx(hDataRecv, &BufControl, (void *)buffer);
 if (bytes > 0)
 return true;
 else
 return false;
}

Take All Blocks Available

This strategy is really a combination of the buffer control configuration described in the preceding “Take One
Block” section with the algorithm described in the “Take Everything Available” section before that. It is a very safe
and efficient strategy when data blocks are produced faster than the Windows polling loop can ask for them.

Take Most Recent Block

This strategy is effective for applications that need to record data on a time schedule defined by an external process.
Most applications are limited to one of two ways to do this.

1. Stream the data into the host so that if an external request arrives, the current information necessary to satisfy
the request is available. This is rather wasteful of resources because most of the data and management effort
will end up being discarded.

2. Wait until the external request arrives. Send a request for data acquisition, wait for data to be collected, wait
for data to be transferred, process the data, and deliver the response. By the time this is done, the readings are
no longer current.

With a DAP board to help, there is a third option: a combination of these two strategies, with the host and DAP
processing sharing the load.

3. Let the DAP continuously collect data at a high rate, keeping the most current readings in memory. When an
external request arrives, the host requests the “most recent block” of data. By the time the application can post
a request to receive the response data, the DAP typically has completed the transfer, making the results seem
instantaneous.

Some special processing is required on the DAP board so that it sends data only on request, rather than streaming it
continuously. This special processing is provided by the MRBLOCK (most recent block) processing command, which
must be included in the DAPL configuration sent to the DAPL system. (MRBLOCK is not provided with all versions
of the DAPL system, but if your version does not have it, a downloadable module containing the MRBLOCK
command is available on request, compatible with all current DAP and xDAP models.) You also will need to open a
connection to the $BinIn communication pipe in your initialization section.

The DAPL processing will look something like the following.

C++ Application Programming 29

// Processing to generate “most recent block” reports
PDEFINE MRBsend
 // Various processing here will generate the data
 …
 // Collect blocks of results
 NMERGE(1, item1, 1, item2, 16, item3, … , report)
 // Send only the most recent block, on request received from $BinIn
 MRBLOCK(report, $BinIn, BLOCKSIZE, $BinOut)
END

Now your application can periodically request data in the following manner.

// Call this each time the external system requests a new status report.
//
void GetMostRecentStatus(HDAP * hRequestSend, HDAP * hDataRecv,
 void * buffer)
{
 // Send the request for 1 block to the DAP processing
 DapInt16Put(hRequestSend,1)
 // Expect an immediate response that delivers one full block
 DapBufferGet(hDataRecv, BUFFER_LENGTH, buffer);
 return;
}

Data Access Considerations

You must construct your application so that it polls the data transfers frequently enough to keep pace with all of the
data that the DAPL system is configured to send. Furthermore, other processing must remove the data from your
buffers to free the storage. This can lead to interesting challenges for demanding, high-rate applications:

• How can you organize memory buffers efficiently, so that the DAP data can be received and processed without
too much conflict?

• How can you organize your processing threads so that other processing is not stalled while awaiting data arrival
from the DAP?

These are ordinary data management issues that you would face with any Windows application. The only difference
is that the DAP can produce data so quickly that the data streams overwhelm your application if processing is not
timely and efficient.

When you configure your data storage, it will typically receive data in a multiplexed sequence – one value from
channel 0, one value from channel 1, one value from channel 2, ... and on to the value from channel N-1. Then this
starts over with channel 0. These channel-by-channel values are what you will find stored in your buffer memory in
consecutive locations. You can prepare for this if you wish, as in the following example with 10 channels of
sampled data and a buffer that can retain up to 400 of these groups.

//DAPL configuration:
 COPY(IP(0..9),$BinOut)

//Host software
short int iMyStorage[4000];
short int (* pMyArray) [400][10];

30 C++ Application Programming

...
 pMyArray = (int (*)[400][10])(&iMyStorage[0]);

Now, when the data buffer is returned, the data are addressable in the iMyStorage area either as a raw sequence of
4000 samples, or as pMyArray with 400 groups of 10 sample values, depending on which pointer you use.

for (int ichannel=0; ichannel<9; ++ichannel)
 {
 value = pMyArray[igroup][ichannel];

 }

On the other hand, suppose that you apply processing in the DAPL system that organizes the data in a different
manner, sending data in contiguous blocks, not mixed channel-by-channel. Here is an example of DAPL processing
that can produce this kind of data organization.

//DAPL processing configuration: produces 5 blocks of 512 terms
PDEFINE spectra
 FFT(5,10,0,ip0,PFFT0)
 FFT(5,10,0,ip1,PFFT1)
 FFT(5,10,0,ip2,PFFT2)
 FFT(5,10,0,ip3,PFFT3)
 FFT(5,10,0,ip4,PFFT4)
 BMERGE(PFFT0,PFFT1,PFFT2,PFFT3,PFFT4,512,$BinOut)
END

 This kind of data organization can also be supported in your application code.

//Host software
short int iMyStorage[5120];
short int (* pMyArray) [10][512];
...
 pMyArray = (int (*)[10][512])(&iMyStorage[0]);

 for (int iterm=0; iterm<512; ++iterm)
 { value = pMyArray[itransform][iterm];

 }

C++ Application Programming 31

Application Termination and Cleanup

It is likely that when you are ready to stop your application, the DAP board remains fully configured, and possibly
still running. If you leave the board in this condition, the DAPL system on the board will not know whether it is safe
to stop operation or whether your application is just experiencing a temporary delay. If the board continues running
after your application is closed, this can leave the DAP board inaccessible by other applications – even trying to start
the same application again might fail. Leaving the DAP running can also cause unexpected data to remain in the
transfer pipes, creating a possibility that the stale data will be seen in the data channel later.

For these reasons, it is important to shut down the activity on the DAP board before closing the application. First,
stop the processing so there is no conflict or delay as other things are shut down.

DapLinePut(hCmdSend,“STOP”);

Then issue commands to close the DAP communication channels, closing every communication channel that you
opened.

 result = DapHandleClose(hCmdSend);
 if (result==-1)
 error("Error closing DAP command handle");
 result = DapHandleClose(hMsgRecv);
 if (result==-1)
 error("Error closing DAP message output handle");
 result = DapHandleClose(hBinRecv);
 if (result==-1)
 error("Error closing DAP data input handle");

Before terminating your application, clear everything in the DAPL configuration. This removes all of the existing
configurations and purges any remaining unused data from communication pipes.

DapReset(hDAP0);
DapHandleClose(hDAP0);

Strictly speaking, if your application is “well defended” in your startup sequence, it will not fall victim to the
residual effects of prior processing. But there is no point in leaving possible hazards for other applications.

32 C++ Application Programming

Summary of Basic DAPIO Functions

Here are the DAPIO functions illustrated in this section. Look them up in the DAPIO function reference section of
this manual for complete details.

DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen Opens a handle to a DAP communication pipe, specified using
Microsoft networking UNC (Universal Naming Convention) path,
specifying read or write access, receiving the DAP handle in return.

DapInputFlushDapInputFlushDapInputFlushDapInputFlush Clear data from the specified communication channels, in case any
data remains unprocessed from prior operations.

DapConfigDapConfigDapConfigDapConfig Send a text file of configuration commands to the specified DAP.

DapResetDapResetDapResetDapReset Stop all DAP activity, clear away any unsent data left over in
memory, and clear away any existing configurations.

DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose Release a connection to the specified DAP communication channel.

DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare Initialize fields of a DAP control block prior to other use.

DapInputAvailDapInputAvailDapInputAvailDapInputAvail Test whether data are available in the communication channel
without suspending the thread to wait for data arrival.

DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx Transfer a block of sample data from the DAPL system into
application buffer memory.

DapLinePutDapLinePutDapLinePutDapLinePut Transfer a line of command text to the DAPL system

DapInt16GetDapInt16GetDapInt16GetDapInt16Get Receive the first short int (16-bit) value from transfer buffer
memory.

DAPIO32 Interface Reference 33

4. DAPIO32 Interface Reference

The following pages provide reference information for the structures and functions included in the DAPIO32
Interface.

 DAPIO32 Interface Reference 34

DAPIO32 Structure Reference

Structure Reference

TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx
TDapBufferPeekTDapBufferPeekTDapBufferPeekTDapBufferPeek
TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx
TDapCommandDownloadTDapCommandDownloadTDapCommandDownloadTDapCommandDownload
TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery
TDapITDapITDapITDapIoInt64oInt64oInt64oInt64
TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed
TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog

Structure Usage

Applications use structures to pass information to and from several of the DAPIO32 functions. To ensure correct
operation, application code must always fully initialize a structure before passing it to a DAPIO32 function.

Structure Initialization

The DAPIO32 interface provides a function and a template to facilitate structure initialization. Application code can
use either the function or the template DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare to do the initial setup of the structure, and then set the
fields relevant to the particular operation to required values.

For example:

. . .
{
 TDapCommandDownload dcd;
 DapStructPrepare(dcd);

 dcd.hdapSysPut = hDapSysPut;
 dcd.hdapSysGet = hDapSysGet;
 dcd.pszCCFileName = pszFile;
 dcd.iCCStackSize = 1000;
. . .
}

The preceding code fragment initializes the dcd structure to zero and sets the iInfoSize field, using
DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare template. It then initializes all other non-zero required fields for the desired operation. This
sequence of steps should be observed as a normal practice for any DAPIO32 structure initialization.

Binary Compatibility

Applications compiled with an older DAPIO32 interface will typically run with a newer DAPIO32.DLL. The
README.TXT file included with each release of DAPIO32.DLL lists the versions of the DAPIO32 interface
supported by that DLL. Code modification and recompilation are only required if the version of the interface that

DAPIO32 Interface Reference 35

was previously used by an application is no longer supported, or if an application needs to take advantage of
additional features offered by the newer interface.

Alphabetical Structure Reference

Following is a complete alphabetical listing of all DAPIO32 structures.

See Also
DAPIO32 Function Reference

 DAPIO32 Interface Reference 36

TDapBufferGetEx

The TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx structure defines the behavior of the DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx function.

typedef struct tag_TDapBufferGetEx {
int iInfoSize; // Size of this structure
int iBytesGetMin; // Minimum bytes to get
int iBytesGetMax; // Maximum bytes to get
int iReserved1; // Not used; must be zero
unsigned long dwTimeWait; // Time interval to wait for new data
unsigned long dwTimeOut; // Total time for entire operation
int iBytesMultiple; // Bytes to get is a multiple of this
} TDapBufferGetEx;

Members
iInfoSize

Specifies the size of this information structure.

iBytesGetMin
Specifies the minimum number of bytes to get. It can be zero or a positive integer that is a multiple of
iBytesMultiple.

iBytesGetMax
Specifies the maximum number of bytes to get. It must be greater than or equal to iBytesGetMin and a
multiple of iBytesMultiple.

dwTimeWait
Specifies the longest time in milliseconds to wait for new data to arrive. If no new data arrive in this amount of
time, the service aborts the operation. A value of zero means “do not wait”.

dwTimeOut
Specifies the longest time in milliseconds to complete the entire operation. If the operation fails to complete in
this amount of time, the service aborts the operation. When this member is non-zero, it takes precedence over
dwTimeWait. A value of zero means do not time-out (wait indefinitely if necessary).

iBytesMultiple
Specifies that the number of bytes to get for iBytesGetMin and iBytesGetMax be restricted to a multiple of
this value.

Remarks
An application must fully initialize TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx before passing it to DapBufferGetDapBufferGetDapBufferGetDapBufferGetExExExEx. Use
DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare to prepare the structure before setting the specific fields of interest.

See Also
DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx, DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare

DAPIO32 Interface Reference 37

TDapBufferPeek

The TDapBufferPeekTDapBufferPeekTDapBufferPeekTDapBufferPeek structure defines the behavior of the DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek function.

typedef struct tag_TDapBufferPeek {
int iInfoSize; // Size of this structure
int iBytesGetMin; // Minimum bytes to get
int iBytesGetMax; // Maximum bytes to get
unsigned long bmMode; // Bit mode flag
unsigned long dwTimeWait; // Time interval to wait for new data
unsigned long dwTimeOut; // Total time for entire operation
int iBytesMultiple; // Bytes to get is a multiple of this
void *pBuffer; // Pointer to user-supplied buffer
TDapInt64 i64OffsetRequested; // Requested offset of data
TDapInt64 i64OffsetResult; // Actual offset of data returned
int iBytesResult; // Number of bytes returned
} TDapBufferPeek;

Members
iInfoSize

Specifies the size of this information structure.

iBytesGetMin
Specifies the minimum number of bytes to get. It can be zero or a positive integer that is a multiple of
iBytesMultiple.

iBytesGetMax
Specifies the maximum number of bytes to get. It must be greater than or equal to iBytesGetMin and a
multiple of iBytesMultiple.

bmMode
Specifies the mode of the operation, dbpk_Relative or dbpk_Absolute.

The relative mode requires that the last unit of data (see description of iBytesMultiple for the definition of
data unit) be the most recent available data unit in the target, or, if the value of i64OffsetRequested is non-
zero, the data unit i64OffsetRequested back from the most recent available data unit.

The absolute mode (default) requires that data start at the offset specified in i64OffsetRequested.

dwTimeWait
Specifies the longest time in milliseconds to wait for new data to arrive. If no new data arrive in this amount of
time, the service aborts the operation. A value of zero means “do not wait”.

dwTimeOut
Specifies the longest time in milliseconds to complete the entire operation. If the operation fails to complete in
this amount of time, the service aborts the operation. When this member is non-zero, it takes precedence over
dwTimeWait. A value of zero means do not time-out (wait indefinitely if necessary).

iBytesMultiple
Specifies the size of the smallest transferable data unit as well as its alignment offset. A data unit always starts
at an offset that is the multiple of this value. A value of zero means no user-specified unit size and alignment,

 DAPIO32 Interface Reference 38

which is equivalent to the size and alignment of the underlining target data width. If non-zero, this value must
be a multiple of the target data width.

For pipes, the data width is the width of the data type of the pipe. For disk files, the data width is always one.

pBuffer
Points to a user-specified buffer. The buffer must be at least iBytesGetMax in size.

i64OffsetRequested
This value must be a multiple of the data unit size, that is, a multiple of the value of iBytesMultiple.

In relative mode, this field must be zero or negative. If this is zero, the last unit of requested data is the most
recent unit available. If this is a negative number, the requested data units shift back in time by this offset. For
pipes, the maximum requested data length (iBytesGetMax) plus the possible shift length specified by this field
must be no longer than the maximum pipe size. If the requested data is not available yet, waiting may occur. If a
time-out has occurred before all data becomes available, whatever available is returned.

In absolute mode, this is the requested offset of the first data unit. If the requested data is available, the data
returned is exactly the request. If some or all of the requested data no longer exist in the target, a block of the
next available data unit is returned. If the request refers to data in the future, waiting may occur. If a time-out
occurs, a block of data smaller than requested may be returned. In all cases, the offset of the first data unit
returned is in i64OffsetResult. Following are examples for pipe history reading. Disk file reading is
analogous to it except that there is no restriction on the request imposed by the pipe maximum size.

For example, in relative mode with data unit size (iBytesMultiple) of 2 and current last byte of data at offset
999 or 1000,

a 100 bytes of data (50 units) with i64OffsetRequested of 0 will be bytes from offset 900 to 999, and

a 100 bytes of data (50 units) with i64OffsetRequested of -100 will be bytes from offset 800 to 899.

A request for 100 bytes of data (50 units) with i64OffsetRequested of -1000 will return nothing if no
wait time or too short of a wait time is specified. Otherwise, it returns one or more units up to
iBytesGetMax from offset 0 or larger if at least one unit of data shows up during the waiting period.

In absolute mode with unit size (iBytesMultiple) of 2, i64OffsetRequested 1000 and the pipe maximum
size 10000 bytes,

if the current last byte of data is at offset between 1099 and 10999, a 100 bytes (50 units) of data is returned
from offset 1000 to 1099, and

if the current last byte of data is at offset 11099, a 100 bytes (50 units) of data is returned from offset 1100 to
1199.

If the current last byte of data is at offset 99 and a wait time is specified, a 100 bytes (50 units) of data may
be returned from offset 1000 or larger. If a time-out occurs, less than 50 units may be returned. If no wait
time is specified or the wait time specification is not long enough for any data to show up, nothing is
returned.

i64OffsetResult
This output field carries the offset of the first data unit returned in the user-provided buffer. If no data is
returned, this carries the offset of the most recent available unit in the target. This can be undefined if less than
one unit of data exists in the target.

If the iBytesGetMin and iBytesGetMax of a request are both zero, this field returns the same value as it does
for a request for one data unit.

DAPIO32 Interface Reference 39

iBytesResult
This output field carries the number of bytes of data in the return buffer. A positive value is always a multiple of
iBytesMultiple and is never larger than iBytesGetMax. A value of zero indicates that nothing in the target
meets the request, even though at least one unit (iBytesMultiple) of data does exist. In this case,
i64OffsetResult contains the offset of the most recent available unit in the target. If less than one unit of
data exists in the target, this value is -1 and i64OffsetResult is undefined.

Remarks
An application must fully initialize TDapBufferPeekTDapBufferPeekTDapBufferPeekTDapBufferPeek before passing it to DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek. Use
DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare to prepare the structure before setting the specific fields of interest.

See Also
DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek, DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare

 DAPIO32 Interface Reference 40

TDapBufferPutEx

The TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx structure defines the behavior of the DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx function.

typedef struct tag_TDapBufferPutEx {
int iInfoSize; // Size of this structure
int iBytesPut; // Number of bytes to put
unsigned long dwTimeWait; // Time interval to wait for space
unsigned long dwTimeOut; // Total time for entire operation
int iBytesMultiple; // Bytes to put is a multiple of this
int iReserved1; // Not used; must be zero
} TDapBufferPutEx;

Members
iInfoSize

Specifies the size of this information structure.

iBytesPut
Specifies the number of bytes to put. It must be a multiple of iBytesMultiple.

dwTimeWait
Specifies the longest time in milliseconds to wait for available space to put data. If no space is available in this
amount of time, the service aborts the operation.

dwTimeOut
Specifies the longest time in milliseconds to complete the entire operation. If the operation fails to complete in
this amount of time, the service aborts the operation. When this member is non-zero, it takes precedence over
dwTimeWait.

iBytesMultiple
Specifies that the number of bytes to put for iBytesPut be restricted to a multiple of this value.

Remarks
An application must fully initialize TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx before passing it to DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx. Use
DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare to prepare the structure before setting the specific fields of interest.

The value of iBytesPut must be an integral multiple of iBytesMultiple; otherwise, an error occurs.

A zero value of iBytesMultiple is treated the same as one. The value of iBytesMultiple cannot be larger
than the maximum pipe buffer size on the PC side (converted to bytes); otherwise, an error occurs.

See Also
DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx, DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare

DAPIO32 Interface Reference 41

TDapCommandDownload

The TDapCommandDownloadTDapCommandDownloadTDapCommandDownloadTDapCommandDownload structure is used to define the behavior of the DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload function.

typedef struct tag_TDapCommandDownload {
int iInfoSize; // Size of this structure
HDAP hdapSysPut; // $SysIn handle
HDAP hdapSysGet; // $SysOut handle
const char *pszCCFileName; // Custom command filename
const char *pszCCName; // Custom command name
int iCCStackSize; // Custom command stack size
} TDapCommandDownload;

Members
iInfoSize

Specifies the size of the structure.

hdapSysPut
Handle open to $SysIn on a DAP board.

hdapSysGet
Handle open to $SysOut on a DAP board or zero.

pszCCFileName
File name for custom command.

pszCCName
Name for custom command or NULL.

iCCStackSize
Stack size for custom command.

Remarks
TDapCommandDownloadTDapCommandDownloadTDapCommandDownloadTDapCommandDownload must be fully initialized before calling the DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload function. Use
DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare to prepare the structure before setting the specific fields of interest.

hdapSysPut must be open with write access to a com-pipe which is connected to $SysIn on a DAP board.

hdapSysGet may be open with read access to a com-pipe which is connected to $SysOut on the same DAP
board.

pszCCFileName is the name and path to a custom command file to download. It may also be used to provide the
name of the custom command.

pszCCName is the name for the custom command. It may be up to 11 characters and must consist of valid letters
for a DAPL command name (A-Z_ followed by A-Z0-9_).

pszCCName may be NULL. In this case, the first 11 characters, excluding the extension, of pszCCFileName are
used for the custom command name. The first 11 characters of pszCCFileName must form a valid DAPL symbol
name.

 DAPIO32 Interface Reference 42

iCCStackSize is the size in bytes for the custom command stack. iCCStackSize must be at least 1000; if it is
not the size is increased automatically to 1000.

If hdapSysGet is 0, DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload will not attempt to synchronize communication with the DAP board
and will just download assuming that the DAP board is ready. This can be faster than fully synchronized download
but it is quite dangerous. In most cases it is best to set hdapSysGet to a pipe open to $SysOut for a DAP board.

DAPL error handling is the responsibility of the caller if hdapSysGet is 0 because DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload is
unable to query the DAP board for error information.

When hdapSysGet is 0, it is critical to turn off the DAPL OPTIONS SYSINECHO, TERMINAL, and PROMPT.
Otherwise, DAPL echoes data back to the application and the application may hang because it is not reading the
data.

See Also
DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload, DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare

DAPIO32 Interface Reference 43

TDapHandleQuery

The TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure is used to define the behavior of the DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery function.

typedef struct tag_TDapHandleQuery {
int iInfoSize; // Size of this structure
const char *pszQueryKey; // Pointer to a query key string
union { // Query result union
 unsigned long dw; // 32-bit return value
 char *psz; // Address of buffer for result strings
 void *pvoid; // Address of buffer for eResultType
 } QueryResult; // data
int iBufferSize; // Size of the buffer
int eResultType; // Data type of return value
} TDapHandleQuery;

Members
iInfoSize

Specifies the size of this structure.

pszQueryKey
Points to a null-terminated query key string.

QueryResult
Receives the result of the query. This is a union of QueryResult.dw, QueryResult.psz and
QueryResult.pvoid. DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery returns 32-bit binary values in QueryResult.dw. It returns strings
in an application-supplied buffer addressed by QueryResult.psz. It returns data of the requested type in an
application-supplied buffer addressed by QueryResult.pvoid if it receives eResultType specified as any
value other than DAPIO_NONE.

iBufferSize
Specifies the size of the application-supplied buffer addressed by QueryResult.psz or
QueryResult.pvoid. Specify zero to obtain the result in QueryResult.dw as a 32-bit binary value.

eResultType
Specifies the data type of the return value in an application-supplied buffer addressed by
QueryResult.pvoid.

DAPIO_NONE No type specified. If the application supplies a buffer,
the service will return a string in the buffer addressed by
QueryResult.psz.

DAPIO_BINARY The service returns data in binary format in the buffer
addressed by QueryResult.pvoid.

DAPIO_SZ The service returns a string in the buffer addressed by
QueryResult.pvoid.

 DAPIO32 Interface Reference 44

DAPIO_MULTI_SZ The service returns as a double null-terminated list of
strings in the buffer addressed by
QueryResult.pvoid.

DAPIO_VARIANT A sub-set of the Windows VARIANT type that includes
only scalar values. No pointer or reference types are
supported. The service returns the result in the buffer
addressed by QueryResult.pvoid. The buffer must
be at least as large as the Windows API VARIANT data
type.

Remarks
An application must fully initialize the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure before calling the DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery
function. Use DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare to prepare the structure before setting the specific fields of interest.

The member pszQueryKey must point to a null-terminated query key string.

The member iBufferSize must be set either to zero or to a positive value. If iBufferSize is zero, the result is
a 32-bit binary value returned in QueryResult.dw. If iBufferSize is positive, it specifies the size, in bytes, of
an application-supplied buffer. The application must initialize QueryResult.psz or QueryResult.pvoid to
point to the buffer. The result is a double null-terminated list of character strings if eResultType is DAPIO_NONE;
otherwise, the result is in the format as specified by eResultType.

A query can request the DAPIO_VARIANT result type for all keys that can return a scalar result. For queries whose
result type is not clear in advance, use DAPIO_VARIANT.

To use this type, the caller must supply a buffer at least as large as the size of a VARIANT object. A typical practice
is to allocate a VARIANT object and initialize it to empty by calling the Windows API VariantInit before
passing it to the query through the TDapHandleQueTDapHandleQueTDapHandleQueTDapHandleQueryryryry structure. Upon a successful return, check the type of the
return variant and then access the result through the corresponding field of the variant. The following segment of
code illustrates the use of this type.

DAPIO32 Interface Reference 45

// Allocate local query structures
VARIANT var;
TDapHandleQuery Q;

// Initialize the structures for a query
VariantInit(&var);
DapStructPrepare(Q);
Q.pszQueryKey = “DaplMemTotal”;
Q.iBufferSize = sizeof(var);
Q.QueryResult.pvoid = &var;
Q.eResultType = DAPIO_VARIANT;

// Make the query
if (DapHandleQuery(Handle, &Q))
 {
 // In this case, the result type is long, known in
 // advance. Simply access the result through
 // var.lVal. Otherwise, something like the following
 // should be done:
 // switch (var.vt) {
 // case VT_I2: // access var.iVal
 // case VT_I4: // access var.lVal
 // case VT_R4: // access var.fltVal
 // ...
 // }
 }
else
 {
 // handle error
 }

See Also
DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery, DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare

 DAPIO32 Interface Reference 46

TDapIoInt64

DAPIO32 uses TDapIoInt64TDapIoInt64TDapIoInt64TDapIoInt64 to represent a 64-bit integer type.

The TDapIoInt64TDapIoInt64TDapIoInt64TDapIoInt64 definition as declared in DAPIO32.h is as follows:

#ifdef M_DapIoNoInt64
typedef struct tag_TDapIoInt64 {
 unsigned long dwLowPart;
 unsigned long dwHighPart;
} TDapIoInt64;
#else
 typedef __int64 TDapIoInt64;
#endif

Examples
Following are two examples about how to initialize the i64MaxCount field in the TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog structure to
a value of 4294967296. The first example is for environments that support the __int64 data type while the
second example is for environments that do not support the __int64 data type.

// Example 1: __int64 type is supported
#include <dapio32.h>

TDapPipeDiskLog dpdl;

DapStructPrepare(dpdl);
dpdl.i64MaxCount = 4294967296;

// Example 2: __int64 type is NOT supported
#define M_DapIoNoInt64 1
#include <dapio32.h>

TDapPipeDiskLog dpdl;

DapStructPrepare(dpdl);
dpdl.i64MaxCount.dwLowPart = 0;
dpdl.i64MaxCount.dwHighPart = 1;

DAPIO32 Interface Reference 47

TDapPipeDiskFeed

The TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed structure defines the behavior of the DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed function.

typedef struct tag_TDapPipeDiskFeed {
int iInfoSize; // Size of this structure
unsigned long bmFlags; // Flags to control feeding behavior
const char *pszFileName; // Pointer to a name string
unsigned long dwFileShareMode; // Define how the disk file is read
unsigned long dwFileFlagsAttributes; // Set attributes of the logfile
unsigned long dwBlockSize; // Size of block to read
TDaploInt64 i64MaxCount; // Maximum number of bytes to read
unsigned long dwReserved[16]; // Not used; must be zero
} TDapPipeDiskFeed;

Members
iInfoSize

Specifies the size of this structure.

bmFlags
Specifies various disk-reading options.

pszFileName
Points to a null-terminated string that specifies the name of the data file to read.

dwFileShareMode
Specifies the file share properties of the disk data file.

dwFileFlagsAttributes
Specifies additional file attributes.

dwBlockSize
Specifies the minimum amount of data (in bytes) to read from the data file at one time when enough data are
available. Use this field to optimize disk transfer. The default value is 8192.

i64MaxCount
Specifies the maximum number of bytes to feed. The default value is zero.

Remarks
An application must fully initialize TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed before calling DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed. Use
DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare to prepare the structure before setting the specific fields of interest.

bmFlags specifies one of the following disk-feed options:

dpdf_ServerSide The data file to be read resides on the same side of
the network connection as the DAP board. The
default is to assume the file resides on the same side
of the network as the application (client side).

 DAPIO32 Interface Reference 48

dpdf_FlushBefore Flush the output data pipe before beginning the
feeding session. Default action is to NOT flush the
pipe before feeding.

dpdf_ContinuousFeed The DAP board re-reads the data file from the
beginning as soon as the end-of-file is reached. The
default action is to stop feeding data at the end of
the file.

dpdf_BlockTransfer Instruct the DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed function to open
the file with no intermediate buffering or caching
and to access the file in a special way that is highly
dependent on the target disk attributes to improve
performance. To receive the expected performance
improvement, use this option in conjunction with a
very large dwBlockSize value (such as 1048576).

The member pszFileName points to a null-terminated string that specifies the name of the data file to read. The
name can consist of a relative path or an absolute path. When dpdf_ServerSide is set, the service interprets the
name from the server machine.

The pszFileName may contain a UNC file name using a network share name on the DAPcell server. Using this, a
user on a client may select a file on the DAPcell server through the share without any knowledge of the server side
disk layout. The DAPcell server will translate the share name to a local server side path so that it can read the file
locally, allowing for high performance.

For example, if the DAPcell server name is DAPcell1 and the data directory on the DAPcell server is c:\data,
which is shared as DATA, then setting pszFileName to \\DAPcell1\DATA\DataFile.dat will cause the
DAPcell server to read the file c:\data\DataFile.dat on the DAPcell server.

The member dwFileShareMode specifies the file share properties of the disk data file. The values allowed are:

0 The file cannot be used by another process.

DAPIO_FILE_SHARE_READ The file can be read by another process.

DAPIO_FILE_SHARE_WRITE The file can be written to by another process.

The member dwFileFlagsAttributes specifies additional file attributes. The possibilities are:

DAPIO_FILE_ATTRIBUTE_NORMAL No special attributes.

DAPIO_FILE_ATTRIBUTE_READONLY The file is read-only.

DAPIO_FILE_ATTRIBUTE_ENCRYPTED The data in the file is encrypted.

DAPIO_FILE_FLAG_SEQUENTIAL_SCAN Can be used to optimize the transfer of large
blocks of data. Most applications will not need this
flag.

DAPIO32 Interface Reference 49

The member i64MaxCount specifies the maximum number of bytes to feed. The default of zero causes feeding to
continue until the end of the file is reached or, if dpdf_ContinuousFeed is set, indefinitely until the handle used
to initiate the DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed command is closed using DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose.

If the end of the file is reached before the i64MaxCount value is reached, and dpdl_ContinuousFeed is not set,
the I/O is terminated.

TDapIoInt64TDapIoInt64TDapIoInt64TDapIoInt64 is by default __int64 (64-bit integer). See the description of TDapIoInTDapIoInTDapIoInTDapIoInt64t64t64t64 for more information
if a particular compiler does not support the __int64 type.

See the DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed reference for interactions between this field and the TDapBufferPutETDapBufferPutETDapBufferPutETDapBufferPutExxxx structure’s
iBytesMultiple field.

Version
The DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed service is only available in DAPcell Server and DAPcell Local Server version 4.00 or
later. It is not available in DAPcell Basic Server.

See Also
TDapIoInt64TDapIoInt64TDapIoInt64TDapIoInt64, DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed, DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare, TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx

 DAPIO32 Interface Reference 50

TDapPipeDiskLog

The TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog structure defines the behavior of the DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog function.

typedef struct tag_TDapPipeDiskLog {
int iInfoSize; // Size of this structure
unsigned long bmFlags; // Flags to control logging behavior
const char *pszFileName; // Pointer to a null-terminated string
unsigned long dwFileShareMode; // Define how the logfile is shared
unsigned long dwOpenFlags; // Define how to open the logfile
unsigned long dwFileFlagsAttributes; // Set attributes of the logfile
TDapIoInt64 i64MaxCount; // Maximum number of bytes to log
unsigned long dwBlockSize; // Size of block to write
unsigned long dwReserved[16]; // Not used; must be zero
} TDapPipeDiskLog;

Members
iInfoSize

Specifies the size of this information structure.

bmFlags
Specifies various logging options.

pszFileName
Points to a null-terminated string that specifies the name of the primary disk log file and the name of a possible
mirror disk log file.

dwFileShareMode
Specifies the file share properties of the disk log file.

dwOpenFlags
Specifies how file opening is to be handled.

dwFileFlagsAttributes
Specifies additional file attributes.

i64MaxCount
Specifies the maximum number of bytes to log. The default value is zero.

dwBlockSize
Specifies the minimum amount of data (in bytes) to write to the log file at one time. This field is provided for
disk transfer optimization. The default value is 8192.

Remarks
bmFlags specifies one of the following disk-log options:

dpdl_ServerSide Logging is to take place on the same side of the network
connection as the DAP board. If not specified, logging will
take place on the application (client) side of the network
connection.

DAPIO32 Interface Reference 51

dpdl_FlushBefore Flush the input data pipe before beginning the logging
session. Default action is to NOT flush the pipes before
logging. This should be done before issuing the START
command to DAPL or data may be lost.

dpdl_FlushAfter Flush the input pipe after the logging session has
terminated. Default action is to NOT flush the pipes after
logging. To ensure proper operation, an application should
issue a STOP command to the DAP board before closing the
disk logging session or the input pipe may fill up, causing
flushing to fail.

dpdl_MirrorLog Enable mirror logging. Mirror logging creates a copy of the
logged data in another file.

dpdl_AppendData Allows new data to be appended to an existing file. The
only dwOpenFlags that can be used for appending are
DAPIO_OPEN_ALWAYS and DAPIO_OPEN_EXISTING.

dpdl_BlockTransfer Instruct the DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog function to open the file
with no intermediate buffering or caching and to access the
file in a special way that is highly dependent on the target
disk attributes to improve performance. This transfer mode,
however, adds overhead to slow rate transfer with small
buffers. It should only be used when necessary with a very
large dwBlockSize value (such as 1048576 and above).

The member pszFileName points to a null-terminated string that specifies the name of the primary disk log file
and the name of a mirror disk log file as well, if mirror logging is enabled. Separate multiple file names with semi-
colons.

Currently, only one mirror file is allowed. Both files must be on the same side of the DAPcell/DAPcell Local
service (the PC application side or the DAP side). When dpdl_ServerSide is set, the files named in
pszFileName are interpreted from the server machine.

The pszFileName may contain a network share on the DAPcell server. Using this, a file on the DAPcell server
may be selected by the client through the share without any knowledge of the server side disk layout. The DAPcell
server will translate the share name to a local server-side path so that it can log to the file locally, allowing for high
performance.

For example, if the DAPcell server name is DAPcell1 and the data directory on the DAPcell server is c:\data,
which is shared as DATA, then setting pszFileName to \\DAPcell1\DATA\DataFile.dat will cause the
DAPcell server to log data to the file c:\data\DataFile.dat on the DAPcell server.

The member dwFileShareMode specifies the file share properties of the disk log file. The values allowed are:

0 The file cannot be used by another process.

DAPIO_FILE_SHARE_READ The file can be read by another process.

DAPIO_FILE_SHARE_WRITE The file can be written to by another process.

 DAPIO32 Interface Reference 52

The dwOpenFlags member specifies how file opening is to be handled. The possibilities are:

DAPIO_CREATE_NEW Create a new file. Creation fails if the file already exists.

DAPIO_CREATE_ALWAYS Create a new file. If the file already exists, it is
overwritten.

DAPIO_OPEN_ALWAYS Open an existing file. If the file does not exist, it will be
created.

DAPIO_OPEN_EXISTING Open an existing file without resetting permissions.
Opening fails if the file does not exist.

The dwFileFlagsAttributes member specifies additional file attributes. The possibilities are:

DAPIO_FILE_ATTRIBUTE_NORMAL No special attributes.

DAPIO_FILE_ATTRIBUTE_ENCRYPTED The data in the file is encrypted.

DAPIO_FILE_FLAG_WRITE_THROUGH Write through any intermediate caching and go
directly to disk.

DAPIO_FILE_FLAG_SEQUENTIAL_SCAN Can be used to optimize the transfer of large
blocks of data. Most applications will not need
this flag.

The member i64MaxCount specifies the maximum number of bytes to feed. The default zero causes logging to
continue indefinitely until the handle used to initiate the DapPipeDDapPipeDDapPipeDDapPipeDiskLogiskLogiskLogiskLog command is closed using
DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose. See the DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog description for interactions between this field and the
TDapBufferGetETDapBufferGetETDapBufferGetETDapBufferGetExxxx iBytesMultiple field.

TDapIoInt64TDapIoInt64TDapIoInt64TDapIoInt64 is by default __int64 (64-bit integer). See the description of TDapIoInt64TDapIoInt64TDapIoInt64TDapIoInt64 for more information
if a particular compiler does not support the __int64 type.

After one of its target disks has failed or become full, DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog will keep logging to other target disks, if
there are any. Even when all target disks have failed or become full, DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog will keep reading data
from the source Data Acquisition Processor until either the log request count is covered or the log handle is closed.

Version
The DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog service is only available in DAPcell Server and DAPcell Local Server version 4.00 or
later. It is not available in DAPcell Basic Server.

See Also
TDapIoInt64TDapIoInt64TDapIoInt64TDapIoInt64, DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog, DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare, TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx

DAPIO32 Interface Reference 53

DAPIO32 Function Reference

A Data Acquisition Processor simplifies writing data acquisition applications by handling data buffering, real-time
control, and real-time processing. Programs in the PC are responsible for user interaction, graphics, and disk
logging.

Function Reference

DapBufferGetDapBufferGetDapBufferGetDapBufferGet DapInt16GDapInt16GDapInt16GDapInt16Getetetet
DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx DapInt16PutDapInt16PutDapInt16PutDapInt16Put
DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek DapInt32GetDapInt32GetDapInt32GetDapInt32Get
DapBufferPutDapBufferPutDapBufferPutDapBufferPut DapInt32PutDapInt32PutDapInt32PutDapInt32Put
DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet
DapCharGetDapCharGetDapCharGetDapCharGet DapLineGetDapLineGetDapLineGetDapLineGet
DapCharPutDapCharPutDapCharPutDapCharPut DapLinePutDapLinePutDapLinePutDapLinePut
DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall
DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate DapModuleLoadDapModuleLoadDapModuleLoadDapModuleLoad
DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete DapModuleUninstallDapModuleUninstallDapModuleUninstallDapModuleUninstall
DapConfigDapConfigDapConfigDapConfig DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload
DapConfigParamsClearDapConfigParamsClearDapConfigParamsClearDapConfigParamsClear DapOutputEmptyDapOutputEmptyDapOutputEmptyDapOutputEmpty
DapConfigParamSetDapConfigParamSetDapConfigParamSetDapConfigParamSet DapOutputSpaceDapOutputSpaceDapOutputSpaceDapOutputSpace
DapConfigRedirectDapConfigRedirectDapConfigRedirectDapConfigRedirect DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed
DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog
DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen DapReinitializeDapReinitializeDapReinitializeDapReinitialize
DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery DapResetDapResetDapResetDapReset
DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32 DapServerControlDapServerControlDapServerControlDapServerControl
DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64 DapStringFormatDapStringFormatDapStringFormatDapStringFormat
DapInputAvailDapInputAvailDapInputAvailDapInputAvail DapStringGetDapStringGetDapStringGetDapStringGet
DapInputFlushDapInputFlushDapInputFlushDapInputFlush DapStringPutDapStringPutDapStringPutDapStringPut
DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare

Function Overview

The DAPIO32 interface provides a complete set of functions for communicating with a Data Acquisition Processor.
Each function falls into one of several categories.

Most DAPIO32 services require a handle to identify the target of the operation. Handles are obtained using the
DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen service.

Communication with a Data Acquisition Processor through DAPIO32.DLL is established by opening one or more
handles to communication pipes. Commands and data are transferred through the communication pipes using
DAPIO32 services.

In Windows, any 32-bit/64-bit programming language that supports DLL calls can use the DAPIO32.DLL services.

 DAPIO32 Interface Reference 54

Category Services

Handle services DapHanDapHanDapHanDapHandleOpendleOpendleOpendleOpen, DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose

Basic I/O services DapBufferGetDapBufferGetDapBufferGetDapBufferGet, DapBufferPutDapBufferPutDapBufferPutDapBufferPut, DapCharGetDapCharGetDapCharGetDapCharGet, DapCharPutDapCharPutDapCharPutDapCharPut,
DapInputFlushDapInputFlushDapInputFlushDapInputFlush, DapIntDapIntDapIntDapInt16Get16Get16Get16Get, DapInt16PutDapInt16PutDapInt16PutDapInt16Put, DapInt32GetDapInt32GetDapInt32GetDapInt32Get,
DapInt32PutDapInt32PutDapInt32PutDapInt32Put, DapLineGetDapLineGetDapLineGetDapLineGet, DapLinePutDapLinePutDapLinePutDapLinePut, DapStringFormatDapStringFormatDapStringFormatDapStringFormat,
DapStringGetDapStringGetDapStringGetDapStringGet, DapStringPutDapStringPutDapStringPutDapStringPut

Advanced I/O services DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx, DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek, DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx, DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx

Disk I/O services DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed, DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog

Initialization services DapReinitializeDapReinitializeDapReinitializeDapReinitialize, DapResetDapResetDapResetDapReset, DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare

Configuration services DapCommandDownLoadDapCommandDownLoadDapCommandDownLoadDapCommandDownLoad, DapConfigDapConfigDapConfigDapConfig, DapConfigParamsClearDapConfigParamsClearDapConfigParamsClearDapConfigParamsClear,
DapConfigParamSetDapConfigParamSetDapConfigParamSetDapConfigParamSet, DapConfigRedirectDapConfigRedirectDapConfigRedirectDapConfigRedirect, DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate,
DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete

Module services DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall, DapModuleLoadDapModuleLoadDapModuleLoadDapModuleLoad, DapModuleUninstallDapModuleUninstallDapModuleUninstallDapModuleUninstall,
DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload

Server services DapServerControlDapServerControlDapServerControlDapServerControl

Information services DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet, DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery, DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32,
DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64, DapInputAvailDapInputAvailDapInputAvailDapInputAvail, DapOutputEmptyDapOutputEmptyDapOutputEmptyDapOutputEmpty,
DapOutputSpaceDapOutputSpaceDapOutputSpaceDapOutputSpace

Most DAPIO32 services require a handle to identify the target of the operation. Handles are obtained using the
DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen service.

An application communicates with a Data Acquisition Processor through DAPIO32.DLL by opening one or more
handles to communication pipes. It sends and receives commands and data through the communication pipes using
DAPIO32 services.

Any 32-bit Windows programming language or application that can call DLL functions can use the DAPIO32.DLL
services.

Data I/O Time-out

All of the basic I/O services have a built-in time-out. If a service is unable to process data for more than 20 seconds,
the service aborts the operation. For get services, this means that the Data Acquisition Processor did not send data
for more than 20 seconds. For put services, this means that the Data Acquisition Processor did not accept data for
more than 20 seconds. An application cannot change the basic I/O time-out.

The advanced I/O services allow an application to set the time-out to fit the application needs.

Alphabetical Function Reference

Following is a complete alphabetical listing of all DAPIO32 services.

See Also
DAPIO32 Structure Reference

DAPIO32 Interface Reference 55

DapBufferGet

The DapBufferGetDapBufferGetDapBufferGetDapBufferGet function reads a block of data from the target pipe.

int __stdcall DapBufferGet(
HDAP hAccel, // Open handle to the target pipe
int iLength, // Number of bytes to read
void *pvBuffer // Address of buffer to receive data
);

Parameters
hAccel

Specifies an open handle to the target pipe. Requires a handle opened with read access. The target pipe must be
an output pipe from the Data Acquisition Processor.

iLength
Specifies the number of data bytes to read.

pvBuffer
Points to the buffer that receives data.

Return Values
If the function succeeds, the return value is the number of bytes actually read. The result is in the range zero to
iLength.

If the function fails, the return value is -1. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about
the error.

Remarks
DapBufferGetDapBufferGetDapBufferGetDapBufferGet attempts to read all requested data from the target pipe. It will wait for up to 20 seconds per new
data item. If there are no data available for more than 20 seconds, it returns with the number of bytes read so far.

An application which can not guarantee data availability should avoid waiting for data by using DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx
.

See Also
DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx, DapInputAvailDapInputAvailDapInputAvailDapInputAvail

 DAPIO32 Interface Reference 56

DapBufferGetEx

The DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx function reads a block of data from the target pipe. It allows an application to specify a
range of data bytes to read. It will read as many data bytes as possible within the specified range. It also allows an
application to specify two time-out parameters to control the behavior of the function. The function will return
immediately with the data read so far if a time-out occurs.

int __stdcall DapBufferGetEx(
HDAP hAccel, // Open handle to the target pipe
const TDapBufferGetEx *pGetInfo, // Address of get structure
void *pvBuffer // Address of buffer to receive data
);

Parameters
hAccel

Specifies the open handle to the target pipe. Requires a handle opened with read access. The target pipe must be
an output pipe from the Data Acquisition Processor.

pGetInfo
Points to a TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx structure that passes the parameters of the get operation into the function.

pvBuffer
Points to the buffer that receives data.

Return Values
If the function succeeds, the return value is the number of data bytes actually read.

If the function fails, the return value is -1. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about
the error.

Remarks
The DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx function is an extended version of the DapBufferGetDapBufferGetDapBufferGetDapBufferGet function. It allows a minimum
number of requested bytes iBytesGetMin, a maximum number of requested bytes iBytesGetMax, a multiple
size for the requested bytes iBytesMultiple, a maximum time interval in milliseconds to wait for new data
dwTimeWait, and a maximum time-out interval in milliseconds for the entire operation dwTimeOut. These
parameters are passed through the TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx structure, pointed to by pGetInfo.

The allocated buffer that receives data, pointed to by pvBuffer, must be at least iBytesGetMax in size. If the
allocated buffer is not large enough, there may be random failures.

iBytesGetMin must be greater than or equal to zero, and iBytesGetMax must be greater than or equal to
iBytesGetMin. Both iBytesGetMin and iBytesGetMax must be an integral multiple of iBytesMultiple.

iBytesMultiple must be an integral multiple of the communication pipe width referenced by hAccel. A zero
value of iBytesMultiple is treated the same as the communication pipe width.

The value of iBytesMultiple must be less than or equal to (1) the PC side maximum pipe buffer size in bytes
minus 1024 or (2) the PC side maximum pipe buffer size in bytes minus the DAP side blocking size in bytes,

DAPIO32 Interface Reference 57

whichever is smaller. If iBytesMultiple does not satisfy these requirements, the first condition causes an error,
and the second condition may cause a deadlock. Since the second condition is not checked, it is the application's
responsibility to guarantee that this never happens.

DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx returns when one of the following conditions occurs:

- iBytesGetMin is satisfied
- dwTimeOut is reached (dwTimeOut > 0)
- no new data arrive during dwTimeWait

When DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx returns, it returns with all available data up to iBytesGetMax. It could return anything
from zero to iBytesGetMax, but the number of bytes returned is always an integral multiple of
iBytesMultiple. If no data are available (which includes not enough data to satisfy iBytesMultiple) when
DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx returns, it returns zero.

If iBytesGetMin is available before dwTimeOut or dwTimeWait is reached, DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx returns with all
available data up to iBytesGetMax. If iBytesGetMin is zero, DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx returns with all available data
up to iBytesGetMax without waiting.

dwTimeOut > dwTimeWait
If dwTimeOut is greater than dwTimeWait, DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx waits up to dwTimeOut to satisfy
iBytesGetMin before returning. The length of time DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx waits depends on whether any data
arrive during dwTimeWait intervals. If some data arrive during dwTimeWait, DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx waits again
for dwTimeWait, and this continues until dwTimeOut is reached or iBytesGetMin is satisfied, whichever
occurs first. If, at any point before dwTimeOut is reached or iBytesGetMin is satisfied, no data arrive during
an interval of dwTimeWait, DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx returns immediately.

dwTimeOut <= dwTimeWait and dwTimeOut > 0
If dwTimeOut is greater than zero but smaller than or the same as dwTimeWait, dwTimeOut takes precedence
over dwTimeWait. dwTimeWait is not used.

dwTimeOut = 0 and dwTimeWait > 0
dwTimeOut of zero means never time-out if some data arrive during dwTimeWait. The affect of this is waiting
indefinitely to satisfy iBytesGetMin as long as some data arrive during dwTimeWait intervals. If, at any point
before iBytesGetMin is satisfied, no data arrive during any interval of dwTimeWait, DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx
returns immediately.

dwTimeOut = 0 and dwTimeWait = 0
dwTimeOut of zero and dwTimeWait of zero means returning immediately with all available data up to
iBytesGetMax.

See Also
TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx, DapBufferGetDapBufferGetDapBufferGetDapBufferGet

 DAPIO32 Interface Reference 58

DapBufferPeek

The DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek function peeks the pipe or the disk log file associated with the handle for data. This operation
does not affect the data integrity of the pipe or disk file.

BOOL __stdcall DapBufferPeek(
HDAP hAccel, // Peek handle
TDapBufferPeek *pPeekInfo // Pointer to a peek information block
);

Parameters
hAccel

Identifies the handle of the target.

pPeekInfo
Pointer to a peek information block. The block defines the behavior of the function and carries its return values.
See the description of TDapBufTDapBufTDapBufTDapBufferPeekferPeekferPeekferPeek structure for more information.

Return Values
Returns true if the operation is successful. Data is returned in the user-supplied buffer pointed to by
pPeekInfo->pBuffer. The size of return data is in pPeekInfo->iBytesResult. The starting offset of data is
in pPeek->i64OffsetResult.

Returns false if an error has occurred. All the other return values in the peek information block are undefined. To
determine the cause of an error, use the DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet function.

Remarks
If the handle is a normal pipe handle, the target is the pipe. The DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek function peeks the history of the
pipe if it is still available. Using a query handle allows multiple readers to peek the history of the pipe at the same
time.

If the handle is a disk I/O handle, the target is the primary disk file of the current active disk I/O session. The
DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek function reads data from the disk file and possibly buffered data yet to be written to the disk
without affecting the on-going disk I/O. This feature is not available in DAPcell Basic Server.

Data transfer is always done in data units. The size of a data unit is equal to the value specified in
pPeekInfo->iBytesMultiple or the underlining target data type width if pPeekInfo->iBytesMultiple is
zero.

When DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek returns successfully, the return value in pPeekInfo->iBytesResult can be a positive
integer, zero, or -1.

When it is positive, this value is typically between iBytesGetMin and iBytesGetMax, but can be smaller if a
time-out has occurred. The starting offset or return data is in pPeek->i64OffsetResult.

If pPeekInfo->iBytesResult is zero, no data is returned. This implies that none of the data requested is
available. The field pPeek->i64OffsetResult carries the offset of the most recent unit of data available in the
target.

DAPIO32 Interface Reference 59

A value of -1 returned in the pPeekInfo->iBytesResult indicates that less than one unit of data exists in the
target. In this case, pPeek->i64OffsetResult is undefined.

Version
This service is only available in DAPcell version 4.14 or later. Not all functions are available in DAPcell Basic
Server.

See Also
TDapBufferPeekTDapBufferPeekTDapBufferPeekTDapBufferPeek, DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx, DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen, DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed, DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog

 DAPIO32 Interface Reference 60

DapBufferPut

The DapBufferPutDapBufferPutDapBufferPutDapBufferPut function writes a block of data to the target pipe.

int __stdcall DapBufferPut(
HDAP hAccel, // Open handle to the target pipe
int iLength, // Number of data bytes in the block
const void *pvBuffer // Address to the block of data
);

Parameters
hAccel

Specifies the open handle to the target pipe. Requires a handle opened with write access. The target pipe must
be an input pipe to the Data Acquisition Processor.

iLength
Specifies the number of data bytes to write.

pvBuffer
Points to the block of data to write.

Return Values
If the function succeeds, the return value is the number of data bytes actually written. The result is in the range
zero to iLength.

If the function fails, the return value is -1. Call DapLastErrorTextDapLastErrorTextDapLastErrorTextDapLastErrorTextGetGetGetGet to retrieve additional information about
the error.

Remarks
DapBufferPutDapBufferPutDapBufferPutDapBufferPut attempts to write the entire block of data to the target pipe. It will wait for up to 20 seconds for
space to place each data item. If there is no space for more than 20 seconds, it returns with the number of bytes
written so far.

An application that cannot guarantee space in the com-pipe should avoid waiting for space by using
DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx.

See Also
DapOutputSpaceDapOutputSpaceDapOutputSpaceDapOutputSpace

DAPIO32 Interface Reference 61

DapBufferPutEx

The DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx function writes a block of data to the target pipe. It allows an application to specify two
time-out parameters to control the behavior of the function. The function will return immediately if a time-out
occurs.

int __stdcall DapBufferPutEx(
HDAP hAccel, // Open handle to the target pipe
const TDapBufferPutEx *pPutInfo, // Address of put structure
const void *pvBuffer // Address of buffer to provide data
);

Parameters
hAccel

Specifies the open handle to the target pipe. Requires a handle opened with write access. The target pipe must
be an input pipe to the Data Acquisition Processor.

pPutInfo
Points to the TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx structure that passes the parameters of the put operation into the function.

pvBuffer
Points to the buffer that provides data.

Return Values
If the function succeeds, the return value is the number of data bytes actually written.

If the function fails, the return value is -1. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about
the error.

Remarks
This function is an extension of the DapBufferPutDapBufferPutDapBufferPutDapBufferPut function.

The function tries to put the number of data bytes into the target pipe as specified in the member iBytesPut of
the TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx structure. If it succeeds completely, its return value is equal to the value of iBytesPut.
The value of iBytesPut must be an integral multiple of iBytesMultiple.

The function will wait for space if the target pipe becomes full before it completes writing all data. In this case, the
two members of the TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx structure, dwTimeOut and dwTimeWait, determine the behavior of the
function. If the put operation fails to complete in dwTimeOut milliseconds, or if the pipe remains full for
dwTimeWait milliseconds, the function returns immediately.

The return value is then the number of bytes actually written up to the point where the service aborted the
operation. It can be zero or any integral multiple of iBytesMultiple less than iBytesPut. An application can
check the return value to determine if a time-out has occurred.

See Also
TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx, DapBufferPutDapBufferPutDapBufferPutDapBufferPut

 DAPIO32 Interface Reference 62

DapCharGet

The DapCharGetDapCharGetDapCharGetDapCharGet function reads a single character from a DAP com-pipe.

BOOL __stdcall DapCharGet(
HDAP hAccel, // Open handle to the target pipe
char *pch // Location to receive character
);

Parameters
hAccel

Handle to DAP com-pipe.

pch
Pointer to the location to receive the character.

Return Values
If the function succeeds, the return value is TRUE; the service read the character.

If the function fails, the return value is FALSE. Something is wrong with the handle or pch is NULL. Call
DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

DAPIO32 Interface Reference 63

DapCharPut

The DapCharPutDapCharPutDapCharPutDapCharPut function writes a single character to a DAP com-pipe.

BOOL __stdcall DapCharPut(
HDAPhAccel, // Open handle to the target pipe
char ch // Character to write
);

Parameters
hAccel

Handle to DAP com-pipe.

ch
Character to write to DAP com-pipe.

Return Values
If the function succeeds, the return value is TRUE; the service wrote the character.

If the function fails, the return value is FALSE. Something is wrong with the handle. Call
DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

 DAPIO32 Interface Reference 64

DapCommandDownload

The DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload function downloads a custom command to DAPL.

Note: Use DapCommandDownload to load 16-bit custom command binaries to a DAP board. Do not use this
command to load 32-bit command modules to a DAP board. Install 32-bit command modules using the Data
Acquisition Processor control panel application. For advanced application use DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall and related
services.

BOOL __stdcall DapCommandDownload(
const TDapCommandDownload *pdcdl // Pointer to structure
);

Parameters
pdcdl

A pointer to a TDapCommandDownloadTDapCommandDownloadTDapCommandDownloadTDapCommandDownload structure that describes the command to download.

Return Values
If the function succeeds, the return value is TRUE; the service downloaded the custom command without error.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

Remarks
Use DapStDapStDapStDapStructPrepareructPrepareructPrepareructPrepare to fully initialize the TDapCommandDownloadTDapCommandDownloadTDapCommandDownloadTDapCommandDownload structure before calling this function.

Downloads a custom command binary to a DAP board. The command binary must be developed using the
Developer’s Toolkit for DAPL and must be compiled for the operating system on the DAP board (DAPL 4.x or
DAPL 2000).

Contact your Microstar Laboratories product supplier for information on the Developer’s Toolkit for DAPL if you
wish to develop custom commands.

This is a DESTRUCTIVE operation. It resets the DAP board before performing the download operation. This means
that all user-defined symbols are erased after a call to this function (See documentation for the DAPL RESET
command). An application should not count on this behavior, however, because it is not guaranteed in future
versions of this service.

See Also
TDapCommandDownloadTDapCommandDownloadTDapCommandDownloadTDapCommandDownload

DAPIO32 Interface Reference 65

DapComPipeCreate

The DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate function instructs DAPIO32 to create a communication pipe channel between the PC and
a Data Acquisition Processor. It physically creates pipes both on the PC and on the Data Acquisition Processor. This
function can be destructive.

BOOL __stdcall DapComPipeCreate(
const char *pszPipeInfo // Address of pipe info string
);

Parameters
pszPipeInfo

Points to a null-terminated string that specifies the name and attributes of the pipe channel to create.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

Remarks
This function requires exclusive access to the target DAP. DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate fails if the target DAP has been
opened with read or write access, or if any of its pipes has been opened with any access.

The pipe information string consists of the UNC pipe name of the pipe to create and an optional list of attributes.

A UNC pipe name takes the form of \\<PcName>\<DapName>\<PipeName>. <PcName> is replaced by the
computer name of the host PC or “.” if the host PC is local. <DapName> is replaced by Dap0, Dap1, ..., or DapX,
…, based on the number of Data Acquisition Processors installed on the system and which Data Acquisition
Processor the operation is intended for. <PipeName> must be one of the following:

 $SysIn $SysOut
 $BinIn $BinOut
 Cp2In Cp2Out
 Cp3In Cp3Out
 Cp4In Cp4Out
 ...
 Cp31In Cp31Out

These pre-defined names carry the information of a target Data Acquisition Processor pipe number as well as the
transfer direction. On the Data Acquisition Processor, each communication pipe is associated with an integer
number and is declared as either input or output. $SysIn and $SysOut are the default input and output pipes with
the number of zero while $BinIn and $BinOut are the default input and output pipes with the number of one. A
maximum of 32 pipes on each Data Acquisition Processor are supported; therefore, the largest number that can be
associated with a Data Acquisition Processor communication pipe is 31.

 DAPIO32 Interface Reference 66

When DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate creates a communication channel, it first creates a communication pipe in the PC.
Then it creates the paired communication pipe on the Data Acquisition Processor. After a successful return from
this function, the target communication pipe is fully functional. On ISA Data Acquisition Processors where the
DAPL command CPIPE is available, it is not necessary or appropriate to create the paired communication pipe on
the Data Acquisition Processor separately using the command.

An optional pipe attribute list can follow the pipe name as part of the information string. The list must be enclosed
in square brackets. The list allows applications to specify pipe attributes for both the PC side and the Data
Acquisition Processor side. A vertical bar separates the DAP side attributes on the right from the PC side attributes
on the left. If the right side is empty, the vertical bar can be omitted. (Note: there was an older syntax for the
attribute list used prior to this interface 2.0. The older syntax is still supported for compatibility, but a mixed use of
the old and new syntax will be rejected.)

A summary of the optional pipe attribute list syntax is present below:

[... | ...]

The PC side attributes are specified to the left of the vertical bar. They can be absent if default values are assumed.
The supported attributes are:

type = xxx --- xxx is one
of the types listed on the right:

“byte”
“word”
“long”
“float”
“double”
“text”

 The type attribute describes the data type of the pipe for both
PC and DAP sides. It also implies “width”: “byte” and
“text” are 1 byte, “word” is 2 bytes, “long” and “float”
are 4 bytes, and “double” is 8 bytes. When it’s absent, type
defaults to “word” (note that not all types are supported by all
versions of DAPL 2000).

maxsize = <integer> Maximum pipe buffer size in unit of elements. The maximum
size converted to bytes has to be at least 1024. No upper limit
is imposed at the syntax level. The actual upper limit is system
dependent. When it’s absent, it assumes some default value
that, in most cases, offers better performance.

The DAP side attributes are specified to the right of the vertical bar. They can be absent if default values are
assumed. If none of the attributes is specified, the vertical bar can also be absent. The supported attributes are:

maxsize = <integer> Maximum pipe buffer size in unit of elements. The maximum
size converted to bytes has to be at least 1024. No upper limit
is imposed at the syntax level. The upper limit is DAP model
dependent. When it’s absent, it defaults to that on the PC side.

DAPIO32 Interface Reference 67

blocking = <integer> Number of elements available in the pipe buffer before data
are transmitted to the PC side pipe buffer. The amount of data
in each transfer is always an integral multiple of this value.
This attribute is only valid for non-text DAP output pipes.
Blocking size must be larger than zero and smaller than the
pipe buffer size on either side. The upper limit is also DAP
model dependent. When it’s absent, blocking size defaults to
one.

If a pipe identical to the pipe to create already exists when this function is called, the function returns success
without doing anything. Two pipes are considered identical if their names are identical and their pipe attributes are
identical as well.

Otherwise, the function creates a new pipe or overrides the existing pipe. This operation is DESTRUCTIVE if it
overrides the existing pipe that is being used. In this case, application data and configuration information on the
target Data Acquisition Processor are lost. For this reason, DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate is typically called at the very
beginning of the system initialization.

Once communication pipes are created, they are persistent even across system reboots until explicitly removed
using DapComDapComDapComDapComPipeDeletePipeDeletePipeDeletePipeDelete. To maintain consistency between the PC and the Data Acquisition Processor, it is
important not to create or destroy communication pipes without calling DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate or
DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete.

Example
Following is an example of creating a communication channel that is connected to the communication pipe Cp4In
on the Data Acquisition Processor DAP0 on the local machine. It is an input binary pipe to the Data Acquisition
Processor. The pipe type is “word” (width= 2), and the maximum pipe size is 2048 in the PC and 4096 on the
Data Acquisition Processor.

DapComPipeCreate(“\\\\.\\Dap0\\Cp4In [type=word maxsize=2048 | maxsize=4096]”);

See Also
DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete

 DAPIO32 Interface Reference 68

DapComPipeDelete

The DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete function instructs DAPIO32 to remove the communication channel that bears the
specified UNC name. This function can be destructive.

BOOL __stdcall DapComPipeDelete(
const char *pszPipeInfo // Address of pipe info string
);

Parameters
pszPipeInfo

Points to a null-terminated string that specifies the name of the pipe channel to delete.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLaDapLaDapLaDapLastErrorTextGetstErrorTextGetstErrorTextGetstErrorTextGet to retrieve additional information
about the error.

Remarks
This function requires exclusive access to the target DAP. DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete fails if the target DAP has been
opened with read or write access, or if any of its pipes have been opened with any access.

DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete removes the communication channel that bears the same name as is specified in the pipe
information string. It takes the same pipe information string as DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate does, but ignores the optional
pipe attribute list.

If the target communication channel does not exist, this function returns success without doing anything.

Otherwise, this function physically removes the paired pipes from the PC and from the Data Acquisition
Processor. This operation is DESTRUCTIVE. All data in the target pipe are lost. If the target pipe is being used at
the time of removal, application and configuration data on the target Data Acquisition Processor are lost as well.

See Also
DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate

DAPIO32 Interface Reference 69

DapConfig

The DapConfigDapConfigDapConfigDapConfig function sends a file to a DAP com-pipe with parameter substitution.

BOOL __stdcall DapConfig(
HDAP hAccel, // Open handle to the target pipe
const char *pszDaplFilename // Name of file to send
);

Parameters
hAccel

Handle to DAP com-pipe open for writing.

pszFilename
Name of file to send to DAP com-pipe.

Return Values
If the function succeeds, the return value is TRUE; the complete file was successfully sent to DAP com-pipe.

If the function fails, the return value is FALSE; something went wrong sending the file. Call
DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

Remarks
Sends a DAPL command file to the DAPL interpreter through the com-pipe addressed by hAccel.

If the file contains replaceable parameters of the form %N where N is a number in the range 1 to 100, replaces
occurrences of %N with either default text set in the DAPL file itself or with text set by a program using the
DapConDapConDapConDapConfigParamSetfigParamSetfigParamSetfigParamSet service.

If the file contains any errors in replaceable parameters, the processing of the file is aborted at a line boundary and
an error is reported. That is, complete lines are sent to the DAP com-pipe, but the complete file may not be sent to
the DAP com-pipe.

Default parameters in a DAPL file are set using the ‘//;%DEFAULT’ token.

It takes one of two forms:

 //;%DEFAULT %N=TextWithoutSpaces
 //;%DEFAULT %N="text with spaces"

The DAPL interpreter considers all text after semi-colon (//) up to the end of line a comment. This is true also of
the ‘//;%DEFAULT’ token; DEFAULT is only processed by DapConfigDapConfigDapConfigDapConfig if it is a comment to the DAPL interpreter.

A default parameter definition may be defined on the same line where it is used. That means that the definition
actually follows the use of the parameter on the line. This, however, can be quite useful since it lets you see the
definition where it is used.

 DAPIO32 Interface Reference 70

For example:

IDEF A
 CHANNELS 1
 TIME %45 //;%DEFAULT %45=1000
 . . .

will set the time for input procedure A to 1000 us if there is no program definition. If there is a program definition,
it takes precedence over the default. A default parameter may not be defined on a line following the line where it is
used.

If for a given parameter %N both a program-defined definition and a default definition exists, the program-defined
definition takes precedence.

So, in the example above, if the program uses DapConfigParamSetDapConfigParamSetDapConfigParamSetDapConfigParamSet (45, 500) and then calls DapConfigDapConfigDapConfigDapConfig, the
time for input configuration A will be 500 us, not the 1000 us set by the default.

There is only one set of parameters for a given process that uses the DAPIO32 DLL. This includes systems with
multiple DAP boards, so to send files to more than one DAP board without interactions in the default parameters
between them call DapConfigParamsClearDapConfigParamsClearDapConfigParamsClearDapConfigParamsClear before calling DapConfigDapConfigDapConfigDapConfig.

Parameter definitions persist across multiple calls to DapConfigDapConfigDapConfigDapConfig. This means that the default definitions in one
DAPL file can affect the text sent to a DAP board using a second DAPL file depending on the order in which the
files are sent.

See Also
DapConfigParamsClearDapConfigParamsClearDapConfigParamsClearDapConfigParamsClear, DapConfigParamSetDapConfigParamSetDapConfigParamSetDapConfigParamSet, DapConfigRedirectDapConfigRedirectDapConfigRedirectDapConfigRedirect

DAPIO32 Interface Reference 71

DapConfigParamsClear

The DapConfigParamsClearDapConfigParamsClearDapConfigParamsClearDapConfigParamsClear function clears all program-defined parameters and default parameters.

BOOL __stdcall DapConfigParamsClear(
void
);

Parameters
None.

Return Values
If the function succeeds, the return value is TRUE; the parameters were cleared.

If the function fails, the return value is FALSE. Something went wrong clearing parameters. Call
DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

Remarks
Clears all program-defined parameters and default replaceable parameters.

While this function returns a result, it currently never returns failure. Future versions may return failure, so it is
worth checking the result.

See Also
DapConfigParamSetDapConfigParamSetDapConfigParamSetDapConfigParamSet

 DAPIO32 Interface Reference 72

DapConfigParamSet

The DapConfigParamSetDapConfigParamSetDapConfigParamSetDapConfigParamSet function initializes a program-defined parameter.

BOOL __stdcall DapConfigParamSet(
int iParamNumber, // Parameter number (1 - 100)
const char *pszParam // Parameter
);

Parameters
iParamNumber

Parameter number in the range 1 to 100.

pszParam
Null-terminated string for parameter.

Return Values
If the function succeeds, the return value is TRUE; the parameter was set.

If the function fails, the return value is FALSE; something went wrong setting the parameter. Call
DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

Remarks
If pszParam is NULL, the parameter is cleared.

Program-defined parameters take precedence over default parameters set in the DAPL file.

See Also
DapConfigDapConfigDapConfigDapConfig, DapConfigParamsClearDapConfigParamsClearDapConfigParamsClearDapConfigParamsClear

DAPIO32 Interface Reference 73

DapConfigRedirect

The DapConfigRedirectDapConfigRedirectDapConfigRedirectDapConfigRedirect function redirects the output of DapConfigDapConfigDapConfigDapConfig to a text file rather than sending the
configuration file to a DAP com-pipe.

BOOL __stdcall DapConfigRedirect(
const char *pszFilename // Destination filename
);

Parameters
pszFilename

Name of destination file or NULL.

Return Values
If the function succeeds, the return value is TRUE; pszFilename was opened.

If the function fails, the return value is FALSE; pszFilename could not be opened.

Remarks
If pszFilename is NULL or "", DapConfigRedirectDapConfigRedirectDapConfigRedirectDapConfigRedirect closes any existing redirection.

DapConfigRedirectDapConfigRedirectDapConfigRedirectDapConfigRedirect is meant primarily for testing. It allow an application developer to redirect output of a
DAPL configuration file through the parameter substitution performed by DapConfigDapConfigDapConfigDapConfig without sending anything to
the DAP board.

It is also sometimes useful to redirect output to a file and then send the processed file line by line to the DAP
board. One use for this is in an interactive environment where you wish to display the echo from the DAPL
interpreter as the lines are sent to it.

See Also
DapConfigDapConfigDapConfigDapConfig

 DAPIO32 Interface Reference 74

DapHandleClose

The DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose function releases a handle previously opened with DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen.

BOOL __stdcall DapHandleClose(
HDAP hAccel // The handle to close
);

Parameters
hAccel

Specifies the handle to close. It must be a handle previously returned by DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen.

Return Values
If the function succeeds, the return value is TRUE,

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

See Also
DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen

DAPIO32 Interface Reference 75

DapHandleOpen

The DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen function returns a handle to the target with the specified name. The target can be one of the
following: a server PC, a Data Acquisition Processor on a server, or a communication pipe on a Data Acquisition
Processor.

HDAP __stdcall DapHandleOpen(
const char *pszAccelName, // The UNC name of the pipe to open
unsigned long ulOpenFlags // Open attributes
);

Parameters
pszAccelName

Points to a UNC target name string that specifies the target to open.

ulOpenFlags
Specifies the desired access to acquire. An application can acquire read access to an output pipe from a Data
Acquisition Processor, write access to an input pipe to a Data Acquisition Processor, or query access to a server
PC, a Data Acquisition Processor, or a pipe.

Values Description
DAPOPEN_READ Specifies the read access to a pipe. Data can only be

read from the pipe.

DAPOPEN_WRITE Specifies the write access to a pipe. Data can only be
written to the pipe.

DAPOPEN_QUERY Specifies the query access to a server PC, a Data
Acquisition Processor, or a pipe. A handle opened with
query access can only be used to retrieve static
information about the target the handle is associated
with.

DAPOPEN_DISKIO Specifies the disk I/O access with a pipe.

Return Values
If the function succeeds, the return value is an open handle to the specified target.

If the function fails, the return value is a NULL handle (of value zero). Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve
additional information about the error.

Remarks
An application can open a communication pipe with the DAPOPEN_READ or the DAPOPEN_WRITE attribute.
Opening a pipe with the DAPOPEN_READ or the DAPOPEN_WRITE attribute reserves the pipe for exclusive use. No
one can open the same pipe again with the DAPOPEN_READ or the DAPOPEN_WRITE attribute until the application
that owns the handle closes it by calling DapHandleClDapHandleClDapHandleClDapHandleCloseoseoseose.

 DAPIO32 Interface Reference 76

An application can also open a server or a DAP with the DAPOPEN_READ or the DAPOPEN_WRITE attribute.
Opening a server or a DAP with either attribute reserves the target for exclusive use. Once the target is reserved,
no one can open it again or open any target under it with either attribute until the handle is closed. For example,
the function DapReinitializeDapReinitializeDapReinitializeDapReinitialize requires a server handle opened with the DAPOPEN_WRITE attribute, to reload
DAPL to all DAPs on a server, or a DAP handle opened with the DAPOPEN_WRITE attribute, to reload DAPL to a
DAP.

An application can open a pipe, a Data Acquisition Processor, or a server PC with the DAPOPEN_QUERY attribute.
This handle can only be used with the DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery function to retrieve static information about the target
the handle is associated with. Opening a handle with the DAPOPEN_QUERY attribute does not prevent any other
application from opening the same target again for any purpose. Under DAPcell /DAPcell Local /DAPcell Basic
Server, a handle opened with the DAPOPEN_READ or the DAPOPEN_WRITE attribute can also be used with
DapHanDapHanDapHanDapHandleQuerydleQuerydleQuerydleQuery.

With DAPcell/DAPcell Local Server, an application can open a pipe with the DAPOPEN_DISKIO attribute. This
handle can be used later to initiate and terminate a direct pipe disk I/O session using either the DapDapDapDapPipeDiskLogPipeDiskLogPipeDiskLogPipeDiskLog
or DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed function. It can also be used to query disk I/O status using the DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery function.
This attribute is not available in DAPcell Basic Server.

Examples
To acquire write access to the input pipe $BININ on the Data Acquisition Processor DAP0 on the local machine,
use the following syntax:

hdapBinPut = DapHandleOpen(“\\\\.\\Dap0\\$BinIn”,
 DAPOPEN_WRITE);

To acquire query access to the Data Acquisition Processor DAP0 on the local machine, use the following syntax:

hDAP0 = DapHandleOpen(“\\\\.\\Dap0”, DAPOPEN_QUERY);

To acquire query access to the remote server on PC16, use the following syntax:

hPC16 = DapHandleOpen(“\\\\PC16”, DAPOPEN_QUERY);

To acquire direct disk log access to the remote pipe $BinOut on PC16 from a DAPcell service, use the following
syntax:

hLog = DapHandleOpen(“\\\\PC16\\$BinOut”, DAPOPEN_DISKIO);

See Also
DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose, DapHandDapHandDapHandDapHandleQueryleQueryleQueryleQuery

DAPIO32 Interface Reference 77

DapHandleQuery

The DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery function queries for information about a target the handle is associated with. There are four
types of handles: a NULL handle, a handle to a server PC, a handle to a Data Acquisition Processor, and a handle to a
communication pipe on a Data Acquisition Processor. Querying about a NULL handle gives information that is not
specific to a particular server, a particular Data Acquisition Processor, or a particular pipe.

BOOL __stdcall DapHandleQuery(
HDAP hAccel, // The handle to query about
TDapHandleQuery *pHandleInfo // Address of query structure
);

Parameters
hAccel

Identifies the handle to query about.

pHandleInfo
Points to a TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure that passes the query key to the function and receives queried
information from the function.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

Remarks
An application must initialize the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure correctly before calling the DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery
function. Use DapStructPrepare to prepare the structure before setting the specific fields of interest.

The iBufferSize field must always be set to either zero or the byte size of an application-supplied buffer. If
iBufferSize is set to zero, the query result is returned in the structure field QueryResult.dw as a 32-bit binary
value. No application-supplied buffer is necessary. If iBufferSize is non-zero, the query result is returned in a
buffer. An application must supply the buffer to receive the result. In this case, iBufferSize must be the byte
size of the buffer and QueryResult.psz or QueryResult.pvoid must point to the buffer. The result type
depends on the value specified in eResultType. The buffer must be large enough to account for any terminating
null characters required by result types such as strings.

The handle to be queried can be a handle opened with any one of the following attributes, DAPOPEN_READ,
DAPOPEN_WRITE, or DAPOPEN_QUERY. However, opening a handle with the DAPOPEN_READ or the
DAPOPEN_WRITE attribute reserves the target for exclusive use. If the handle is only used for querying, it is
typically opened with the DAPOPEN_QUERY attribute.

To query the disk I/O status in a DAPcell/DAPcell Local service, the handle must be opened with the
DAPOPEN_DISKIO attribute.

 DAPIO32 Interface Reference 78

Query Keys: NULL Handle
With a NULL handle, the function supports the following query keys:

“ClientVersion”
Query key to obtain the version of the DAPIO32 client software. The query result is a 32-bit binary value. This
query does not require an open handle. The hAccel parameter can be NULL.

“ServerEnumerate”
Query key to obtain a list of DAPcell servers that the client can access in a networked environment. The query
result is a list of server names. Each name is a null-terminated string, with the last name terminated by two null
characters. The server name is represented by the host computer name led by two backslashes. This query does
not require an open handle. The hAccel parameter can be NULL.

This key can be optionally followed by a set of options, each of which is enclosed in square brackets. The key
and the options belong to the same query string and must reside inside the same double quotation marks,
separated only by blanks. The supported options are [provider=xxx], [domain=xxx], and
[transport=xxx]. When one or more options are present, the query function will use the specified transport,
if there is one, to enumerate server PCs under the specified network provider and/or domain only. This can
significantly speed up the enumeration process under a large and complicated network structure by forcing the
search within a restricted range. Following is an example key string with three options: “ServerEnumerate
[provider=Microsoft Windows Network] [domain=mydomain] [transport=ncacn_ip_tcp]”.

Query Keys: Open Server Handle
With an open server handle, the function supports the following query keys:

“DapEnumerate”
Query key to obtain a list of Data Acquisition Processors available on a target server. The query result is a list
of names of the Data Acquisition Processors. Each name is a null-terminated string, with the last name
terminated by two null characters.

“DiskFeedEnabled”
Query key to determine whether remote disk data feeding is enabled. Returns a 32-bit binary integer result,
indicating the state of disk feeding permission currently configured. The valid return values are 0, 1, and 2 for
the states of “disabled”, “restricted”, and “normal” respectively.

“DiskLogEnabled”
Query key to determine whether remote disk logging is enabled. Returns a 32-bit binary integer result,
indicating the state of disk logging permission currently configured. The valid return values are 0, 1, and 2 for
the states of “disabled”, “restricted”, and “normal” respectively.

“IsRemote”
Query key to determine whether the server is remote or local. Returns a 32-bit binary Boolean result indicating
if this server associated with the handle is remote.

“ModuleInstallEnabled”
Query key to determine whether remote clients are allowed to install modules. Returns a 32-bit binary Boolean
result, indicating if the server allows remote clients to install modules.

“ServerName”
Query key to obtain the name of the server PC. The query result is a string. “DAPcell Basic”, “DAPcell
Local”, and “DAPcell” are among the name strings that can be returned.

DAPIO32 Interface Reference 79

“ServerOs”
Query key to obtain the operating system under which the server PC is running. The query result is a string. For
example, the returned string “Windows 7” indicates that the server PC is running under the Microsoft
Windows 7 operating system.

“ServerOsSystemType”
Query key to return a string of either “x86” or “x64” indicating the system type of the operating system under
which the server is running. This query is available on servers with version 7.00 and later.

“ServerSystemType”
Query key to return a string of “x86” if the server is running under Windows WOW64 environment; otherwise,
an empty string. This query is available on servers with version 7.00 and later.

“ServerVersion”
Query key to obtain the version of the server software. The query result is a 32-bit binary value.

“Transports”
Query key to obtain a list of network transports that both the client and the target server support. The query
result is a list of transport names. Each name is a null-terminated string, with the last name terminated by
double null characters.

Query Keys: Open DAP Handle
With an open DAP handle, the function supports the following query keys:

“DapModel”
Query key to obtain the hardware model of the target Data Acquisition Processor. The query result is a string
that consists of both the hardware series and hardware model information, such as DAP5200a/626.

“DapName”
Query key to obtain the full product name of the target Data Acquisition Processor. The query result is a string
that consists of the hardware series, hardware model, and any additional variant information which does not
affect the software characteristics of the DAP board, such as DAP5200a/626-01. The “DapModel” key does not
return the variant portion of a DAP board’s product name unless that information affects the software
characteristics of the board. In the preceding example, a query with the “DapModel” key would return
DAP5200a/626. On most DAP boards the variant portion of the product name is not present and so “DapName”
will be identical to “DapModel”.

“DapOs”
Query key to obtain the type of DAPL operating system running on the target DAP board. The result is a string
of either DAPL2000 or DAPL.

“DapSerial”
Query key to obtain the hardware serial number of the target Data Acquisition Processor. The query result is a
decimal number string.

“DaplErrorMsg”
Query key to obtain the queued DAPL error message. The query result is a string. This query requires
DAPL 2000 operating system version 1.23 and later.

“DaplErrorNum”
Query key to obtain the queued DAPL error number. The query result can be either binary or a string based on
the request. This query requires DAPL 2000 operating system version 1.23 and later.

 DAPIO32 Interface Reference 80

“DaplErrorText nnnn”
Query key to obtain a DAPL error message text, where nnnn is a four-digit DAPL error number. The query
result is a string. This query requires DAPL 2000 operating system version 1.23 and later.

“DaplEventLog [target=syslog] [n | start end | id=<hexid> | id=<hexid> n]”
“DaplEventLog [target=knllog] [n | start end]”

Query key that returns a list of formatted event log messages in chronological order. The list is terminated by
two null characters. The query can have two options: a target option and a range option. If the target option is
absent, it defaults to [target=syslog]. If no range option is present, the range defaults to all. If the option
[n] is present, it returns the most recent n messages. If [start end] is present, it returns messages in the
specified index range relative to the most recent one. If [id=<hexid>] is present, it returns all messages
starting from the specified one-based event ID in hexadecimal. If [id=<hexid> n] is present, it returns n
messages starting from the specified event ID. The last two options are not available if the target is knllog. If
messages in the requested range are not all available, it returns whatever are available. The query fails if the
user-supplied query buffer is too small for all the requested messages.

This key is only available in DAPL 3000.

“DaplInputAnalogGains”
Query key to return a list of supported analog input gains. The return gains are floating point values in ASCII
string format. Each supported gain occupies a line, separated by a carriage return.

This key is available in DAPL 2000 versions higher than 2.53 and in DAPL 3000. DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery returns
false if the key is used with earlier versions of DAPL.

“DaplInputAnalogVRanges”
Query key to return a list of supported analog input voltage ranges. The returned ranges are pairs of floating
point values in ASCII string format. Each supported pair occupies a line, separated by a carriage return.

This key is available in DAPL 2000 versions higher than 2.53 and in DAPL 3000. DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery returns
false if the key is used with earlier versions of DAPL or if the target DAP does not support software selectable
voltage ranges.

“DaplInputChannelGroupSize <n>”
Query key to obtain the DAPL input channel group size. The result is a 32-bit unsigned integer in either binary
or string format based on the request. This query requires DAPL 2000 operating system version 1.30 and later.

An optional integer parameter <n> can be present to specify a zero-based index of the entry into an input
channel group size array if the target DAP supports multiple input channel group sizes. Specifying the index of
0 always retrieves the default group size, which is identical to the result of specifying no index. If the index is
out of range, the query fails. Repeatedly calling this query with incrementing indices until the call fails
enumerates all group sizes the target DAP supports. This option requires DAPL 2000 operating system version
2.06 and later.

“DaplInputChannelConfigurationCountMax”
Query key to obtain the DAPL maximum input channel configuration size. This number is the maximum value
that can be used in a DAPL IDEFINE command. The result is a 32-bit unsigned integer in either binary or string
format based on the request. This query requires DAPL 2000 operating system version 1.30 and later.

“DaplInputCount [target=<configuration list>|*]”
Query key to obtain the latest sample count(s) of the named input configuration(s). If the [target=…] option is
absent, it returns the sample count of the system default configuration. The count is returned as a 64-bit
unsigned integer in either binary or string format. If the query buffer is not present, it returns the lower 32 bits
of the count in QueryResult.dw. If [target=*] is specified, it returns sample counts of all input configurations

DAPIO32 Interface Reference 81

that are or have been active. If [target=<configuration list>] is specified where <configuration
list> is a comma-separated list of input configuration names, it returns the sample counts of all the listed
configurations. In both cases, the query result is a double-null-terminated multi-string in the format of
<configuration name>:<count>.

This query requires DAPL 2000 operating system version 1.23 and later. The use of [target=…] option
requires DAPL 3000 operating system versions 1.10 or later.

“DaplInputMasterDivideMax”
Query key to return a 32-bit integer of the largest synchronous input sampling clock divisor the board supports.
A divisor divides the input sampling clock rate on the master board by its value, to provide the slave board
connected to it with a clock of reduced rate at the synchronous input clock output pin on J13. On boards that do
not support this capability, the query returns a value of 1.

This key is only available in DAPL 3000.

“DaplInputScanTimeMin [update=active|inactive] [igroup=n] [phase=cfgtime|iotime]
[datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL minimum input scan time in nanoseconds. If the
[update=active|inactive] option is specified, the value returned is the minimum input scan time while
the output updating is active or is inactive, depending on the selection. The default is inactive. An optional
parameter [igroup=n] can be specified to request for the minimum input scan time with input channel group
size equal to n. This is useful if the target DAP supports more than one input channel group size. If the option is
not present, the default group size is assumed. If the specified group size is not valid for the target DAP, the
query fails.

The query result is a number in either binary or string format based on the request. The option [datatype=…]
selects the data type of the number. If not specified, it defaults to double. The option [phase=…] selects the
query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring the
hardware I/O clock intervals. If not specified, it defaults to cfgtime.

This query requires the DAPL 3000 operating system.

“DaplInputScanTimeMax [phase=cfgtime|iotime]
[datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL maximum input scan time in nanoseconds. The result is a number in either
binary or string format based on the request. The option [datatype=…] selects the data type of the number. If
not specified, it defaults to double. The option [phase=…] selects the query purpose, cfgtime for
configuration definition purpose and iotime for the purpose of configuring the hardware I/O clock intervals. If
not specified, it defaults to cfgtime.

This query requires DAPL 3000 operating system.

“DaplInputScanTimeIncrement [phase=cfgtime|iotime]
[datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL input scan time increment in nanoseconds. The result is a number in either
binary or string format based on the request. The option [datatype=…] selects the data type of the number. If
not specified, it defaults to double. The option [phase=…] selects the query purpose, cfgtime for
configuration definition purpose and iotime for the purpose of configuring the hardware I/O clock intervals. If
not specified, it defaults to cfgtime.

This query requires DAPL 3000 operating system.

 DAPIO32 Interface Reference 82

“DaplMemFree”
Query key to obtain the total free heap memory on a Data Acquisition processor. The query result can be either
binary or a string based on the request. This query requires DAPL 2000 operating system version 1.23 and later.

“DaplMemTotal”
Query key to obtain the total heap memory on a Data Acquisition processor. The query result can be either
binary or a string based on the request. This query requires DAPL 2000 operating system version 1.23 and later.

“DaplMonitorData [type=temperature] [target=cpu|monitor]”
Query key to return a 32-bit integer result in Celsius. If both [type=temperature] and [target=cpu] are
present, the result is the temperature of the CPU. If both [type=temperature] and [target=monitor] are
present, the result is the temperature of the monitor chip. If only [type=temperature] is present or no
options are present, it defaults to [type=temperature] [target=cpu]. In all other cases, it generates a
DAPL error. If no monitor is available on the target DAP, the query fails with an error of unsupported function.

This query requires DAPL 3000 operating system.

“DaplName”
Query key to return an ASCII string of the name of the DAPL operating system, such as “DAPL3000”.

This query requires DAPL 3000 operating system.

“DaplOutputChannelConfigurationCountMax”
Query key to obtain the DAPL maximum output channel configuration size. This number is the maximum value
that can be used in a DAPL ODEFINE command. The result is a 32-bit unsigned integer in either binary or string
format based on the request. This query requires DAPL 2000 operating system version 1.30 and later.

“DaplOutputChannelGroupSize”
Query key to obtain the DAPL output channel group size. The result is a 32-bit unsigned integer in either binary
or string format based on the request. This query requires DAPL 2000 operating system version 1.30 and later.

“DaplOutputCount [target=<configuration list>|*]”
Query key to obtain the latest update count(s) of the named output configuration(s). If the [target=…] option
is absent, it returns the update count of the system default configuration. The count is returned as a 64-bit
unsigned integer in either binary or string format. If the query buffer is not present, it returns the lower 32 bits
of the count in QueryResult.dw. If [target=*] is specified, it returns update counts of all input
configurations that are or have been active. If [target=<configuration list>] is specified where
<configuration list> is a comma separated list of output configuration names, it returns the update counts
of all the listed configurations. In both cases, the query result is a double-null-terminated multi-string in the
format of <configuration name>:<count>.

This query requires DAPL 2000 operating system version 1.23 and later. The use of [target=…] option
requires DAPL 3000 operating system version 1.10 or later.

“DaplOutputScanTimeMin [sample=active|inactive] [phase=cfgtime|iotime]
[datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL minimum output scan time in nanoseconds. If the [sample=…] option is
specified, the value returned is the minimum output scan time while input sampling is active or is inactive,
depending on the selection. The default is inactive.

The query result is a number in either binary or string format based on the request. The option [datatype=…]
selects the data type of the number. If not specified, it defaults to double. The option [phase=…] selects the
query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring the
hardware I/O clock intervals. If not specified, it defaults to cfgtime.

DAPIO32 Interface Reference 83

This query requires DAPL 3000 operating system.

“DaplOutputScanTimeMax [phase=cfgtime|iotime] [datatype=uint32|uint64|float|double]”
Query key to obtain the DAPL maximum output scan time in nanoseconds. The result is a number in either
binary or string format based on the request. The option [datatype=…] selects the type of the number. If not
specified, it defaults to double. The option [phase=…] selects the query purpose, cfgtime for configuration
definition purpose and iotime for the purpose of configuring the hardware I/O clock intervals. If not specified,
it defaults to cfgtime.

This query requires DAPL 3000 operating system.

“DaplOutputScanTimeIncrement [phase=cfgtime|iotime]
[datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL output scan time increment in nanoseconds. The result is a number in either
binary or string format based on the request. The option [datatype=…] selects the type of the number. If not
specified, it defaults to double. The option [phase=…] selects the query purpose, cfgtime for configuration
definition purpose and iotime for purpose of configuring the hardware I/O clock intervals. If not specified, it
defaults to cfgtime.

This query requires DAPL 3000 operating system.

“DaplOverflowCount [target=<configuration list>|*]””
Query key to obtain the input overflow count(s) of the named input configuration(s). If the [target=…] option
is absent, it returns the overflow count of the system default configuration. The count is returned as a 64-bit
unsigned integer in either binary or string format. If the query buffer is not present, it returns the lower 32 bits
of the count in QueryResult.dw. If [target=*] is specified, it returns overflow counts of all input
configurations that have been overflowed. If [target=<configuration list>] is specified where
<configuration list> is a comma-separated list of input configuration names, it returns the overflow
counts of all the listed configurations. In both cases, the query result is a double-null-terminated multi-string in
the format of <configuration name>:<count>.

This query requires DAPL 2000 operating system version 1.23 and later. The use of [target=…] option
requires DAPL 3000 operating system versions 1.10 or later.

“DaplSampleResolutionAnalog”
Query key to obtain the DAPL analog input resolution in bits. The result is a 32-bit unsigned integer in either
binary or string format based on the request. This query requires DAPL 2000 operating system version 1.30 and
later.

“DaplSampleTimeIncrement [phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”
Query key to obtain the DAPL input time increment in nanoseconds. The result is a 32-bit unsigned integer in
either binary or string format based on the request. The option [phase=…] selects the query purpose, cfgtime
for configuration definition purpose and iotime for the purpose of configuring the hardware. If it is absent the
option defaults to cfgtime. The option [datatype=…] selects the data type of the number. If not specified, it
defaults to uint32.

This query requires DAPL 2000 operating system version 1.30 and later. The options are only available in
DAPL 3000.

“DaplSampleTimeMaxAnalog [phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”
Query key to obtain DAPL maximum analog input sampling time in nanoseconds. The result is a 64-bit
unsigned integer in either binary or string format based on the request. If the return value is expected as a 32-bit
binary value in QueryResult.dw, the lower 32 bits of the value are returned. The option [phase=…] selects
the query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring

 DAPIO32 Interface Reference 84

the hardware. If it is absent the option defaults to cfgtime. The option [datatype=…] selects the data type of
the number. If not specified, it defaults to uint64.

This query requires DAPL 2000 operating system version 1.30 and later. The options are only available in
DAPL 3000.

“DaplSampleTimeMaxDigital
[phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL maximum digital input sampling time in nanoseconds. The result is a 64-bit
unsigned integer in either binary or string format based on the request. If the return value is expected as a 32-bit
binary value in QueryResult.dw, the lower 32 bits of the value are returned. The option [phase=…] selects
the query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring
the hardware. If it is absent the option defaults to cfgtime. The option [datatype=…] selects the data type of
the number. If not specified, it defaults to uint64.

This query requires DAPL 2000 operating system version 1.30 and later. The options are only available in
DAPL 3000.

“DaplSampleTimeMinAnalog [update=active/inactive] [igroup=n]
[phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL minimum analog input sampling time in nanoseconds. If the [update=…]
option is specified, the value returned is the minimum analog input sampling time while output updating is
active or is inactive, depending on the selection. The default is inactive. The result is a 64-bit unsigned
integer in either binary or string format based on the request. If the return value is expected as a 32-bit binary
value in QueryResult.dw, the lower 32 bits of the value are returned. The option [phase=…] selects the
query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring the
hardware. If it is absent the option defaults to cfgtime. The option [datatype=…] selects the data type of the
number. If not specified, it defaults to uint64.

This query requires DAPL 2000 operating system version 1.30 and later. Options [phase=…] and
[datatype=…] are only available in DAPL 3000.

An optional parameter [igroup=n] can be specified to request for the minimum analog input sampling time
with input channel group size equal to n. This is useful if the target DAP supports more than one input channel
group size. If the option is not present, the default group size is assumed. If the specified group size is not valid
for the target DAP, the query fails. This option requires DAPL 2000 operating system version 2.06 and later.

“DaplSampleTimeMinDigital [update=active/inactive] [igroup=n]
[phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL minimum digital input sampling time in nanoseconds. If the [update=…] option
is specified, the value returned is the minimum digital input sampling time while output updating is active or is
inactive, depending on the selection. The default is inactive. The result is a 64-bit unsigned integer in either
binary or string format based on the request. If the return value is expected as a 32-bit binary value in
QueryResult.dw, the lower 32 bits of the value are returned. The option [phase=…] selects the query
purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring the
hardware. If it is absent the option defaults to cfgtime. The option [datatype=…] selects the data type of the
number. If not specified, it defaults to uint64.

This query requires DAPL 2000 operating system version 1.30 and later. Options [phase=…] and
[datatype=…] are only available in DAPL 3000.

An optional parameter [igroup=n] can be specified to request for the minimum digital input sampling time
with input channel group size equal to n. This is useful if the target DAP supports more than one input channel

DAPIO32 Interface Reference 85

group size. If the option is not present, the default group size is assumed. If the specified group size is not valid
for the target DAP, the query fails. This option requires DAPL 2000 operating system version 2.06 and later.

“DaplSupports [<tag>]”
Query key to return a 32-bit binary Boolean result indicating if <tag> is supported, where <tag> is a DAPL
system command name. For example, “DaplSupports [calibrate]” queries DAPL for support of the
calibrate command. For configuration commands such as idefine, odefine, and pdefine, a second
configuration command name can follow. “DaplSupports [idefine channels]” is a valid key for support
of the input configuration command channels. The <tag> accepts all abbreviations of a command name that
DAPL accepts.

This query requires DAPL 2000 version 2.52 and later.

“DaplSymbol <nnn>”
Query key to obtain the serial numbers of currently defined DAPL symbols. All DAPL symbols including
DAPL commands, built-in pipes, user-defined symbols, and custom commands have a unique non-zero serial
number associated with them. This serial number is defined for the life of a symbol and can be used to access
that symbol regardless of changes to any of its other attributes. Each of these serial numbers is found and
returned as an element in a DWORD (32-bit integer) array supplied by the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. Since the
number of symbols is not fixed, a single array may not be sufficient to hold all available symbols. For this
reason an optional starting index “nnn” is specified in the key. The resulting array contains serial numbers
starting with the closest one greater than “nnn”. When <nnn> is absent, zero is assumed. The query will return
as many serial numbers as the provided array buffer can hold, or fewer than the array capacity if there are fewer
than that many between “nnn”+1 and the last one available. In the latter case, a zero item immediately follows
the last serial number and terminates the array. The return array is not sorted, but it is guaranteed that the last
serial number is the largest in the array. To get all the serial numbers, call the query repeatedly using the last
serial number in the array as the next value of “nnn” until the terminating zero item value is encountered.

The query’s eResultType should be defined as DAPIO_BINARY, and the QueryResult.pvoid and
iBufferSize fields should be set for the serial number array. A buffer of any size larger than one array entry
is valid for the query. To avoid repeatedly calling the query function to get all serial numbers, a reasonably
large array such as 1024 entries long can be used. This query requires DAPL 2000 operating system version
2.00 and later.

“DaplSymbol <name> [property=serial]”
Query key to obtain the serial number of a currently defined DAPL symbol given its name “name”. The serial
number is returned as an unsigned long integer in the field QueryResult.dw or in the supplied buffer pointed
to by the QueryResult.pvoid field of the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. If a buffer is supplied, the
eResultType can be any of the supported types. If an error occurs, call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to get the
cause of error. This query requires DAPL 2000 operating system version 2.00 and later.

“DaplSymbol <serial> [property=name]”
Query key to obtain the name of a currently defined DAPL symbol given its serial number “serial”. The
name is returned as a null-terminated string in the buffer pointed to by the QueryResult.psz field of the
TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. The eResultType field should be DAPIO_SZ. A buffer must be supplied that
can hold the longest possible symbol name - currently, 24 bytes including the null terminator. This query
requires DAPL 2000 operating system version 2.00 and later.

“DaplSymbol <serial|name> [property=buildversion]”
Query key to return the build version of the module associated with the specified name or symbol serial
number. The return value is a null-terminated string in the form of “d.dd” such as “1.00”. If the build version

 DAPIO32 Interface Reference 86

information is not present, it returns “not available”. If the name or serial number is not associated with a
module, the query fails with an error message.

This query is only available in DAPL 3000.

“DaplSymbol <serial|name> [property=capabilities]”
Query key to return the capabilities of the object associated with the specified name or symbol serial number.
Only the DAPL kernel module currently supports this property. The return value is a double-null-terminated
multi-string, each null-terminated string of which represents a capability. When no capabilities are available, an
empty string is returned. The only capability currently supported is “removable device” if the target is a
USB DAP and the name of the object is in the query key is “DAPL”.

This query is only available in DAPL 3000.

“DaplSymbol <serial|name> [property=copyright]”
Query key to return the copyright string of the module associated with the specified name or symbol serial
number. The return value is a null-terminated string. If the copyright information is not present, it returns “not
available”. If the name or serial number is not associated with a module, the query fails with an error
message.

This query is only available in DAPL 3000.

“DaplSymbol <serial|name> [property=description]”
Query key to return the description string of the module associated with the specified name or symbol serial
number. The return value is a null-terminated string. If the description information is not present, it returns “not
available”. If the name or serial number is not associated with a module, the query fails with an error
message.

This query is only available in DAPL 3000.

“DaplSymbol <serial|name> [property=entries]”
Query key to obtain the number of entries in the object represented by the DAPL symbol, given its serial
number “serial” or name “name”. The entry count is an unsigned long integer returned either in the field
QueryResult.dw or in the supplied buffer pointed to by the QueryResult.pvoid field of the
TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. If a buffer is supplied, the eResultType can be any of the supported types.

Not all DAPL symbols support this query. The ones that support it are DAPL pipes and triggers. This query
requires DAPL 2000 operating system version 2.03 and later.

“DaplSymbol <serial|name> [property=fileversion]”
Query key to return the file version of the module associated with the specified name or symbol serial number.
The return value is a null-terminated string in the form of “d.dd” such as “1.20”. If the file version
information is not present, it returns “not available”. If the name or serial number is not associated with a
module, the query fails with an error message.

This query is only available in DAPL 3000.

“DaplSymbol <serial|name> [property=ifversion]”
Query key to return the interface version of the module associated with the specified name or symbol serial
number. The return value is a null-terminated string in the form of “d.dd” such as “2.00”. If the interface
version information is not present, it returns “not available”. If the name or serial number is not associated
with a module, the query fails with an error message.

This query is only available in DAPL 3000.

DAPIO32 Interface Reference 87

“DaplSymbol <serial|name> [property=maxsize]”
Query key to obtain the maximum size of the DAPL object associated with the symbol given its serial number
“serial” or name “name”. The maxsize is an unsigned long integer returned in the field QueryResult.dw
or in the supplied buffer pointed to by the QueryResult.pvoid field of the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. If a
buffer is supplied, the eResultType can be any of the supported types.

Not all DAPL symbols support this query. The one that supports it is a DAPL pipe. This query requires
DAPL 2000 operating system version 2.00 and later.

“DaplSymbol <serial|name> [property=references]”
Query key to obtain the reference count of the DAPL symbol given its serial number “serial” or name
“name”. The reference count is a long integer returned either in the field QueryResult.dw or in the supplied
buffer pointed to by the QueryResult.pvoid field of the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. If a buffer is supplied,
the eResultType can be any of the supported types. This query requires DAPL 2000 operating system version
2.00 and later.

“DaplSymbol <serial|name> [property=type]”
Query key to obtain the type of a currently defined DAPL symbol given its serial number “serial” or name
“name”. The type is returned as a null-terminated string in the buffer pointed to by QueryResult.psz field of
the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. The eResultType field should be DAPIO_SZ. A buffer must be supplied
that can hold the type string including the null terminator. This query requires DAPL 2000 operating system
version 2.00 and later.

“DaplSymbol <serial|name> [property=value]”
Query key to obtain the value of the DAPL object associated with the symbol given its serial number “serial”
or name “name”. The value is returned in the buffer pointed to by the QueryResult.pvoid field of the
TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. The eResultType field can be either DAPIO_BINARY or DAPIO_SZ or
DAPIO_VARIANT. DAPIO_VARIANT or DAPIO_SZ is recommended unless the data type of the scalar result is
known in advance.

Not all DAPL symbols support this query. The ones that support it are DAPL variables, constants, and strings.
This query requires DAPL 2000 operating system version 2.00 and later.

“DaplSymbol <serial|name> [property=version]”
Query key to return the version string of the module associated with the specified name or symbol serial
number. The return value is a null-terminated string in the form of “interface: x.xx, build: y.yy” such
as “interface: 2.00, build: 1.00”. If the version information is not present, it returns “not
available”. If the name or serial number is not associated with a module, the query fails with an error
message.

This query is only available in DAPL 3000.

“DaplSymbol <serial|name> [property=width]”
Query key to obtain the width of the DAPL object associated with the symbol given its serial number
“serial” or name “name”. The width is a long integer returned either in the field QueryResult.dw or in the
supplied buffer pointed to by the QueryResult.pvoid field of the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure. If a buffer is
supplied, the eResultType can be any of the supported types.

Not all DAPL symbols support this query. The ones that support it are DAPL pipes, variables, constants, and
vectors. This query requires DAPL 2000 operating system version 2.00 and later.

“DaplUnderflowCount [target=<configuration list>|*]”
Query key to obtain the underflow count(s) of the named output configuration(s). If the [target=…] option is
absent, it returns the underflow count of the system default configuration. The count is returned as a 64-bit

 DAPIO32 Interface Reference 88

unsigned integer in either binary or string format. If the query buffer is not present, it returns the lower 32 bits
of the count in QueryResult.dw. If [target=*] is specified, it returns the underflow counts of all output
configurations that have stopped prematurely. If [target=<configuration list>] is specified where
<configuration list> is a comma-separated list of output configuration names, it returns the underflow
counts of all the listed configurations. In both cases, the query result is a double-null-terminated multi-string in
the format of <configuration name>:<count>.

This query requires DAPL 2000 operating system version 1.23 and later. The use of [target=…] option
requires DAPL 3000 operating system versions 1.10 or later.

“DaplUpdateResolutionAnalog”
Query key to obtain the DAPL analog output resolution in bits. The result is a 32-bit unsigned integer in either
binary or string format based on the request. This query requires DAPL 2000 operating system version 1.30 and
later.

“DaplUpdateTimeIncrement [phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”
Query key to obtain the DAPL output time increment in nanoseconds. The result is a 32-bit unsigned integer in
either binary or string format based on the request. The option [phase=…] selects the query purpose, cfgtime
for configuration definition purpose and iotime for the purpose of configuring the hardware I/O clock
intervals. If not specified, it defaults to cfgtime. The option [datatype=…] selects the type of the number. If
not specified, it defaults to uint32.

This query requires DAPL 2000 operating system version 1.30 and later. The use of options requires
DAPL 3000.

“DaplUpdateTimeMaxAnalog [phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”
Query key to obtain the DAPL maximum analog output updating time in nanoseconds. The result is a 64-bit
unsigned integer in either binary or string format based on the request. If the return value is expected as a 32-bit
binary value in QueryResult.dw, the lower 32 bits of the value are returned. The option [phase=…] selects
the query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring
the hardware I/O clock intervals. If not specified, it defaults to cfgtime. The option [datatype=…] selects the
type of the number. If not specified, it defaults to uint64.

This query requires DAPL 2000 operating system version 1.30 and later. The use of options requires
DAPL 3000.

“DaplUpdateTimeMaxDigital
[phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL maximum digital output updating time in nanoseconds. The result is a 64-bit
unsigned integer in either binary or string format based on the request. If the return value is expected as a 32-bit
binary value in QueryResult.dw, the lower 32 bits of the value are returned. The option [phase=…] selects
the query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring
the hardware I/O clock intervals. If not specified, it defaults to cfgtime. The option [datatype=…] selects the
type of the number. If not specified, it defaults to uint64.

This query requires DAPL 2000 operating system version 1.30 and later. The use of options requires
DAPL 3000.

“DaplUpdateTimeMinAnalog [sample=active/inactive]
[phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL minimum analog output updating time in nanoseconds. If the [sample=…]
option is specified, the value returned is the minimum analog output updating time while input sampling is
active or is inactive, depending on the selection. The default is inactive. The result is a 64-bit unsigned

DAPIO32 Interface Reference 89

integer in either binary or string format based on the request. If the return value is expected as a 32-bit binary
value in QueryResult.dw, the lower 32 bits of the value are returned. The option [phase=…] selects the
query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring the
hardware I/O clock intervals. If not specified, it defaults to cfgtime. The option [datatype=…] selects the
type of the number. If not specified, it defaults to uint64.

This query requires DAPL 2000 operating system version 1.30 and later. The use of options [phase=…] and
[datatype=…] requires DAPL 3000.

“DaplUpdateTimeMinDigital [update=active/inactive]
[phase=cfgtime|iotime][datatype=uint32|uint64|float|double]”

Query key to obtain the DAPL minimum digital output updating time in nanoseconds. If the [sample=…]
option is specified, the value returned is the minimum digital output updating time while input sampling is
active or is inactive, depending on the selection. The default is inactive. The result is a 64-bit unsigned
integer in either binary or string format based on the request. If the return value is expected as a 32-bit binary
value in QueryResult.dw, the lower 32 bits of the value are returned. The option [phase=…] selects the
query purpose, cfgtime for configuration definition purpose and iotime for the purpose of configuring the
hardware I/O clock intervals. If not specified, it defaults to cfgtime. The option [datatype=…] selects the
type of the number. If not specified, it defaults to uint64.

This query requires DAPL 2000 operating system version 1.30 and later. The use of options [phase=…] and
[datatype=…] requires DAPL 3000.

“DaplVersion”
Query key to obtain the version of the DAPL operating system. The query result can be either a binary value of
a string. If the result is binary, the major version is the hundreds digit of the value, the minor version is the tens
digit and last digit represents the micro version. If the result is a string, it takes the format of
“<Major>.<Minor><Micro>”. This query requires DAPL 2000 operating system version 1.23 and later.

“DaplWarnMsg”
Query key to obtain the queued DAPL warning message. The query result is a string. This query requires DAPL
2000 operating system version 2.03 and later.

“DaplWarnNum”
Query key to obtain the queued DAPL system warning number. The query result can be either binary or a string
based on the request. This query requires DAPL 2000 operating system version 2.03 and later.

“PipeEnumerate”
Query key to obtain a list of communication pipes configured for a Data Acquisition Processor. The query result
is a list of pipe names. Each name is a null-terminated string, with the last name string terminated by two null
characters.

Query Keys: Open Pipe Handle
With an open pipe handle, the function supports the following query keys:

“PipeAttribute”
Query key to obtain the attributes of the target communication pipe. The query result is a string that resembles
the attribute list used in a call to the DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate function. This query requires an open pipe handle.

“PipeDirection”
Query key to obtain the direction of a pipe. The query result is a string of either “input from DAP” or
“output to DAP”. This query requires an open pipe handle.

 DAPIO32 Interface Reference 90

“PipeMaxSize”
Query key to obtain the maximum buffer size of a pipe. The query result is a 32-bit binary value. This query
requires an open handle to the target communication pipe.

“PipeType”
This key is a synonym to the key “PipeDirection”. Use “PipeDirection” in new applications.

“PipeWidth”
Query key to obtain the width of a pipe. The query result is a 32-bit binary value. This query requires an open
handle to the target communication pipe.

Query Keys: Open Pipe Handle with the DAPOPEN_DISKIO Attribute
With an open pipe handle with the DAPOPEN_DISKIO attribute, the function supports the following query keys:

“DapDiskIoCount [file=n]” “DapDiskIoCount [dapio]”
Query key to obtain the number of bytes transferred between a data file and a DAP pipe (or vice versa) during a
disk I/O session.

If the iBufferSize field is non-zero, the return value is a 64-bit integer stored in the application-supplied
buffer pointed to by QueryResult.pvoid. The eResultType field determines the result format. The buffer
must be large enough to hold the result; otherwise the query fails. If the iBufferSize field is zero, the lower
32 bits of the result is stored in QueryResult.dw.

When used in conjunction with a DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog command, the option [file=n] returns the number of
bytes read from or written to a file; n=0 returns the primary log file count, n=1 returns the first mirror file count,
and so on. If no option is given, “[file=0]” is assumed. If this option is specified for a mirror file that does
not exist, an error is generated.

When the “[dapio]” option is given, this number will be the total number of bytes transferred to or from the
pipe buffer.

At any moment, data transferred to or from the pipe buffer is not necessarily equal to the data transferred from
or to the disk file until after the disk I/O is completed.

“DapDiskIoStatus [file=n]” “DapDiskIoStatus [dapio]”
Query key to obtain the status of a DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog or DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed command. The result can be
either an integer status code or string. If the iBufferSize field of the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure is set to
zero, the resulting status code is stored in the structure’s QueryResult.dw field. If iBufferSize is set to any
other value, the status is stored in the application-provided buffer pointed to by the QueryResult.pvoid or
QueryResult.psz field. When the eResultType field is set to DAPIO_BINARY the resulting status code is a
32-bit integer value in the buffer. Any other eResultType results in the status string stored in the buffer
pointed to by QueryResult.psz.

The possibilities for the status code and its associated string are:

• ddios_Active - the disk I/O session is active and data are being transferred. Returns the string “The disk
I/O is active.”

• ddios_Completed - the requested number of items have been successfully transferred with no errors.
Returns the string “The disk I/O is completed.”

• ddios_FileError - a file has been closed because of an error before the disk I/O is terminated. Returns the
string “Disk I/O file error:” followed by the details of the last file closure. To determine which file has
been closed, each file must be polled separately.

DAPIO32 Interface Reference 91

• ddios_Aborted - the disk I/O session has been terminated due to a fatal error. Returns the string “The
disk I/O has been aborted - ” followed by the details of the session termination.

When used in conjunction with a DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog command, the option “[file=n]” retrieves the status of
an individual file; n=0 specifies the primary log file, n=1 specifies the first mirror file, and so on. When this
option is specified for a mirror file that does not exist, an error is generated. When no option is used,
“[file=0]” is assumed

The option “[dapio]” retrieves the status of the I/O to or from the pipe buffer.

Query Keys: Any Open Handle
With any open handle, the function supports the following query keys:

“BindTransport”
Query key to obtain the description of the network transport the handle uses to communicate with the server.
The query result is a string. This key requires DAPIO32 interface version 2.12 or later.

“HandleName”
Query key to obtain the name of the open handle. The query result is a string that resembles the UNC name
used in opening the handle.

See Also
TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery, DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate, DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32, DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64

 DAPIO32 Interface Reference 92

DapHandleQueryInt32

The DaDaDaDapHandleQueryInt32pHandleQueryInt32pHandleQueryInt32pHandleQueryInt32 function provides a more convenient interface than DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery for queries
that yield 32-bit integer results.

int __stdcall DapHandleQueryInt32(
HDAP hAccel, // Handle to query about
const char * pszKey, // Pointer to a query key string
int *pi32Result // Pointer to a 32-bit storage result
);

Parameters
hAccel

Identifies the handle to query about.

pszKey
Points to a null-terminated query key string.

pi32Result
Points to a 32-bit storage to receive data.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

Remarks
DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32 is implemented as a wrapper to DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery for convenience. The function
applies to all queries that yield 32-bit integer results. See DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery for more information.

See Also
DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery, DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64

DAPIO32 Interface Reference 93

DapHandleQueryInt64

The DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64 function provides a more convenient interface than DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery for queries
that yield 64-bit integer results.

int __stdcall DapHandleQueryInt64(
HDAP hAccel, // Handle to query about
const char * pszKey, // Pointer to a query key string
TDapIoInt64 *pi64Result // Pointer to a 64-bit storage result
);

Parameters
hAccel

Identifies the handle to query about.

pszKey
Points to a null-terminated query key string.

pi64Result
Points to a 64-bit storage to receive data.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapDapDapDapLastErrorTextGetLastErrorTextGetLastErrorTextGetLastErrorTextGet to retrieve additional information
about the error.

Remarks
DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64 is implemented as a wrapper to DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery for convenience. The function
applies to all queries that yield 64-bit integer results. See DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery for more information.

See Also
DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery, DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32, TDapIoInt6TDapIoInt6TDapIoInt6TDapIoInt64444

 DAPIO32 Interface Reference 94

DapInputAvail

The DapInputAvailDapInputAvailDapInputAvailDapInputAvail function gets the number of data bytes available for reading in the target pipe.

int __stdcall DapInputAvail(
HDAP hAccel // Open handle of the target pipe
);

Parameters
hAccel

Specifies the open handle to the target pipe. The target pipe must be an output pipe from the Data Acquisition
Processor.

Return Values
If the function succeeds, the return value is the number of data bytes available in the target pipe.

If the function fails, the return value is -1. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about
the error.

Remarks
Unlike its counterpart in DAPL, this function always returns a count in bytes regardless of the actual width of pipe
elements.

The number returned by this function is the number of data bytes already buffered by the server. An application is
safe to read that number of data bytes from the pipe without ever being blocked.

For efficient data transfer, it is usually best to use DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx, either with minimum bytes to read of zero or
a time-out, and avoid use of DapInputAvailDapInputAvailDapInputAvailDapInputAvail. DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx returns the actual number of bytes read and so
lets the application know what data have been transferred. The reason to avoid DapInputAvailDapInputAvailDapInputAvailDapInputAvail is that, when it is
used, each block transfer usually requires two calls to the server, one to determine what data are available and one
to read the data. Using DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx alone only requires one call to the server for basically the same
operation.

When an application uses the network feature of DAPcell Server, it is particularly important to reduce the number
of calls to the server, since calls to the server can be dispatched over the network. The overhead of dispatching a
call over the network can be expensive.

See Also
DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx

DAPIO32 Interface Reference 95

DapInputFlush

The DapInputFlushDapInputFlushDapInputFlushDapInputFlush function flushes an output pipe from the Data Acquisition Processor by discarding its data
from the PC memory. It returns the number of bytes discarded.

int __stdcall DapInputFlush(
HDAP hAccel // Open handle of the target pipe
);

Parameters
hAccel

Handle to the target pipe. The target pipe must be an output pipe from the Data Acquisition Processor.

Return Values
If the function succeeds, the return value is the number of bytes flushed.

If the function fails, the return value is -1. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about
the error.

Remarks
There is a built-in 20-second time-out; if it is unable to flush all data from hAccel after the time-out, it returns
failure (-1). If no data are found after a delay of 100 ms, DapInputFlushDapInputFlushDapInputFlushDapInputFlush returns successfully with the number of
bytes flushed so far.

For more control over the flush operation, use DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx.

Example
The following code flushes the $binout on the PC.

HDAP hBinout = DapHandleOpen(“\\\\.\\dap0\\$binout, DAPOPEN_READ);
Int BytesFlushed;
…
BytesFlushed = DapInputFlush(hBinout);
…

See Also
DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx, , , , DapOutputEmptyDapOutputEmptyDapOutputEmptyDapOutputEmpty

 DAPIO32 Interface Reference 96

DapInputFlushEx

The DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx function flushes an output pipe from the Data Acquisition Processor by discarding its data
from the PC memory. It always returns control to the caller, even when it is unable to flush all data from the target
pipe. DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx is an extended version of the DapInputFlushDapInputFlushDapInputFlushDapInputFlush service.

BOOL __stdcall DapInputFlushEx(
HDAP hAccel, // Open handle to the target pipe
unsigned long dwTimeOut, // Maximum time to flush
unsigned long dwTimeWait, // Maximum time to wait
unsigned long *pdwFlushed // Address of the number flushed
);

Parameters
hAccel

Specifies the handle to the target pipe. The handle must have read access. The target pipe must be an output
pipe from the Data Acquisition Processor.

dwTimeOut
Specifies the maximum amount of time in milliseconds within which the flushing operation should complete.

dwTimeWait
Specifies the minimum amount of time in milliseconds for which DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx should guarantee that the
target pipe remains empty to claim success.

pdwFlushed
Points to a 32-bit variable that receives the number of data bytes actually flushed. If the caller does not need the
number of bytes flushed, set this parameter to NULL.

Return Values
If the function succeeds, the return value is TRUE. The variable that pdwFlushed points to contains the total
number of data bytes flushed.

If the function fails, the return value is FALSE. The variable that pdwFlushed points to contains the actual
number of data bytes flushed. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

If pdwFlushed is NULL, no count of flushed data are returned.

See Also
DapInputFlushDapInputFlushDapInputFlushDapInputFlush, , , , DapOutputEmptyDapOutputEmptyDapOutputEmptyDapOutputEmpty

DAPIO32 Interface Reference 97

DapInt16Get

The DapInt16GetDapInt16GetDapInt16GetDapInt16Get function reads a single 16-bit integer from a DAP com-pipe.

BOOL __stdcall DapInt16Get(
HDAP hAccel, // Open handle to the target pipe
short *pi // Location to receive integer
);

Parameters
hAccel

Handle to DAP com-pipe.

pi
Pointer to location to receive integer.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

 DAPIO32 Interface Reference 98

DapInt16Put

The DapInt16PutDapInt16PutDapInt16PutDapInt16Put function writes a single 16-bit integer to a DAP com-pipe.

BOOL __stdcall DapInt16Put(
HDAP hAccel, // Open handle to the target pipe
short i // 16-bit integer
);

Parameters
hAccel

Handle to DAP com-pipe.

i
Integer to write to DAP com-pipe.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

DAPIO32 Interface Reference 99

DapInt32Get

The DapInt32GetDapInt32GetDapInt32GetDapInt32Get function reads a single 32-bit integer from a DAP com-pipe.

BOOL__stdcall DapInt32Get(
HDAP hAccel, // Open handle to the target pipe
long *pl // Location to receive integer
);

Parameters
hAccel

Handle to DAP com-pipe.

pl
Pointer to location to receive integer.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

 DAPIO32 Interface Reference 100

DapInt32Put

The DapInt32PutDapInt32PutDapInt32PutDapInt32Put function writes a single 32-bit integer to a DAP com-pipe.

BOOL __stdcall DapInt32Put(
HDAP hAccel, // Open handle to the target pipe
long l // 32-bit integer
);

Parameters
hAccel

Handle to DAP com-pipe.

l
Integer to write to DAP com-pipe.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

DAPIO32 Interface Reference 101

DapLastErrorTextGet

The DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet function retrieves the message text of the calling thread’s last error, including custom
DAPIO32-specific errors.

char * DapLastErrorTextGet(
char *pszError, // Points to application-supplied buffer
int iLength // Size of the buffer
);

Parameters
pszError

Points to an application-supplied buffer that receives the error message.

iLength
Specifies the size of the application supplied buffer.

Return Values
If the function succeeds, the return value is the pointer to a null-terminated message text string.

If the function fails, the return value is the pointer to a null string.

Remarks
DAPIO32-specific errors are defined as custom errors in the file DAPIO32.DLL. DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet checks
the error code and retrieves the error message text from DAPIO32.DLL, if it is a custom DAPIO32-specific error.

An application can also use Win32 API’s GetLastError and FormatMessage to retrieve the last error text
message. The application needs to check the Custom bit of the error code returned by GetLastError and tell
FormatMessage to retrieve messages from DAPIO32.DLL if that bit is set.

 DAPIO32 Interface Reference 102

DapLineGet

The DapLineGetDapLineGetDapLineGetDapLineGet function gets a string of characters from the DAP com-pipe with user-specified time-out.

int __stdcall DapLineGet(
HDAP hAccel, // Handle to target pipe
int iLength, // Length of pszBuffer
char *pszBuffer, // Pointer to buffer
unsigned long dwTimeWait // Maximum time to wait
);

Parameters
hAccel

Handle to DAP com-pipe from which to read a null-terminated string.

iLength
Length of pszBuffer including space for the null character.

pszBuffer
Pointer to buffer to store null-terminated string.

dwTimeWait
Time, in milliseconds, which the com-pipe must remain empty to return without a complete string. May be zero.

Return Values
If the function succeeds, returns the number of characters read from the Data Acquisition Processor excluding line-
feed characters. The result includes the terminating carriage-return if one is encountered; the carriage-return is not
placed in pszBuffer. Zero indicates that dwTimeWait milliseconds elapsed without reading any characters.

If the function fails, the return value is -1. Either the handle is invalid or pszBuffer is NULL. Call
DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

Remarks
DapLineGetDapLineGetDapLineGetDapLineGet reads characters from the com-pipe hAccel and places them in pszBuffer up to the first carriage-
return character.

If no characters are available from the com-pipe for more than dwTimeWait milliseconds, returns with whatever
characters have been read so far in pszBuffer and a count of the number of characters read.

If more than iLength - 1 characters are encountered before a carriage-return is found returns iLength - 1
characters. It is possible to determine whether a carriage-return character was encountered by comparing the
returned count to the length of the string returned in pszBuffer.

Line-feed characters are ignored and are never placed in the string.

See Also
DapCharGetDapCharGetDapCharGetDapCharGet, DapStringGetDapStringGetDapStringGetDapStringGet

DAPIO32 Interface Reference 103

DapLinePut

The DapLinePutDapLinePutDapLinePutDapLinePut function writes a string of characters to a Data Acquisition Processor com-pipe and terminates the
string with a carriage-return.

int __stdcall DapLinePut(
HDAP hAccel, // Open handle to the target pipe
const char *psz // Character string
);

Parameters
hAccel

Handle to DAP com-pipe.

psz
Null-terminated string to write to DAP com-pipe. psz may be NULL. In this case just a carriage-return is sent to
the DAP com-pipe.

Return Values
If the function succeeds, the return value is the number of characters actually written to the DAP com-pipe,
including the terminating carriage-return.

If the function fails, the return value is 0 (zero). Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

Remarks
Before appending the carriage-return, DapLinePutDapLinePutDapLinePutDapLinePut strips all line-feed and carriage-return characters from the
right side of the string.

DapLinePutDapLinePutDapLinePutDapLinePut only checks the end of the string for carriage-return/line-feed characters.

To send a string to the DAP com-pipe without modification, use DapStringPutDapStringPutDapStringPutDapStringPut.

See Also
DapStringPutDapStringPutDapStringPutDapStringPut

 DAPIO32 Interface Reference 104

DapModuleInstall

The DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall function installs a module to the DAP board(s) associated with the handle.

BOOL __stdcall DapModuleInstall(
HDAP hAccel, // install handle
const char *pszModPath, // module file name
unsigned long bmFlags, // bit flags of installation behavior
void *pDapList // reserved
);

Parameters
hAccel

Identifies the DAP board(s) on which to install the module. If this is a DAP handle, it installs the module to the
target DAP board. If this is a server handle, installs the module to all DAP boards on the server.

pszModPath
File name of module to install.

bmFlags
Bit flags telling the service how to proceed with the installation. The following flags are available.

Values Description
dmf_NoCopy Instruct the service not to copy the file to the default module directory

created by the SETUP program. The default is to copy it. If the handle
is a remote handle, the service ignores this flag and always copies the
file.

dmf_NoReplace Instruct the service not to replace an existing installed module. The
default is to replace it.

dmf_NoLoad Instruct the service not to load the module to the target DAP board(s)
after installation. The default is to load.

dmf_ForceRegister Instruct the service to force installation of the module. In this case, the
service installs the module even if some of the modules it depends on
are not installed. The default is not to force the installation.

dmf_ForceLoad Instruct the service to force the loading of the module to the target
DAP board(s). In this case, the operation may be destructive. The
service may reset or even reload DAPL in order to complete the
request. The default is not to force loading.

dmf_OsDAPL2000 Instruct the service to carry out the operation only if the target is
running DAPL 2000. If neither dmf_OsDAPL2000 nor
dfm_OsDAPL3000 is present, both are assumed. This flag is
supported in servers with version 6.00 and later.

DAPIO32 Interface Reference 105

dfm_OsDAPL3000 Instruct the service to carry out the operation only if the target is
running DAPL 3000. If neither dmf_OsDAPL2000 nor
dfm_OsDAPL3000 is present, both are assumed. This flag is
supported in servers with version 6.00 and later.

pDapList
Reserved. Must be NULL.

Return Values
Returns true if the installation is successful. Returns false if an error has occurred. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet
to retrieve additional information about the error.

Remarks
This operation is persistent. Once a module is installed, it stays until the module is uninstalled.

The service loads the module to the DAP board(s) unless dmf_NoLoad is specified. If installation fails, the loading
will not proceed.

When dmf_ForceRegister is specified, the installation may result in an inconsistent configuration because it
ignores possible absence of the dependencies the module requires. When dmf_ForceLoad is specified, the
operation may be destructive, in which case data on the target DAP board(s) are lost.

See Also
DapModuleLoadDapModuleLoadDapModuleLoadDapModuleLoad, DapModuleUninstallDapModuleUninstallDapModuleUninstallDapModuleUninstall, DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload, DapReinitializeDapReinitializeDapReinitializeDapReinitialize

 DAPIO32 Interface Reference 106

DapModuleLoad

The DapModuleLoadDapModuleLoadDapModuleLoadDapModuleLoad function loads a module to the DAP board(s) associated with the handle.

BOOL __stdcall DapModuleLoad(
HDAP hAccel, // load handle
const char *pszModPath, // filename of module
unsigned long bmFlags, // bit flags of load behavior
void *pDapList // reserved
);

Parameters
hAccel

Identifies the DAP board(s) to which to load the module. If this is a DAP handle, loads the module to the target
DAP board only. If this is a server handle, loads the module to all DAP boards on the server.

pszModPath
Filename of module to load.

bmFlags
Bit flags telling the service how to proceed with the loading. The following flags are available.

Values Description
dmf_NoReplace Instruct the service not to replace an existing loaded module. The

default is to replace it.

dmf_ForceLoad Instruct the service to force the loading of the module to the target
DAP board(s). In this case, the operation may be destructive. The
service may reset or even re-load DAPL in order to complete the
request. The default is not to force loading.

dmf_OsDAPL2000 Instruct the service to carry out the operation only if the target is
running DAPL 2000. If neither dmf_OsDAPL2000 nor
dfm_OsDAPL3000 is present, both are assumed. This flag is
supported in servers with version 6.00 and later.

dfm_OsDAPL3000 Instruct the service to carry out the operation only if the target is
running DAPL 3000. If neither dmf_OsDAPL2000 nor
dfm_OsDAPL3000 is present, both are assumed. This flag is
supported in servers with version 6.00 and later.

pDapList
Reserved. Must be NULL.

Return Values
Returns true if the loading is successful. Returns false if an error has occurred. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to
retrieve additional information about the error.

DAPIO32 Interface Reference 107

Remarks
This function loads the specified module without installing it into the system. Therefore, the effect is not
persistent. Once the target DAP board(s) are reinitialized, it is necessary to load the module again if it is not
installed.

This function does not try to resolve module dependencies. If module dependencies exist, the caller is responsible
to load each dependency module first in the right order before loading the target module. A module cannot be
loaded until all its dependency modules are loaded.

When dmf_ForceLoad is specified, the operation may be destructive, in which case data on the target DAP
board(s) are lost.

See Also
DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall, DapModuleUninstallDapModuleUninstallDapModuleUninstallDapModuleUninstall, DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload, DapReinitializeDapReinitializeDapReinitializeDapReinitialize

 DAPIO32 Interface Reference 108

DapModuleUninstall

The DapModulDapModulDapModulDapModuleUninstalleUninstalleUninstalleUninstall function uninstalls a module from the DAP board(s) associated with the handle.

BOOL __stdcall DapModuleUninstall(
HDAP hAccel, // uninstall handle
const char *pszModName, // module name
unsigned long bmFlags, // bit flags of uninstallation behavior
void *pDapList // reserved
);

Parameters
hAccel

Identifies the DAP board(s) from which to uninstall the module. If this is a DAP handle, uninstalls the module
from the target DAP board only. If this is a server handle, uninstalls the module from all DAP boards on the
server.

pszModName
Name of module to uninstall.

bmFlags
Bit flags telling the service how to proceed with the uninstall operation. The following flags are available.

Values Description
dmf_NoLoad Instruct the service not to unload the module from the target DAP

board(s) after uninstall. The default is to unload.

dmf_ForceRegister Instruct the service to force uninstall of the module even if
modules that depend on it are installed. The default is not to force
uninstall.

dmf_ForceLoad Instruct the service to force unloading the module from the target
DAP board(s) even if it is being used in DAPL. The default is not
to force unloading.

dmf_RemoveDependents Instruct the service to remove dependents of the module during
forced uninstall and unload. The default is not to remove
dependents.

dmf_OsDAPL2000 Instruct the service to carry out the operation only if the target is
running DAPL 2000. If neither dmf_OsDAPL2000 nor
dfm_OsDAPL3000 is present, both are assumed. This flag is
supported in servers with version 6.00 and later.

dmf_OsDAPL3000 Instruct the service to carry out the operation only if the target is
running DAPL 3000. If neither dmf_OsDAPL2000 nor
dfm_OsDAPL3000 is present, both are assumed. This flag is
supported in servers with version 6.00 and later.

DAPIO32 Interface Reference 109

pDapList
Reserved. Must be NULL.

Return Values
Returns true if the uninstall is successful. Returns false if an error has occurred. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to
retrieve additional information about the error.

Remarks
This operation is persistent. Once a module is uninstalled, it is gone until the module is reinstalled. When
dmf_ForceRegister is specified, the operation may result in an inconsistent configuration because the service
ignores the possible presence of installed modules that depend on it.

The service unloads the module from the DAP boards after the uninstall unless dmf_NoLoad is specified. If
uninstall fails, the unloading will not proceed.

When dmf_ForceLoad is specified, the operation may be partially destructive to the target DAP board(s) in order
to complete the request. The result of a partially destructive operation is equivalent to issuing a “RESET” DAPL
command to those DAP boards.

See Also
DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall, DapMDapMDapMDapModuleLoadoduleLoadoduleLoadoduleLoad, DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload, DapReinitializeDapReinitializeDapReinitializeDapReinitialize

 DAPIO32 Interface Reference 110

DapModuleUnload

The DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload function removes the module from the DAP board(s) associated with the handle.

BOOL __stdcall DapModuleUnload(
HDAP hAccel, // unload handle
const char *pszModName, // module name
unsigned long bmFlags, // bit flags of unloading behavior
void *pDapList // reserved
);

Parameters
hAccel

Identifies the DAP board(s) from which to unload the module. If this is a DAP handle, unloads the module from
the target DAP board only. If this is a server handle, unloads the module from all DAP boards on the server.

pszModName
Name of the module to unload.

bmFlags
Bit flags telling the service how to proceed with the unloading. The following flags are available.

Values Description
Dmf_ForceLoad Instruct the service to force unloading the module from the target

DAP board(s) even if it is being used. The default is not to force
unloading.

Dmf_RemoveDependents Instruct the service to remove dependents of the module during
unload. The default is not to remove dependents.

dmf_OsDAPL2000 Instruct the service to carry out the operation only if the target is
running DAPL 2000. If neither dmf_OsDAPL2000 nor
dfm_OsDAPL3000 is present, both are assumed. This flag is
supported in servers with version 6.00 and later.

dmf_OsDAPL3000 Instruct the service to carry out the operation only if the target is
running DAPL 3000. If neither dmf_OsDAPL2000 nor
dfm_OsDAPL3000 is present, both are assumed. This flag is
supported in servers with version 6.00 and later.

pDapList
Reserved. Must be NULL.

Return Values
Returns true if the unloading is successful. Returns false if an error has occurred. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to
retrieve additional information about the error.

DAPIO32 Interface Reference 111

Remarks
When dmf_ForceLoad is specified, the operation may be partially destructive to the target DAP board(s) in order
to complete the request. The result of a partially destructive operation is equivalent to issuing a “RESET” DAPL
command to those DAPs

See Also
DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall, DapModuleLoadDapModuleLoadDapModuleLoadDapModuleLoad, DapModuleUninstallDapModuleUninstallDapModuleUninstallDapModuleUninstall, DapReinitializeDapReinitializeDapReinitializeDapReinitialize

 DAPIO32 Interface Reference 112

DapOutputEmpty

The DapOutputEmptyDapOutputEmptyDapOutputEmptyDapOutputEmpty function wipes out all data from both sides of an input pipe to the Data Acquisition
Processor.

int __stdcall DapOutputEmpty(
HDAP hAccel // Open handle of the target pipe
);

Parameters
hAccel

Specifies the open handle to the target pipe. The target pipe must be an input pipe to the Data Acquisition
Processor.

Return Values
If the function succeeds, the return value is TRUE. The target pipe is completely emptied.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

Remarks
DapOutputEmptyDapOutputEmptyDapOutputEmptyDapOutputEmpty empties an input pipe to the Data Acquisition Processor. When it returns, the pipe is
completely empty on both sides, on the PC and on the DAP.

Example
The following code wipes out data from the $binin pipe on both sides.

HDAP hBinin = DapHandleOpen(“\\\\.\\dap0\\$binin, DAPOPEN_WRITE);
…
DapOutputEmpty(hBinin);
…

See Also
DapInputFlushDapInputFlushDapInputFlushDapInputFlush, , , , DapInputFlushExDapInputFlushExDapInputFlushExDapInputFlushEx

DAPIO32 Interface Reference 113

DapOutputSpace

The DapOutputSpaceDapOutputSpaceDapOutputSpaceDapOutputSpace function gets the number of byte spaces available in the target pipe for writing.

int __stdcall DapOutputSpace(
HDAP hAccel // Open handle of the target pipe
);

Parameters
hAccel

Specifies the open handle to the target pipe. The target pipe must be an input pipe to the Data Acquisition
Processor.

Return Values
If the function succeeds, the return value is the number of byte spaces available in the target pipe.

If the function fails, the return value is -1. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about
the error.

Remarks
Unlike its counterpart in DAPL, this function always returns a count in bytes regardless of the actual width of pipe
elements.

An application is always safe to write that number of data bytes to the pipe without ever being blocked.

 DAPIO32 Interface Reference 114

DapPipeDiskFeed

The DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed function initiates a background disk feed session that reads data from an existing data file
and places it into a DAP com-pipe.

BOOL __stdcall DapPipeDiskFeed(
HDAP hFeedHandle, // Handle to control feed operation
TDapPipeDiskFeed *pFeedInfo, // Pointer to TDapPipeDiskFeed
TDapBufferPutEx *pPutInfo // Pointer to TDapBufferPutEx
);

Parameters
hFeedHandle

A disk I/O handle previously obtained using DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen with the DAPOPEN_DISKIO attribute. Closing
hFeedHandle using DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose terminates the session.

pFeedInfo
A pointer to the TDapPipeDiskTDapPipeDiskTDapPipeDiskTDapPipeDiskFeedFeedFeedFeed structure that contains the disk I/O information.

pPutInfo
A pointer to a TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx structure that contains optional pipe I/O information. If this pointer is NULL,
a default set of attributes is assumed.

Return Values
If the session creation was successful, the return value is TRUE.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

Remarks
The DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed function initiates a disk feed session. The disk feed session continues until the number of
bytes specified in the TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed i64MaxCount has been read, or the end of the file is reached, or the
handle passed to the command is closed using DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose.

If the optional pPutInfo pointer is NULL, the following attributes are assumed:

iBytesMultiple = 1, dwTimeWait = 1000, dwTimeOut =0
(no time-out) and iBytesMultiple = 1

The value of iBytesPut in the TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx structure is ignored. The actual value used depends on the
availability of data read from the data file.

The dpdf_FlushBefore flag in the TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed structure is ignored if the target board is a non-PCI
Data Acquisition Processor.

Use hFeedHandle with DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery to determine the ongoing session status. See DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery for
more information.

Some of the disk feed parameters depend on the value of the TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx iBytesMultiple:

DAPIO32 Interface Reference 115

• The TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed i64MaxCount value must be a multiple of the TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx
iBytesMultiple value or an error will be generated.

• If the data file’s size is not a multiple of the TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx iBytesMultiple value, only the data up to

the last iBytesMultiple boundary will be fed. For example, if iBytesMultiple is 5 and the file size is 37,
only 35 bytes will be fed to the target pipe.

• If the TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed dpdf_ContinuousFeed flag is set, and the data file’s size is not a multiple of the
TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx iBytesMultiple value, feeding will continue by wrapping around to the beginning of the
file once the end-of-file is reached. This may yield unexpected result as the end-of-file may break the data
grouping integrity typically enforced by specifying the iBytesMultiple value.

Security
When dpdf_ServerSide is not set in the TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed structure, no file access control is enforced. The
file name specified in pszFileName of the structure is either an absolute file path on the local machine or a partial
path relative to the local directory where the application is launched.

When dpdf_ServerSide is set, disk feeding may access a file on a remote machine. The “Disk I/O” tab in the
DAP control panel program provides security measures for controlling file access to the server machine.

The “Disk I/O” tab has two control entries: Permission and Default Path. They can be selected or specified to
provide the desired control.

The Permission entry provides three selectable file access permission levels.

• Not allowed - No access is allowed at all on the server machine.
• Restricted - Access is restricted only to the path(s) specified in the Default Path entry and their subdirectories.
• Normal - Access is allowed anywhere reachable by the DAPcell/DAPcell Local server.

The Default Path entry specifies one or more directories that data can be read from. If pszFileName is a partial
file name and can be found in more than one of the paths specified in Default Path, the first occurrence is used.

See the help file of the DAP control panel program for more information.

Example
In the following example, data are read from the local file c:\data\wave1.dat and sent to DAP2 on the remote
PC with the name TESTPC through the DAP board’s $BinIn pipe. The file is repeatedly fed to the DAP board to
provide a continuous stream of data. The default TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx values are used.

TDapPipeDiskFeed FeedInfo;

/* Initialize the FeedInfo structure */
DapStructPrepare(FeedInfo);
FeedInfo.bmFlags =dpdl_ContinuousFeed;

 DAPIO32 Interface Reference 116

FeedInfo.pszFileName = “c:\\data\\wave1.dat”;

/* Open a disk I/O handle */
hFeed = DapHandleOpen(“\\\\TESTPC\\Dap2\\$BinIn”,
DAPOPEN_DISKIO);
/* Start a logging session */
if (hFeed && DapPipeDiskFeed(hFeed, &FeedInfo, NULL))
{
 /* Read the data into the Dap */
}
else
{

/* handle error */
}
/* Terminate the logging session */
if (hFeed) DapHandleClose(hFeed);

Version
This service is only available in DAPcell Server and DAPcell Local Server version 4.00 or later. It is not available
in DAPcell Basic Server.

See Also
TDapTDapTDapTDapPipeDiskFeedPipeDiskFeedPipeDiskFeedPipeDiskFeed, TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx, DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery, DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog

DAPIO32 Interface Reference 117

DapPipeDiskLog

The DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog function initiates a disk logging session between a DAP com-pipe and a disk file.

BOOL __stdcall DapPipeDiskLog(
HDAP hLog, // Disk I/O handle
TDapPipeDiskLog *pLogInfo, // Pointer to TDapPipeDiskLog
TDapBufferGetEx *pGetInfo // Pointer to TDapBufferGetEx
);

Parameters
hLog

Handle previously obtained using DapHandleOpenDapHandleOpenDapHandleOpenDapHandleOpen with the DAPOPEN_DISKIO attribute. Closing hLog with
DapHandleCloseDapHandleCloseDapHandleCloseDapHandleClose terminates the logging session.

pLogInfo
Pointer to a TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog structure containing disk I/O information.

pGetInfo
Pointer to a TDapBufferGTDapBufferGTDapBufferGTDapBufferGetExetExetExetEx structure containing optional pipe I/O information. If this pointer is NULL, a
default set of attributes is assumed.

Return Values
If the function succeeds, the return value is TRUE; the logging session was started successfully.

If the function fails, the return value is FALSE. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information
about the error.

Remarks
The DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog function initiates a disk logging session. Disk logging continues until the number of bytes
specified in the TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog i64MaxCount has been logged or until the handle passed to the command is
closed using DapHandleCDapHandleCDapHandleCDapHandleCloseloseloselose.

If the pGetInfo pointer is NULL, the following set of attributes is assumed:

iBytesGetMin = 8192, iBytesGetMax = 8192, dwTimeWait = 1000,
dwTimeOut = 0 (no time-out), iBytesMultiple = 1

Use hLog with DapHandleQuDapHandleQuDapHandleQuDapHandleQueryeryeryery to determine the ongoing session status. See DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery for more
information.

The TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog i64MaxCount value must be a multiple of the TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx iBytesMultiple
value or an error will be generated.

 DAPIO32 Interface Reference 118

Additional Features
It is possible to mirror the logged data to a second file. To enable mirror logging, initialize the TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog
structure by specifying dpdl_MirrorLog in the bmFlag field and appending a mirror file name to the string
pszFileName points to.

When mirror logging is active, an error that causes logging to the primary file to stop will not terminate the entire
logging session if the mirror logging can continue. Likewise, an error that causes the mirror logging to stop will
not necessarily terminate the primary logging either.

Security
When dpdl_ServerSide is not set in the TDapPipTDapPipTDapPipTDapPipeDiskLogeDiskLogeDiskLogeDiskLog structure, no file access control is enforced. The
file names specified in pszFileName of the structure are either absolute file paths on the local machine or partial
paths relative to the local directory where the application is launched.

When dpdl_ServerSide is set, disk logging may access files on a remote machine. The “Disk I/O” tab in the
DAP control panel program provides security measures for controlling file access to the server machine.

The “Disk I/O” tab has two control entries, Permission and Default Path. They can be selected or specified to
provide the desired control.

The Permission entry provides three selectable file access permission levels.

• Not allowed - No access is allowed at all on the server machine.
• Restricted - Access is restricted only to the path(s) specified in the Default Path entry and their subdirectories.

The specified subdirectory path will be created if it does not already exist.
• Normal - Access is allowed anywhere reachable by the DAPcell/DAPcell Local server, except that new

directories will not be created if they are not qualified by the paths specified in the Default Path entry.

The Default Path entry specifies one or more directories that data can be written to. If pszFileName is a partial
file name and can be found in more than one of the paths specified in Default Path, the first occurrence is used.

When mirror logging is enabled, the presence of multiple default paths may have a different meaning if the mirror
file name is a partial path name. In this case, only the default path in the same list order as the mirror file name in
pszFileName is used to qualify it.

For example, if pszFileName is “c:\log\logs\logfile.log;c:\log\mirrors\mirror.log” and the
default path value is “c:\log;d:\backup”, the primary logging will go to c:\log\logs\logfile.log and
the mirror logging will go to c:\log\mirrors\mirror.log since they are both qualified by the first default
path “c:\log”. If pszFileName is “logfile.log;mirror.log” the primary logging will go to
c:\log\logfile.log and the mirror logging will go to “d:\backup\mirror.log” since the file names are
relative and are qualified by default paths in the same list order, “c:\log” for “logfiles.log” and
“d:\backup” for “mirror.log”.

See the help file of the DAP control panel program for more information.

Example
In the following example, the target pipe is first flushed. Data from \\PC92\Dap3\$BinOut is then continuously
logged to the file c:\logfiles\logfile.log on the server side, the same side where the DAP board is located.
This log session creates or overwrites the target file. Default parameters of the TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx structure are
used to read data from the pipe. Note that if the permission level specified in the “Disk I/O” tab of the DAPcell

DAPIO32 Interface Reference 119

/DAPcell Local Service’s control panel program does not allow access to this file, DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog will return
with an error.

TDapPipeDiskLog LogInfo;

DapStructPrepare(LogInfo);
LogInfo.bmFlags = dpdl_ServerSide | dpdl_FlushBefore;
LogInfo.pszFileName = “c:\\logfiles\\logfile.log”;
LogInfo.dwOpenFlags = DAPIO_CREATE_ALWAYS;

/* Open a log handle */
hLog = DapHandleOpen(“\\\\PC92\\Dap3\\$BinOut”,
 DAPOPEN_DISKIO);
/* Start a logging session */
if (hLog && DapPipeDiskLog(hLog, &LogInfo, NULL))
{
 /* Log some data */
 /* Check logging status periodically until it is done. */
}
else
{
 /* handle error */
}
/* Terminate the logging session */
if (hLog) DapHandleClose(hLog);

Version
This service is only available in DAPcell Server and DAPcell Local Server version 4.00 or later. It is not available
in DAPcell Basic Server.

See Also
TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog, TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx, DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery

 DAPIO32 Interface Reference 120

DapReinitialize

The DapReinitializeDapReinitializeDapReinitializeDapReinitialize function reloads a fresh copy of DAPL to the target DAP board(s) along with all modules
installed for the target DAP board(s). This is a destructive operation. All data on the target DAP board(s) will be
lost.

BOOL __stdcall DapReinitialize(
HDAP hAccel // Reinitialization handle
);

Parameters
hAccel

Handle to the DAP board(s) to reinitialize. Requires the handle opened with write access. If this is a DAP
handle, reinitialize the target DAP board only. If this is a server handle, reinitialize all the DAP boards on the
server.

Return Values
Returns true if the DAP boards were successfully reinitialized, returns false if an error occurred. Call
DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

Remarks
The DapReinitialiDapReinitialiDapReinitialiDapReinitializezezeze function performs a hardware reset of the specified DAP board(s) and reloads the DAPL
operating system along with all installed modules. This is the same as the initialization performed at system boot.

See Also
DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall, DapModuleLoadDapModuleLoadDapModuleLoadDapModuleLoad, DapModuleUninstallDapModuleUninstallDapModuleUninstallDapModuleUninstall, DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload, DapResetDapResetDapResetDapReset

DAPIO32 Interface Reference 121

DapReset

The DapResetDapResetDapResetDapReset function performs an interlocked DAPL “RESET” on the target DAP board(s). If the operation is
successful, the “RESET” is guaranteed complete before this function returns.

BOOL __stdcall DapReset(
HDAP hAccel // Reset handle
);

Parameters
hAccel

Handle to the DAP board(s) to DAPL RESET. If this is a DAP handle, perform the DAPL RESET operation on
the target DAP board only. If this is a server handle, perform the DAPL RESET operation on all the DAP boards
on the server.

Return Values
Returns true if the operation is successful. Returns false if an error has occurred. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to
retrieve additional information about the error.

Remarks
This function requires read or write access to the target DAP's $SysIn and $SysOut. The function fails if either
pipe has been opened with read or write access.

Use DapResetDapResetDapResetDapReset as the preferred method to RESET the DAPL interpreter. Since the DAPL interpreter runs on the
processors on the DAP board, and not on the processor in the PC, a command issued from the PC through $SysIn
to the DAP board usually will not complete before the service used to issue the command returns. DapResetDapResetDapResetDapReset
guarantees that the RESET completes on the DAP board(s) before returning control to the calling thread

The effect on DAPL of this function is identical to that of issuing a RESET through $SysIn. However, it is not the
same as using DapLinePutDapLinePutDapLinePutDapLinePut, or other pipe service, to send a RESET command to $SysIn. When you send a DAPL
command to $SysIn, the command is placed in the com-pipe on the PC. The transfer to the DAP board may then
begin immediately, if there is no other traffic blocking the transfer and the DAP board has space to accept the new
command. Or the transfer may be delayed until other transfers complete and/or the DAPL interpreter makes room
on the DAP board side of the com-pipe by processing the commands already present in $SysIn on the DAP
board. In either case, the commands in $SysIn on the DAP board will not be processed until the DAPL interpreter
is scheduled to run by the DAPL scheduler.

See the DAPL Reference Manual for more information about the RESET command.

See Also
DapReinitializeDapReinitializeDapReinitializeDapReinitialize

 DAPIO32 Interface Reference 122

DapServerControl

The DapServerControlDapServerControlDapServerControlDapServerControl function operates on the target server in a way that is specified by the control key string
parameter.

BOOL __stdcall DapServerControl(
const char * pszServer, // UNC target server address
const char * pszKey // Control key string
);

Parameters
pszServer

Specifies the target server address in UNC format. When a NULL pointer is specified, the local server is used.

pszKey
A control key string, identifying the operation to perform on the target server. See the section Control Keys for
the supported control keys.

Control Keys
The parameter pszKey supports the following control keys:

“ServiceRestart”
Stop and restart the DAPcell service on the target server. A successful return of the function guarantees that the
target service has been restarted. An option [timeout=dddd] can be specified in the key string where “dddd”
is an integer value in milliseconds. This value forces the function to return in the specified amount of time even
though the operation has not completed. If the option is not present, a default value of 60000 is used. Note that
the time required to restart the service may vary with the server configuration. Specifying a small timeout value
may cause the function to return with a time-out error while the service restart is still in progress and may
eventually succeed.

“ServerShutdown”
Initiate a request to shut down the target server machine to a point where it is safe to turn off the power. If the
target server supports the power-off feature, it also turns off the power. An option [force=true] can be
specified in the key string to force processes to terminate; as a result, processes may lose data. This operation is
asynchronous. A successful return of the function does not imply the completion of the operation.

“ServerReboot”
Initiate a request to shut down and restart the target server machine. An option [force=true] can be specified
in the key string to force processes to terminate; as a result, processes may lose data. This operation is
asynchronous. A successful return of the function does not imply the completion of the operation.

Return Values
Returns true if the operation is successful. Returns false if an error has occurred. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to
retrieve additional information about the error.

DAPIO32 Interface Reference 123

Remarks
All three DapServerControlDapServerControlDapServerControlDapServerControl functions invalidate client handles previously opened to the target server. It is a
good practice to close all handles whenever possible before calling DapServerControlDapServerControlDapServerControlDapServerControl.

When the target is a remote server, control operations require a special security privilege to be enabled by the
remote server. See the section Security for more information.

Control operations generally need the help of a running DAP service on the target server. However, if both the
client and the server machines are running Windows NT or newer, the “ServerShutdown” or “ServerReboot”
operation may succeed without a running DAP service.

Security
When a DAP service is running, operations may be restricted by the DAP service security control. A local server
enforces no restrictions. A remote server, by default, allows “ServiceRestart” operation only. To allow other
operations or to disable all operations from a remote client, use the DAP control panel program on the remote
server to adjust the privilege level.

When no DAP service is running on the target server, DapServerControlDapServerControlDapServerControlDapServerControl function may use Windows services to
perform the “ServerShutdown” or “ServerReboot” operation. This is only possible if both the client and the
server machines are running Windows NT or newer. In this case, Windows security control overrides the DAP
service security control. These two operations succeed on a local server only if the caller has the Windows NT
“Shut down the system” right enabled and on a remote server only if the caller has the Windows NT “Force
shutdown from a remote system” right enabled on the remote server.

See Also
DapReinitializeDapReinitializeDapReinitializeDapReinitialize, DapResetDapResetDapResetDapReset

 DAPIO32 Interface Reference 124

DapStringFormat

The DapStringFormatDapStringFormatDapStringFormatDapStringFormat function writes a formatted string of characters to a DAP com-pipe.

BOOL __cdecl DapStringFormat(
HDAP hAccel, // Open handle of the target pipe
const char *pszFormat, // Pointer to string
...
);

Parameters
hAccel

Handle to DAP com-pipe to receive characters.

pszFormat
Pointer to format string which is compatible with wsprintf.

...
List of parameters for use with pszFormat.

Return Values
If the function succeeds, the return value is TRUE; the string is written.

If the function fails, the return value is FALSE; there is something wrong with the handle or the formatted string
exceeds 1024 characters. Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

Remarks
Writes a string of characters to the DAP com-pipe after formatting the string with the parameters specified in
pszFormat. pszFormat is a format string which supports the format specifications shown in the documentation
for the Windows API function wsprintf.

The resulting string after formatting must not exceed 1024 characters.

DAPIO32 Interface Reference 125

DapStringGet

The DapSDapSDapSDapStringGettringGettringGettringGet function gets a string of characters from the DAP com-pipe.

BOOL __stdcall DapStringGet(
HDAP hAccel, // Handle to target pipe
int iLength, // Length of pszBuffer
char *pszBuffer // Pointer to buffer
);

Parameters
hAccel

Handle to DAP com-pipe from which to read a null-terminated string.

iLength
Length of pszBuffer including space for the null character.

pszBuffer
Pointer to buffer to store null-terminated string.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE; there is something wrong with the handle or pszBuffer is NULL.
Call DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

Remarks
Reads characters from the DAP com-pipe and places them in pszBuffer up to the first carriage-return character.

If more than iLength - 1 characters are encountered before a carriage-return is found, it returns iLength - 1
characters, and indicates success.

Line-feed characters are ignored and are never placed in the string.

See Also
DapCharGetDapCharGetDapCharGetDapCharGet, DapLineGetDapLineGetDapLineGetDapLineGet

 DAPIO32 Interface Reference 126

DapStringPut

The DapStringPutDapStringPutDapStringPutDapStringPut function writes a string of characters to a DAP com-pipe.

BOOL __stdcall DapStringPut(
HDAP hAccel, // Handle to target pipe
const char *psz // String to write to DAP
);

Parameters
hAccel

Handle to DAP com-pipe.

psz
Null-terminated string to write to DAP com-pipe. If psz is NULL does nothing and returns success.

Return Values
If the function succeeds, the return value is TRUE; the string is written.

If the function fails, the return value is FALSE; there is something is wrong with the handle. Call
DapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGetDapLastErrorTextGet to retrieve additional information about the error.

Remarks
Writes a string of characters to a DAP com-pipe. No terminating character is appended to the string so to send a
line of text to the DAPL interpreter the string must include an explicit carriage-return ("\r").

See Also
DapCharPutDapCharPutDapCharPutDapCharPut, DapLinePutDapLinePutDapLinePutDapLinePut

DAPIO32 Interface Reference 127

DapStructPrepare

The DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare function prepares a DAPIO32 structure for initial use.

void __stdcall DapStructPrepare(
void *pStruct, // Pointer to structure
int size // Size of structure to initialize
);

Members
pStruct

Pointer to the structure to initialize. The structure can be any valid DAPIO32 structure whose first field is
iInfoSize.

size
Size in bytes of the structure to initialize.

Remarks
The DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare function prepares a DAPIO32 structure for initial use. All fields are initialized to zero.
The iInfoSize field is set to the size of the structure expected by the DAPIO32 function.

A template is available for use in C++ applications. It takes a reference to a DAPIO32 structure and does not
require the size parameter. See the example below for usage.

Examples
Declare and initialize a TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx structure . Any non-zero fields must be initialized separately.

C example:

TDapBufferGetEx GetInfo;
DapStructPrepare (&GetInfo, sizeof(GetInfo));
GetInfo.iBytesGetMax = 1024;

...

C++ example using the template:

TDapBufferGetEx GetInfo;
DapStructPrepare (GetInfo);
GetInfo.iBytesGetMax = 1024;
....

Version Information 129

5. Version Information

This chapter describes the DAPIO32 interface version 2.13.

DAPIO32 Version 2.13

Changes to the DAPIO32 interface since the 2.12 release

The 2.13 release of DAPIO32 continues to support all interfaces declared in the 2.12 release.

Changes
 • The type of name or key string pointer field is changed from “char *” to “const char *” in structures
TDapCommandDownloadTDapCommandDownloadTDapCommandDownloadTDapCommandDownload, TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery, TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed, and TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog.

New DapHandleQuery keys
• "DaplEven"DaplEven"DaplEven"DaplEventLog"tLog"tLog"tLog"
• "DaplInputAnalogGains""DaplInputAnalogGains""DaplInputAnalogGains""DaplInputAnalogGains"
• "DaplInputAnalogVRanges""DaplInputAnalogVRanges""DaplInputAnalogVRanges""DaplInputAnalogVRanges"
• "DaplInputMasterDivideMax""DaplInputMasterDivideMax""DaplInputMasterDivideMax""DaplInputMasterDivideMax"
• "DaplInputScanTimeMin""DaplInputScanTimeMin""DaplInputScanTimeMin""DaplInputScanTimeMin"
• "DaplInputScanTimeMax""DaplInputScanTimeMax""DaplInputScanTimeMax""DaplInputScanTimeMax"
• "DaplInputScanTimeIncrement""DaplInputScanTimeIncrement""DaplInputScanTimeIncrement""DaplInputScanTimeIncrement"
• "DaplOutputScanTimeMin""DaplOutputScanTimeMin""DaplOutputScanTimeMin""DaplOutputScanTimeMin"
• "DaplO"DaplO"DaplO"DaplOutputScanTimeMax"utputScanTimeMax"utputScanTimeMax"utputScanTimeMax"
• "DaplOutputScanTimeIncrement""DaplOutputScanTimeIncrement""DaplOutputScanTimeIncrement""DaplOutputScanTimeIncrement"
• "DaplMonitorData""DaplMonitorData""DaplMonitorData""DaplMonitorData"
• "DaplName""DaplName""DaplName""DaplName"
• "ServerOsSystemType""ServerOsSystemType""ServerOsSystemType""ServerOsSystemType"
• "ServerSystemType""ServerSystemType""ServerSystemType""ServerSystemType"

Updated DapHandleQuery keys
• "DaplInputCount""DaplInputCount""DaplInputCount""DaplInputCount"
• "DaplOutputCount""DaplOutputCount""DaplOutputCount""DaplOutputCount"
 "DaplOverflowCount""DaplOverflowCount""DaplOverflowCount""DaplOverflowCount"
 "DaplSampleTimeIncrement""DaplSampleTimeIncrement""DaplSampleTimeIncrement""DaplSampleTimeIncrement"
• "DaplSampleTimeMaxAnalog""DaplSampleTimeMaxAnalog""DaplSampleTimeMaxAnalog""DaplSampleTimeMaxAnalog"
• "DaplSampleT"DaplSampleT"DaplSampleT"DaplSampleTimeMaxDigital"imeMaxDigital"imeMaxDigital"imeMaxDigital"
• "DaplSampleTimeMinAnalog""DaplSampleTimeMinAnalog""DaplSampleTimeMinAnalog""DaplSampleTimeMinAnalog"
• "DaplSampleTimeMinDigital""DaplSampleTimeMinDigital""DaplSampleTimeMinDigital""DaplSampleTimeMinDigital"
• "DaplSupports""DaplSupports""DaplSupports""DaplSupports"
• "DaplSymbol""DaplSymbol""DaplSymbol""DaplSymbol"
• "DaplUnderflowCount""DaplUnderflowCount""DaplUnderflowCount""DaplUnderflowCount"
 "DaplUpdateTimeIncrement""DaplUpdateTimeIncrement""DaplUpdateTimeIncrement""DaplUpdateTimeIncrement"

 Version Information 130

• "DaplUpdateTimeMaxAnalog""DaplUpdateTimeMaxAnalog""DaplUpdateTimeMaxAnalog""DaplUpdateTimeMaxAnalog"
• "DaplUpdateTimeMaxDigital""DaplUpdateTimeMaxDigital""DaplUpdateTimeMaxDigital""DaplUpdateTimeMaxDigital"
• "DaplUpdateTimeMinAnalog""DaplUpdateTimeMinAnalog""DaplUpdateTimeMinAnalog""DaplUpdateTimeMinAnalog"
• "DaplUpdateTimeMinDigital""DaplUpdateTimeMinDigital""DaplUpdateTimeMinDigital""DaplUpdateTimeMinDigital"
• "DapModuleInstall""DapModuleInstall""DapModuleInstall""DapModuleInstall"
• "DapModuleLoad""DapModuleLoad""DapModuleLoad""DapModuleLoad"
• "DapModuleUninstall""DapModuleUninstall""DapModuleUninstall""DapModuleUninstall"
• "DapModuleUnload""DapModuleUnload""DapModuleUnload""DapModuleUnload"

DAPIO32 Version 2.12

Changes to the DAPIO32 interface since the 2.11 release

The 2.12 release of DAPIO32 continues to support all interfaces declared in the 2.11 release.

New functions
• DapBufferPeekDapBufferPeekDapBufferPeekDapBufferPeek
• DapServerControlDapServerControlDapServerControlDapServerControl

New DapHandleQuery keys
• "BindTransport""BindTransport""BindTransport""BindTransport"
• "DaplSymbol""DaplSymbol""DaplSymbol""DaplSymbol"
• "DaplWarnMsg""DaplWarnMsg""DaplWarnMsg""DaplWarnMsg"
• "DaplWarnNum""DaplWarnNum""DaplWarnNum""DaplWarnNum"

Updated DapHandleQuery keys
• "DaplInputChannelGroupSize""DaplInputChannelGroupSize""DaplInputChannelGroupSize""DaplInputChannelGroupSize"
• "DaplSampleTimeMinAnalog""DaplSampleTimeMinAnalog""DaplSampleTimeMinAnalog""DaplSampleTimeMinAnalog"
• "DaplS"DaplS"DaplS"DaplSampleTimeMinDigital"ampleTimeMinDigital"ampleTimeMinDigital"ampleTimeMinDigital"

DAPIO32 Version 2.11

Changes to the DAPIO32 interface since the 2.10 release

No functional changes since the 2.10 release.

Minor fixes on the propagation of time-out warnings in functions DapBufferGetDapBufferGetDapBufferGetDapBufferGet and DapBufferPutDapBufferPutDapBufferPutDapBufferPut.

DAPIO32 Version 2.10

Changes to the DAPIO32 interface since the 2.00 release

The primary enhancement in the 2.10 release of the DAPIO32 interface is the addition of support for installation and
loading of DAPL 2000 custom modules.

Version Information 131

The 2.10 release of DAPIO32 continues to support all interfaces declared in the 2.00 release DAPIO32.H. You can
use the new DAPIO32.DLL with a program compiled with the old DAPIO32.H.

New functions
• DapModuleInstallDapModuleInstallDapModuleInstallDapModuleInstall
• DapModuleLoadDapModuleLoadDapModuleLoadDapModuleLoad
• DapModuleUninstallDapModuleUninstallDapModuleUninstallDapModuleUninstall
• DapModuleUnloadDapModuleUnloadDapModuleUnloadDapModuleUnload
• DapReinitializeDapReinitializeDapReinitializeDapReinitialize
• DapDapDapDapResetResetResetReset

New DapHandleQuery keys
• "DapName""DapName""DapName""DapName"
• "DiskFeedEnabled""DiskFeedEnabled""DiskFeedEnabled""DiskFeedEnabled"
• "DiskLogEnabled""DiskLogEnabled""DiskLogEnabled""DiskLogEnabled"
• "IsRemote""IsRemote""IsRemote""IsRemote"
• "ModuleInstallEnabled""ModuleInstallEnabled""ModuleInstallEnabled""ModuleInstallEnabled"

Changes
• DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery now supports the DAPIO_VARIANT return data type.
• The result type field of the TDapHandleQueryTDapHandleQueryTDapHandleQueryTDapHandleQuery structure is no longer a union, but simply an integer field with

the name of "eResultType".

DAPIO32 Version 2.00

Changes to the DAPIO32 interface since the 1.12 release

The 2.00 release of DAPIO32 continues to support all interfaces declared in the 1.12 release DAPIO32.H. To
continue using the 1.12 interfaces use either the 1.12 DAPIO32.H or the DAPIO32.H shipped with this version of
DAPIO32.DLL. You can use the new DAPIO32.DLL with a program compiled with the old DAPIO32.H.

Changes
• DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate accepts a new syntax for the pipe attribute option list in its pipe information string

argument. The old syntax is still supported for compatibility, but mixed syntax will be rejected.

 With the new syntax, the pipe attribute "type=xxx" replaces the old attributes "width=x" and "binary" or
"text". The new syntax also allows applications to specify pipe attributes for both the PC side and the Data
Acquisition Processor side in one option list.

• TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx structure now includes a new field iBytesMultiple. With this new field,
DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx always returns an amount of data that is an integral multiple of the value of this field.

• TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx structure also includes the new field iBytesMultiple. DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx now always

puts an amount of data that is an integral multiple of the value of this field.

 Version Information 132

Additions
• TDapIoInt64TDapIoInt64TDapIoInt64TDapIoInt64
• TDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeedTDapPipeDiskFeed
• TDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLogTDapPipeDiskLog
• DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32DapHandleQueryInt32
• DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64DapHandleQueryInt64
• DapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeedDapPipeDiskFeed
• DapPipeDiskLogDapPipeDiskLogDapPipeDiskLogDapPipeDiskLog
• DapStructPrepareDapStructPrepareDapStructPrepareDapStructPrepare

DAPIO32 Version 1.12

Changes to the DAPIO32 interface since the 1.11 release

The 1.12 release of DAPIO32 continues to support all interfaces declared in the 1.11 release DAPIO32.H. To
continue using the 1.11 interfaces use either the 1.11 DAPIO32.H or the DAPIO32.H shipped with this version of
DAPIO32.DLL. You can use the new DAPIO32.DLL with a program compiled with the old DAPIO32.H.

Additions
• DapOutputEmptyDapOutputEmptyDapOutputEmptyDapOutputEmpty

DAPIO32 Version 1.10

Changes to the DAPIO32 interface since the 1.00 release

The 1.10 release of DAPIO32 continues to support all interfaces declared in the 1.00 release DAPIO32.H. To
continue using the 1.00 interfaces use the 1.00 DAPIO32.H; do not switch to the DAPIO32.H shipped with any
newer version of DAPIO32.DLL. You can use the new DAPIO32.DLL with a program compiled with the old
DAPIO32.H.

Changes
• The TDapBufferGetExTDapBufferGetExTDapBufferGetExTDapBufferGetEx structure has been changed to include time-out intervals and several field names have

been changed to force compilation failure if old code which uses the DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx service is compiled
without modification. The DapBufferGetExDapBufferGetExDapBufferGetExDapBufferGetEx service in the DAPIO32.DLL continues to support the old
interface for compatibility with old binaries.

• The DapHandleQueryDapHandleQueryDapHandleQueryDapHandleQuery service has many new keys.
• All simple Get/Put operations have a built-in 20 second time-out.
• DapComPipeCreateDapComPipeCreateDapComPipeCreateDapComPipeCreate/DapComPipeDeleteDapComPipeDeleteDapComPipeDeleteDapComPipeDelete now manage the com-pipe on the DAP board as well as the com-

pipe on the PC. This change means that it is no longer necessary to create the com-pipe on the DAP board
manually. Both of these operations are DESTRUCTIVE. They remove all user-defined application definitions on
the DAP board including custom commands.

• DapCommandDownloadDapCommandDownloadDapCommandDownloadDapCommandDownload/DapConfigDapConfigDapConfigDapConfig now looks for files first in the current directory and then in the executable
directory. Previously these commands only looked for files in the current directory.

Additions
• DapBufferPutExDapBufferPutExDapBufferPutExDapBufferPutEx

Version Information 133

• DapLineGetDapLineGetDapLineGetDapLineGet
• TDapBufferPutExTDapBufferPutExTDapBufferPutExTDapBufferPutEx

Index 135

Index
$BinIn ...9
$BinOut...9
$SysIn ...9
$SysOut...9
About this Document ...8
Accel32 device names.. 15, 16
Accel32 for Linux..15
Advanced Data I/O ..14
Application Termination and Cleanup...31
Basic Communication ..12
Basic DAPIO Functions ...32
BindTransport..91
Buffered Data Transfers ...10
C++ Application Programming...17
ClientVersion...78
Communication Pipes ..9
Control Keys ...122
Copyrights and Trademarks.. i
DAP Connection Life Cycle ...19
DapBufferGet ...12, 13, 14, 24, 54, 55, 56, 57, 130
DapBufferGetEx... 14, 32, 36, 54, 55, 56, 57, 59, 94, 132
DapBufferPeek ..37, 39, 53, 54, 58, 130
DapBufferPut.. 54, 60, 61, 130
DapBufferPutEx ..14, 40, 54, 60, 61, 132
DapCharGet.. 54, 62, 102, 125
DapCharPut ..54, 63, 126
DapCommandDownload ... 41, 42, 54, 64, 132
DapComPipeCreate... 9, 21, 54, 65, 66, 67, 68, 89, 91, 132
DapComPipeDelete... 54, 67, 68, 132
DapConfig... 12, 32, 54, 69, 70, 72, 73, 132
DapConfigParamsClear...54, 70, 71, 72
DapConfigParamSet.. 54, 69, 70, 71, 72
DapConfigRedirect .. 54, 70, 73
DapDiskIoCount ..90
DapDiskIoStatus..90
DapEnumerate ...78
DapHandleClose.. 12, 19, 32, 54, 74, 75, 76
DapHandleOpen .. 12, 19, 32, 53, 54, 59, 74, 75
DapHandleQuery... 43, 45, 54, 76, 77, 131, 132
DapHandleQueryInt32 ... 54, 92
DapHandleQueryInt64 ... 54, 93
DapInputAvail .. 27, 32, 54, 55, 94
DapInputFlush .. 32, 54, 95, 96, 112
DapInputFlushEx... 54, 95, 96
DapInt16Get.. 32, 54, 97
DapInt16Put .. 54, 98
DapInt32Get.. 23, 54, 99
DapInt32Put .. 54, 100
DAPIO Functions, Summary..32
DAPIO32 .. 9, 33
DAPIO32 Function Reference..53

 Index 136

DAPIO32 Overview...9
DAPIO32 Structure Reference..34
DAPIO32 Version 1.10..132
DAPIO32 Version 1.12..132
DAPIO32 Version 2.00..131
DAPIO32 Version 2.10..130
DAPIO32 Version 2.11..130
DAPIO32 Version 2.12..130
DAPIO32 Version 2.13..129
DapLastErrorTextGet.. 54, 58, 85, 101, 103
DaplErrorMsg..79
DaplErrorNum...79
DaplErrorText ...80
DaplEventLog ...80
DapLineGet .. 54, 102, 125, 133
DapLinePut ...32, 54, 103, 121, 126
DaplInputAnalogGains...80
DaplInputAnalogVRanges..80
DaplInputChannelConfigurationCountMax...80
DaplInputChannelGroupSize..80
DaplInputCount ...80
DaplInputMasterDivideMax...81
DaplInputScanTimeIncrement..81
DaplInputScanTimeMax ..81
DaplInputScanTimeMin...81
DaplMemFree..82
DaplMemTotal ..82
DaplMonitorData...82
DaplName ...82
DaplOutputChannelConfigurationCountMax ..82
DaplOutputChannelGroupSize ...82
DaplOutputCount...82
DaplOutputScanTimeIncrement ...83
DaplOutputScanTimeMax..83
DaplOutputScanTimeMin ..82
DaplOverflowCount...83
DaplSampleResolutionAnalog..83
DaplSampleTimeIncrement..83
DaplSampleTimeMaxAnalog ...83
DaplSampleTimeMaxDigital..84
DaplSampleTimeMinAnalog..84
DaplSampleTimeMinDigital ..84
DaplSupports...85
DaplSymbol...85
DaplUnderflowCount...87
DaplUpdateResolutionAnalog ..88
DaplUpdateTimeIncrement ..88
DaplUpdateTimeMaxAnalog..88
DaplUpdateTimeMaxDigital ..88
DaplUpdateTimeMinAnalog ..88
DaplUpdateTimeMinDigital...89
DaplVersion ..89
DaplWarnMsg ...89
DaplWarnNum ..89
DapModel..79

Index 137

DapModuleInstall ... 54, 64, 104, 107, 109, 111, 120, 131
DapModuleLoad...54, 105, 106, 109, 111, 120, 131
DapModuleUninstall...54, 105, 107, 108, 111, 120, 131
DapModuleUnload..54, 105, 107, 109, 110, 120, 131
DapName ..79
DapOs ...79
DapOutputEmpty.. 54, 95, 112, 132
DapOutputSpace...54, 60, 113
DapPipeDiskFeed ... 47, 54, 59, 114
DapPipeDiskLog...54, 59, 117
DapReinitialize .. 54, 76, 105, 107, 109, 111, 120, 121, 123, 131
DapReset... 32, 54, 120, 121, 123, 131
DapSerial...79
DapServerControl ... 54, 122, 123, 130
DapStringFormat ... 54, 124
DapStringGet.. 23, 54, 102, 125
DapStringPut ..54, 103, 126
DapStructPrepare.. 32, 54, 64, 127
Data Access Considerations ...29
DiskFeedEnabled...78
DiskLogEnabled ..78
Efficient Run-Time Processing...23
HandleName..91
Installation...18
Interface Reference ..33
Introduction ...7
IsRemote ...78
Linux...133
Linux Support..15
ModuleInstallEnabled ..78
Overview Chapter..19
Pipe names UNC..11
PipeAttribute ...89
PipeDirection...89
PipeEnumerate...89
PipeMaxSize..90
PipeType ...90
PipeWidth..90
Security ...123
ServerEnumerate..78
ServerName...78
ServerOs..79
ServerOsSystemType...79
ServerSystemType ...79
ServerVersion..79
Software Components ..17
Summary of Basic DAPIO Functions..32
TDapBufferGetEx..24, 27, 36, 56, 57, 132
TDapBufferPeek... 34, 37, 39, 58, 59
TDapBufferPutEx...40, 61, 133
TDapCommandDownload.. 41, 64
TDapHandleQuery... 43, 44, 77, 85, 86, 87, 91, 131
TDapIoInt64..46
TDapPipeDiskFeed..47
TDapPipeDiskLog ...50

 Index 138

Transports..79
UNC..15, 16, 68, 75, 91, 122
UNC naming conventions ..20
UNC pipe name ...65
UNC Pipe Names...11
Universal Naming Convention Pipe Names...11
Unix style Accel32 device names ...16
Version Information...129

	DAPIO32 Reference Manual
	Contents

	Introduction
	About this Document

	DAPIO32 Overview
	Communication Pipes
	Buffered Data Transfers
	UNC (Universal Naming Convention) Pipe Names
	Basic Communication
	Advanced Data I/O
	Linux Support
	Functions Supported
	Functions Not Supported
	Functions Modified
	Unix style Accel32 device names

	C++ Application Programming
	Software Components
	Installation
	Configure your compiler environment
	Determine your onboard processing configuration
	Configure for your application build

	The DAP Connection Life Cycle
	Efficient Run-Time Processing
	Data Access Considerations
	Application Termination and Cleanup
	Summary of Basic DAPIO Functions

	DAPIO32 Interface Reference
	DAPIO32 Structure Reference
	Structure Reference
	Structure Usage
	Structure Initialization
	Binary Compatibility
	Alphabetical Structure Reference
	TDapBufferGetEx
	TDapBufferPeek
	TDapBufferPutEx
	TDapCommandDownload
	TDapHandleQuery
	TDapIoInt64
	TDapPipeDiskFeed
	TDapPipeDiskLog

	DAPIO32 Function Reference
	Function Reference
	Function Overview
	Data I/O Time-out
	Alphabetical Function Reference
	DapBufferGet
	DapBufferGetEx
	DapBufferPeek
	DapBufferPut
	DapBufferPutEx
	DapCharGet
	DapCharPut
	DapCommandDownload
	DapComPipeCreate
	DapComPipeDelete
	DapConfig
	DapConfigParamsClear
	DapConfigParamSet
	DapConfigRedirect
	DapHandleClose
	DapHandleOpen
	DapHandleQuery
	DapHandleQueryInt32
	DapHandleQueryInt64
	DapInputAvail
	DapInputFlush
	DapInputFlushEx
	DapInt16Get
	DapInt16Put
	DapInt32Get
	DapInt32Put
	DapLastErrorTextGet
	DapLineGet
	DapLinePut
	DapModuleInstall
	DapModuleLoad
	DapModuleUninstall
	DapModuleUnload
	DapOutputEmpty
	DapOutputSpace
	DapPipeDiskFeed
	DapPipeDiskLog
	DapReinitialize
	DapReset
	DapServerControl
	DapStringFormat
	DapStringGet
	DapStringPut
	DapStructPrepare

	Version Information
	DAPIO32 Version 2.13
	Changes to the DAPIO32 interface since the 2.12 release
	Changes
	New DapHandleQuery keys
	Updated DapHandleQuery keys

	DAPIO32 Version 2.12
	Changes to the DAPIO32 interface since the 2.11 release
	New functions
	New DapHandleQuery keys
	Updated DapHandleQuery keys

	DAPIO32 Version 2.11
	Changes to the DAPIO32 interface since the 2.10 release

	DAPIO32 Version 2.10
	Changes to the DAPIO32 interface since the 2.00 release
	New functions
	New DapHandleQuery keys
	Changes

	DAPIO32 Version 2.00
	Changes to the DAPIO32 interface since the 1.12 release
	Changes
	Additions

	DAPIO32 Version 1.12
	Changes to the DAPIO32 interface since the 1.11 release
	Additions

	DAPIO32 Version 1.10
	Changes to the DAPIO32 interface since the 1.00 release
	Changes
	Additions

	Index

